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Abstract 36 

Modern biological approaches generate volumes of multi-dimensional data, offering unprecedented 37 

opportunities to address fundamental biological questions previously beyond reach due to small or subtle 38 

effects. A fundamental question in plant biology is the extent to which below-ground activity in the root 39 

system influences above-ground traits (phenotypes) expressed in the shoot system. Grafting, an ancient 40 

agricultural practice that fuses the root system of one individual (the rootstock) with the shoot system of a 41 

second, genetically distinct individual (the scion), is a powerful experimental system to understand 42 

below-ground effects on above-ground phenotypes. Previous studies on grafted grapevines have detected 43 

rootstock influence on scion phenotypes including physiology and berry chemistry; however, the extent of 44 

the rootstock’s influence on leaves, the photosynthetic engines of the vine, and how those effects changes 45 

over the course of a growing season, are still largely unknown. Here, we investigate associations between 46 

rootstock genotype and shoot system phenotypes using five multi-dimensional leaf phenotyping 47 

modalities measured in a common grafted scion: ionomics, metabolomics, transcriptomics, 48 

morphometrics, and physiology. Rootstock influence is ubiquitous but subtle across modalities with the 49 

strongest signature of rootstock observed in the leaf ionome. Moreover, we find that the extent of 50 

rootstock influence on scion phenotypes and patterns of phenotypic covariation are highly dynamic across 51 

the season. These findings substantially expand previously identified patterns to suggest that rootstock 52 

influence on scion phenotypes is complex and broad understanding necessitates volumes of multi-53 

dimensional data previously unmet. 54 

 55 

Background 56 

 57 

High-throughput data acquisition has afforded unprecedented capacity to quantify and understand 58 

plant form and function. Recent advances in imaging and computation have expanded our ability to 59 

measure plant structures [1,2], and to extend those comprehensive measurements into latent space 60 

phenotypes [3]. Now broadly known as phenomics, this burgeoning field is characterized as the 61 

https://paperpile.com/c/NSL3pn/RdLUJ+KLjMH
https://paperpile.com/c/NSL3pn/KfDiw
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acquisition and analysis of high-dimensional phenotypic data at hierarchical levels [4,5], often with an 62 

eye toward multiscale data integration. A holistic and hierarchical approach to plant phenotypic variation 63 

affords unique insights into plant evolution, and how plants change over development and in response to 64 

environmental cues and horticultural manipulation.  65 

A fundamental question in plant biology is how root systems influence phenotypic variation in 66 

above-ground shoot systems including leaves, flowers, and fruits. Grafting, a common horticultural 67 

manipulation that joins the shoot system of one individual (the scion) with the root system of another 68 

individual (the rootstock), is commonly used in crop species to confer favorable phenotypes to 69 

commercial scions [6], including enhanced disease resistance [7,8], fruit quality, plant form [9], response 70 

to water stress [10], and growth on particular soils [11,12]. Because grafting often uses clonally 71 

propagated materials, it is possible to manipulate and replicate different combinations of root systems and 72 

shoot systems, offering a valuable experimental system in which root system impacts on shoot system 73 

phenotypes can be evaluated.  74 

The European grapevine (Vitis vinifera) is among the most economically important grafted crops 75 

in the world. Grapevines are cultivated primarily for fruits used to make wine and juice, as well as for 76 

table grape and raisin production. Grafting in grapevines became widespread in the mid-1800’s following 77 

the accidental introduction of the root-feeding aphid phylloxera from its native North America into 78 

Europe, where it began attacking the roots of European grapevines [13]. Because European grapevines 79 

often did not survive phylloxera infestation, most grapevine cultivation now consists of European 80 

grapevines grafted to rootstocks derived from phylloxera-resistant North American Vitis species including 81 

V. berlandieri, V. riparia, and V, rupestris, and their hybrid derivatives. In addition to grapevines, more 82 

than 70 major perennial crops are grafted including many fruit trees and vines [9]. In these crops, grafting 83 

decouples the breeding of shoot systems and root systems, with selection in plants targeted for use as 84 

scions focusing primarily on fruit traits, and selection in plants targeted for use as rootstocks focused on 85 

below-ground biotic and abiotic stress resistance, as well as their impacts on shoot system phenotypes.  86 

https://paperpile.com/c/NSL3pn/sDZWw+wlTJv
https://paperpile.com/c/NSL3pn/dKE8d
https://paperpile.com/c/NSL3pn/RwEbL+mRXZY
https://paperpile.com/c/NSL3pn/oPgWO
https://paperpile.com/c/NSL3pn/dIY4U
https://paperpile.com/c/NSL3pn/sBZyR+vB257
https://paperpile.com/c/NSL3pn/Vhpx
https://paperpile.com/c/NSL3pn/oPgWO
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The effects of grafting in grapevine show a remarkable breadth of scion response patterns. For 87 

example, a study of Vitis vinifera ‘Cabernet Sauvignon’ grafted to different rootstocks identified 88 

transcriptome reprogramming in the scion of grafted plants; this appeared to be a general effect of 89 

grafting to a rootstock and was not rootstock-specific [14]. In contrast, other studies have found 90 

signatures of rootstock genotype in the transcriptome in early berry development, although this distinction 91 

was lost in later development [15,16], but see [17]. Comprehensive phenomic analyses, including those 92 

that link transcriptome data with other high-throughput phenotypic assays, offer an opportunity to expand 93 

understanding of rootstock effects on grapevine shoots. In one study, leaves of the V. vinifera cultivar 94 

‘Gaglioppo’ showed variation in stilbene and abscisic acid concentrations due to rootstock genotype, as 95 

well as differences in transcriptional profiles [18]. Likewise, gene expression, ion concentrations, and leaf 96 

shape in the cultivar ‘Chambourcin’ varied in response to rootstock genotype [18,19]. Collectively, these 97 

studies suggest the impacts of grafting are diverse and may vary over the course of vine development. 98 

However, to date few studies have surveyed multiple high-dimensional scion phenotypes to understand 99 

the rootstock influence on shoot system traits over the course of the growing season or the extent to which 100 

grafting effects on the scion covary with one another. 101 

 Grapevine leaves are the photosynthetic engine of the organism and a primary site for perception 102 

and response to environmental change. Leaves present a wide variety of highly variable and readily 103 

assayable phenotypes, providing an important opportunity for phenomic assessment. Grapevine leaves 104 

have been used for centuries as markers of species and cultivar delimitation, developmental variation, 105 

disease presence, and nutrient deficiency [20,21]. More recently, analysis of grapevine leaf morphology 106 

has identified genetic architecture of leaf shapes [22], developmental patterns across the season [23], and 107 

signatures of evolution in the grapevine genus [24]. Grapevine leaves respond to stress through gas and 108 

water exchange with the atmosphere [25,26] and have been shown to differentially partition the ionome 109 

depending on their position on the shoot [19] and their rootstock genotype [19,27,28]. The volume of 110 

work on grapevine leaves provides a foundation for the analysis of phenomic variation in a vineyard over 111 

a season in response to grafting.  112 

https://paperpile.com/c/NSL3pn/hlg1m
https://paperpile.com/c/NSL3pn/33rGo+OkUxj
https://paperpile.com/c/NSL3pn/LxxFL
https://paperpile.com/c/NSL3pn/W2uSW
https://paperpile.com/c/NSL3pn/W2uSW+kPkfy
https://paperpile.com/c/NSL3pn/PlyfX+7SGQr
https://paperpile.com/c/NSL3pn/ZLBqg
https://paperpile.com/c/NSL3pn/SwcUe
https://paperpile.com/c/NSL3pn/xx3E7
https://paperpile.com/c/NSL3pn/eA1it+8Ug7Q
https://paperpile.com/c/NSL3pn/kPkfy
https://paperpile.com/c/NSL3pn/abFv6+Am2lZ+kPkfy
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In this study, we investigate effects of grafting on high dimensional leaf phenotypes of the hybrid 113 

cultivar ‘Chambourcin’ over the course of the growing season. We quantify leaf elemental (ion) 114 

concentrations, metabolite abundance, gene expression, shape, and vine physiology in a replicated 115 

rootstock trial where the hybrid grapevine cultivar ‘Chambourcin’ is growing ungrafted and grafted to 116 

three different rootstocks. The four root-shoot combinations (‘Chambourcin’ ungrafted, ‘Chambourcin’ 117 

grafted to three different rootstocks) are replicated 72 times in a randomized block experimental design 118 

with an irrigation treatment (Supplemental Figure 1). Data were collected either on the full 288-vine set 119 

(ion concentrations, leaf shape) or on a subset of 72 vines (the 72-vine set; metabolite abundance, gene 120 

expression, vine physiology). Using data collected at three time points that span the growing season 121 

(anthesis, veraison, and harvest), we show that ionomic, metabolomic, transcriptomic, morphometric, and 122 

physiology phenotypes reflect subtle but ubiquitous responses to grafting and rootstock genotype. 123 

Rootstock effects were often dynamic across the season, suggesting that accounting for seasonal variation 124 

could alter our understanding of grafting in viticulture.  125 

 126 

Data Description 127 

 128 

Leaf Ionomics 129 

The ionome describes elemental composition of a tissue at a particular time point [29]. Three 130 

leaves per vine were collected from the 288-vine set. Leaves were sampled from a single shoot and 131 

included the youngest fully opened leaf at the shoot tip, the approximate middle leaf, and the oldest leaf at 132 

the shoot base. Whole leaves were placed in zip-lock bags in the field and stored in a cooler on ice packs, 133 

scanned for leaf shape analysis in the lab (see Leaf Shape) and then dried in coin envelopes at 50°C for 134 

one to three days for elemental analysis. Between 20 and 100 mg of leaf tissue was acid digested and 20 135 

ions were quantified using inductively coupled plasma mass spectrometry (ICP-MS) following standard 136 

protocol [30,31] at the Donald Danforth Plant Science Center (DDPSC). Ion quantifications were 137 

corrected for internal standard concentrations, instrument drift and by initial sample mass as part of the 138 

https://paperpile.com/c/NSL3pn/Zf8pk
https://paperpile.com/c/NSL3pn/0R7ul+OUKCS
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DDPSC Ionomics Pipeline. For each ion concentration, we computed z-score distributions and used those 139 

values as the basis for linear models. Non-standardized values were used for machine learning analysis. 140 

 141 

Leaf Metabolomics 142 

 The metabolome comprises small molecules present in a tissue, representing a catalogue of the 143 

products of metabolic processes [32,33]. Metabolomic analysis was completed at veraison and harvest for 144 

the 72-vine set. For each vine, three mature leaves were sampled from the middle of a single shoot and 145 

immediately flash frozen in liquid nitrogen to capture the metabolic state of the leaves when attached to 146 

the vine. Leaves were sampled near midday in row and block order. Frozen leaves were transported to the 147 

University of Missouri Enology lab on dry ice and stored at -80˚C. Following the protocol of [34], whole 148 

leaves were manually ground in liquid nitrogen with a mortar and pestle, 0.5g of powder was weighed 149 

into a centrifuge tube, 1.5ml of 1:1 MeOH: ACN was added. Samples were vortexed to suspend leaf 150 

particles and sonicated for 20 minutes in an ice bath. Following extraction, samples were centrifuged for 151 

10 minutes at 3,000 g and filtered with a 0.22 PTFE syringe filter into a 1.5ml sample vial before 152 

injecting into a Waters XEVOTM QToF LCMS system (Waters Corporation, Milford, MA, USA). 153 

Chromatographic separation was achieved using a Waters Acquity TM Ultra Performance LC H-Class 154 

system (Waters Corporation, Milford, MA, USA) equipped with Waters Acquity BEH C18 column 155 

(2.1mmx150mm and 1.7um particle size) and a diode array detector. Samples were injected in random 156 

order across the sampling periods. The injection volume was set at 2.5ul and the flow rate was set at 0.4 157 

ml/min. The mobile phase consisted of 0.1% formic acid in water (solvent A) and 0.1% formic acid and 158 

5% water in acetaldehyde (solvent B) and the gradient was as follows: 100% A for 0.5 min; 0.5-18min 159 

increased to 99% B; 18-19 min. held at 99% B; mobile phase was re-equilibrated for 2 min between runs. 160 

Diode array was monitored at 225-500nm. Mass spectrometry was performed on a XevoTM QTof 161 

(Waters Corporation, Milford, MA, USA). The electrospray ionization (ESI) was operated in both 162 

positive or negative ionization modes in separate runs. The scan range was set as m/z 50-1500 with 0.2 163 

https://paperpile.com/c/NSL3pn/OSg29+o3JMb
https://paperpile.com/c/NSL3pn/5tbBD


7 

sec accumulation time. MS settings were as follows: capillary voltage was 2.5kV; cone voltage ramped 164 

from 20-40V; collision energy was set to 6V; detector voltage was set to 1950V; desolvation gas was set 165 

to 1000 L/hour; cone gas was set to 50 L/hr; source temperature was 120 ̊C and desolvation temperature 166 

was set at 550 ̊C.  167 

LC-MS instrument files were converted to .cdf format and uploaded to XCMS online [35] for 168 

chromatogram normalization and feature detection via “single job” parameters. Identified metabolomic 169 

features were used as the basis of a principal components (PC) analysis. The top 20 PCs were treated as 170 

distinct phenotypes to model according to the experimental design. In PCs that varied significantly by 171 

rootstock, features that loaded more than 1.96 standard deviations above or below the mean were fit 172 

independently with the same model design.  173 

Leaf Gene Expression 174 

 The youngest fully-opened leaves on two shoots were collected from each plant of the 72-vine set 175 

(see Study Design). The two leaves, which were distinct from leaves used for ionomics, leaf shape, 176 

metabolomics and physiology data collection, were pooled for RNA sequencing. Samples were sequenced 177 

using 3’-RNAseq, a method ideal for organisms with reasonably characterized reference genomes [36]. 178 

The first 12 nucleotides from each read were trimmed to remove low-quality sequences using 179 

Trimmomatic (options: HEADCROP:12; [37]). Low quality trimmed reads were additionally identified 180 

based on overrepresentation of kmers and removed using BBduk (April 2019 release) [38]. Trimmed and 181 

QC-controlled reads were mapped to the 12Xv2 reference Vitis vinifera genome [39,40] using STAR 182 

(v2.7.2b) [41] with default alignment parameters. RNAseq read alignments were quantified using HTSeq-183 

count (v0.11.2) [42] and a modified version of the VCost.v3 reference V. vinifera genome annotation 184 

[40]. To capture mis-annotated gene body boundaries in the genome, all gene boundaries in the 185 

annotation were extended 500 bp.  186 

 Variation in gene expression was assessed using two methodologies. First, we identified 187 

individual genes which responded to specific factors in the experimental design using DESeq2 (v1.24.0) 188 

https://paperpile.com/c/NSL3pn/3F5hM
https://paperpile.com/c/NSL3pn/TIhus
https://paperpile.com/c/NSL3pn/nBbr6
https://paperpile.com/c/NSL3pn/EfTPo
https://paperpile.com/c/NSL3pn/ZYkBy+tPXpv
https://paperpile.com/c/NSL3pn/T0Vwo
https://paperpile.com/c/NSL3pn/AvzHj
https://paperpile.com/c/NSL3pn/tPXpv
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[43]. Each gene was fit with the model “~ Block + Irrigation + Phenology_Rootstock” where the 189 

‘Phenology_Rootstock’ model term was used to understand the potential interaction of phenology and 190 

rootstock. Differentially expressed genes were identified for each pairwise contrast in the model. Genes 191 

were filtered to a gene set that included only genes with a normalized count greater than or equal to two in 192 

at least five samples. Second, we used principal component analysis (PCA) to collapse variation in co-193 

expressed genes into fewer dimensions. Normalized count-filtered genes from DESeq2 were transformed 194 

using the variance stabilizing transformation (VST; [44]) and input into a PCA. We then analyzed the top 195 

100 PCs in the context of the broader experimental design. We previously showed that the transcriptome 196 

varied by the time of collection and was potentially interacting with the rootstock effect [19]. Moreover, 197 

the other modalities in this study point to weak if any effects from the irrigation treatment. Due to the 198 

nature of the vineyard design, we could not identify both irrigation and time effects (marked by row) in a 199 

single model (irrigation and row are collinear; see Study Design). To approximate the impact from time 200 

of collection (row) in the vineyard on gene expression, linear models were first fit to remove variation 201 

imparted by irrigation from each of the top 100 PCs. The residuals were then used as the basis for linear 202 

models and machine learning analysis. 203 

 204 

Leaf Shape 205 

All leaves from a single shoot directly emerging from a trained cordon were collected from each 206 

vine in the 288 vine set at 80% anthesis and veraison. At harvest, we collected only the oldest (first 207 

emerging leaf), middle (estimated from the middle of a whole shoot), and youngest (smallest fully 208 

emerged leaf at the shoot tip, >1cm). Leaves were collected approximately in row order (from south to 209 

north) and stored in a cooler. Each leaf was imaged using an Epson DS-50000 scanner. Following 210 

scanning of leaves for leaf shape analysis, the oldest, middle, and youngest leaves were dried and used to 211 

estimate leaf elemental composition (see Ionomics). While all leaves were collected from a single shoot, 212 

only the oldest, middle, and youngest were used in this analysis.  213 

https://paperpile.com/c/NSL3pn/M6B9m
https://paperpile.com/c/NSL3pn/DyD9r
https://paperpile.com/c/NSL3pn/kPkfy
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We assessed leaf shape using generalized procrustes analysis (GPA) of landmarks. For the three 214 

leaves per vine used in leaf shape analysis, 17 homologous landmark features were identified [22]. The 215 

GPA-rotated coordinate space was used for all subsequent statistical analysis including PCA in order to 216 

summarize variation in leaf shape [45]. From the PCA, we extracted the top 20 PCs and fit linear models 217 

and machine learning models to describe variation. 218 

 219 

Vine physiology 220 

Intracellular CO2 concentration, stomatal conductance and leaf transpiration rate were measured 221 

at midday (10am to 1pm) on one fully expanded sun-exposed leaf for each of the vines in the 72-vine set. 222 

Measurements were taken using an LI-6400XT Portable Photosynthesis system coupled with a pulse 223 

amplitude-modulated (PAM) leaf chamber fluorometer (Li-Cor, Inc., Lincoln, NE, USA) with the 224 

following parameters: incident photosynthetic photo flux density level of 1000 μmol m−2 s−1 generated 225 

by a red LED array and 10% blue light to maximize stomatal opening, CO2 mixer of 400 umol/s, fixed 226 

flow of 300 umol/s, and ambient leaf and block temperature. Soil moisture was measured for each plant in 227 

the 72-vine set using a fieldScout TDR 300 Moisture meter equipped with 20 cm rods (Spectrum 228 

Technologies, Inc. Aurora, IL, USA). Midday stem water potential was measured using a pressure 229 

bomb/chamber (PMS Instrument Co., Albany, OR, USA) after enclosing the leaves in an aluminum foil 230 

bag for at least 15 minutes to equilibrate the water potential of the xylem in the stem to that attached leaf.  231 

 232 

Analyses 233 

 234 

Leaf ionome 235 

 To characterize the leaf ionome over the growing season, we sampled the youngest, middle, and 236 

oldest leaf from a single shoot from each of the vines within the 288-vine set at three phenological stages 237 

(Figure 1). Bivariate correlations showed that ion concentrations are not independent of each other, but 238 

the strength and direction of relationships between ions vary with respect to phenological stage and leaf 239 

https://paperpile.com/c/NSL3pn/ZLBqg
https://paperpile.com/c/NSL3pn/NYZcY
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position (Supplemental Figure 2). As such, we fit independent linear models to each ion. Leaf position, 240 

phenological stage, or the interaction of phenological stage and leaf position explained the highest amount 241 

of variation for most ions (Figure 1A-B). Many ions significant for the interaction showed a clear signal 242 

of leaf position at anthesis and veraison, and either no explainable variation or muted variation at harvest. 243 

For example, calcium (Figure 1B) varied with leaf position (22.7%; p < 1e-05), phenology (24.0%; p < 244 

1e-05), and their interaction (7.4%, p < 1e-05). All possible pairwise combinations of leaf position were 245 

significantly different at anthesis, and both the youngest and middle leaves were different from the oldest 246 

leaves at veraison and harvest. In the case of potassium (Figure 1B), significant variation was explained 247 

by leaf position (16.1%; p < 1e-05), phenology (19.6%; p < 1e-05), and their interaction (10.6%; p < 1e-248 

05). However, post-hoc comparisons showed that differences were present only at anthesis and veraison.  249 

The rootstock showed remarkable influence on the composition of the leaf ionome. All ions 250 

except aluminum, sodium, and zinc were significant for rootstock as a single fixed effect (Figure 1A). 251 

Rootstock explained between 0.4% (rubidium; p = 3.2e-05) and 14.3% (nickel; p < 1e-05) of variation in 252 

each ion (Figure 1A). Ions that responded weakly to the interaction of leaf position and phenology tended 253 

to show significant variation explained by the interaction of rootstock and phenology. These ions showed 254 

similar patterns to the leaf position by phenology interaction where clear signal was exhibited at anthesis 255 

and veraison then is either absent or muted at harvest. For example, cobalt was most abundant in ‘1103P’-256 

grafted vines at anthesis (Figure 1C). At veraison, both ‘1103P’-grafted and ‘SO4’-grafted had elevated 257 

concentrations compared to Ungrafted and ‘3309’-grafted vines. However, by harvest, cobalt 258 

concentration variation was muted and only ‘SO4’-grafted vines showed evidence of elevated 259 

concentration. Similarly, nickel showed significant variation partitioned into the rootstock by phenology 260 

effect (Figure 1C). Both anthesis and veraison show reduced nickel concentration in ‘1103P’-grafted 261 

vines and elevated concentrations in ‘SO4’-grafted vines. However, at harvest, no comparisons are 262 

significant.   263 

 Machine learning on ion concentrations confirms that the leaf ionome contains a signature from 264 

the rootstock genotype and the interactions of rootstock genotype with phenology and leaf position. A 265 
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random forest model trained to predict rootstock showed an overall accuracy of 75.2% (Figure 1D). Ions 266 

important for this classification were nickel (MDA=0.089), molybdenum (MDA=0.058), and magnesium 267 

(MDA=0.054), corroborating the rootstock term’s significance in the linear models. Notably, when we 268 

trained a model to simultaneously predict rootstock and phenological stage, rootstock prediction accuracy 269 

increased appreciably (Figure 1E). For example, the ability of the model to detect ungrafted vines (the 270 

balanced accuracy of ungrafted predictions) improved from 81.7% accuracy overall to 91.1% accuracy at 271 

anthesis and 85.9% at harvest. Generally, performance at veraison matched the rootstock-only model 272 

performance. The ions most important for this joint (rootstock/phenological stage) prediction were nickel 273 

(MDA=0.167), phosphorus (MDA=0.110), and strontium (MDA=0.065). The rootstock by phenology 274 

model term was significant in the linear models for these ions, but was not a largest descriptor of 275 

variation. The joint prediction of rootstock and leaf position performed substantially better than chance (p 276 

< 1e-05), but accounting for leaf position did not improve rootstock prediction as was the case in the joint 277 

prediction of rootstock and phenology (Figure 1F). Ions important for this classification were sulfur 278 

(MDA = 0.051), rubidium (MDA = 0.051), and nickel (MDA = 0.049).  279 

 280 

Leaf metabolomics 281 

 We performed untargeted metabolomics on leaves from the 72-vine set at veraison and harvest, 282 

quantifying the concentrations of 661 metabolites (Figure 2). The top 20 PCs accounted for a total of 283 

67.3% of the total metabolomic variation, with the top three capturing 23.1%, 9.2%, and 6.2%, 284 

respectively. Individual PCs after the top 20 explained less than 0.82% of the metabolome. Linear models 285 

for each of the top 20 PCs found that the strongest drivers of variation in leaf metabolomics were 286 

phenology and temporal blocking factor. For example, 90.6% of variation on PC1 was due to phenology 287 

(p < 1e-05; Figure 2A). PC2 primarily reflected the interaction of phenology and temporal block (26.4%, 288 

p < 1e-05) and temporal block as a main effect (18.9%, p < 1e-05). The patterns of variation attributable 289 

to PC2 were similar in PCs 3-10 (Figure 2A).  290 
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PC17 was controlled by rootstock as a main effect (18.5%, p < 1e-03; Figure 2B). On PC17, 291 

ungrafted vines were significantly different from vines grafted to ‘3309C’ (p = 0.02) and ‘SO4’ (p < 1e-292 

05). Vines grafted to ‘1103P’ were also significantly different from vines grafted to ‘SO4’ (p = 0.009). 293 

Metabolites that loaded more than 1.96 sd from the mean loading on PC17 were extracted and 294 

independently fit to additional linear models. We identified four metabolite features (M374T1 [rt = 1.33,  295 

m/z = 374.1146], M117T1 [rt = 0.61, m/z = 117.0583], M175T1_1 [rt = 0.87,  m/z = 175.1269], and 296 

M333T1_3 [rt = 0.71; m/z = 333.1582]) which were influenced by rootstock as a main effect and the 297 

metabolite (M112T1 [rt = 1.48, m/z =  112.0061]) which was influenced by the interaction of rootstock 298 

genotype and phenological stage. At this time, the identification of these features remains unknown.  299 

 Linear discriminant analysis confirmed that many experimental factors likely influence the 300 

metabolome. For example, when trained to maximize variation between classes of rootstocks, the model 301 

identified a space that weakly separates ‘1103P’-grafted and ‘SO4’-grafted vines from Ungrafted and 302 

‘3309C’-grafted vines (LD1) and separates ‘3309C’-grafted vines from other classes (on LD2) (Figure 303 

2C). Despite this, machine learning showed minimal predictability for any class other than phenology, 304 

which was predictable with an accuracy of 100% for withheld samples. Rootstock genotype based on the 305 

metabolome was not predictable with accuracy only marginally better than chance (34.6%).  306 

 307 

Gene Expression 308 

We performed 3’-RNAseq on the 72 vine set at three time points (Figure 3). We identified 309 

variation in 23,460 genes that had a DESeq2-normalized count greater than two in at least five samples. 310 

Using a traditional analysis framework, all genes returned as significantly differentially expressed by 311 

rootstock appeared to be false positives, evidenced by a single extreme outlier altering group means. 312 

Hierarchical clustering of the 500 most variable genes after variance stabilizing transformation (VST) 313 

showed strong latent structure in the transcriptome and that most variation in the transcriptome was 314 

explained by phenological stage (Figure 3A). The top 100 PCs on the VST-transformed gene counts 315 

accounted for nearly 92.3% of variation in the transcriptome. Linear models on each of the top 100 PCs 316 
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indicated that 82.4% and 61.4% of the variation on PC1 and PC2 respectively were attributable to the 317 

phenological stage (Figure 3B-C). Row was also a significant descriptor of variation as a single, fixed 318 

effect and in interactions with rootstock and phenological stage. For example, row accounted for 36.0% 319 

and 43.3% of the variation on PC4 and PC6, respectively. Interacting with phenological stage, row 320 

accounted for >10% of variation on 17 additional PCs. 321 

Patterns of gene expression identified through LDA corresponded to phenological stage, vine 322 

row, and rootstock. LDA separated phenological stages into three distinct, non-overlapping groups in the 323 

space spanning LD1 and LD2 (Supplemental Figure 3). When trying to separate rows into distinct classes, 324 

the model converged on a ‘horseshoe’ shape in the LD1- LD2 space (Figure 3D). LD1 maximized the 325 

variation between row 8 (sampled early in the day) and row 16 (sampled a few hours later). LD2 326 

maximized the separation of both rows 8 and 16 with row 12 (the row sampled in the middle of the 327 

sampling window). A model trained to separate rootstock classes (Figure 3E) showed that LD1 separated 328 

the rootstock 1103P from other rootstock genotypes, and LD2 primarily separated the rootstock ‘3309C’ 329 

from ungrafted vines (Supplemental Figure 3).  330 

Formal machine learning on gene expression PCs largely supported the linear models. A random 331 

forest trained to predict phenological stage classified testing samples with 92.9% accuracy. Anthesis was 332 

the most predictable class with a balanced accuracy of 100%; veraison and harvest displayed balanced 333 

accuracies of 92.7% and 92.4%, respectively. The PCs most important in phenology prediction were PC1 334 

(MDA = 0.16) and PC2 (MDA = 0.12). Gene expression PCs were unable to predict rootstock, with a 335 

total prediction accuracy of 23.4%. While no features were especially important in the prediction 336 

processes, PC44 showed the largest mean decrease in Gini impurity corroborating its signal in the linear 337 

models.  338 

 339 

Leaf shape 340 

We collected leaves from the 288-vine set at three time points and landmarked a total of 2,422 341 

leaves (Figure 4). Homologous leaf landmarks were used for generalized procrustes analysis (GPA). PCA 342 



14 

on the GPA-rotated coordinates revealed ~97.2% of the total shape variation was captured by the top 20 343 

principal components with PC1, PC2, and PC3 explaining 24.1%, 19.0%, and 13.3% of the variation 344 

respectively. Lower values on PC1 primarily capture leaves with shallow petiolar sinuses and short 345 

midvein distance from the depth of the superior sinus to the top of the midvein, whereas higher values on 346 

PC1 capture the opposite (Figure 4A). Similarly, lower values on PC2 capture deep petiolar sinuses 347 

combined with very shallow superior sinuses, and vice versa for higher values. PC3 primarily captures 348 

asymmetry (Figure 4A).   349 

In total, only 5.76% of variation on PC1 was explained by the experimental design, with most 350 

variation explained by phenology (2.63%; padj < 1e-05), rootstock (0.95%; padj < 0.001), leaf position 351 

(2.61%; padj = 0.03), and the interaction of phenology and leaf position (0.62%; padj = 0.009) 352 

(Supplemental Figure 4A). Post-hoc mean comparisons on PC1 showed that shapes of leaves from 353 

ungrafted vines were significantly different from leaves of vines grafted to 1103P (p < 0.001), 3309C (p < 354 

0.001) and SO4 (p < 0.001) (Supplemental Figure 4B). Moreover, PC1 captured subtle variation in the 355 

leaf position by phenological stage interaction where middle leaves showed significant differences 356 

between anthesis and veraison (p < 1e-03), and the oldest leaves showed significant differences when 357 

comparing anthesis to veraison (p < 1e-05) and anthesis to harvest (p < 1e-03).  358 

For PC2, 61.4% of variation could be assigned to an experimental factor. This included 359 

significant variation from leaf position (46.9%, padj < 1e-05), phenology (1.4%; padj < 1e-05), and the 360 

interaction of leaf position and phenology (12.05%; padj < 1e-05; Figure 4D). Specifically, younger 361 

leaves tended to have shallower sinuses and exaggerated superior sinus depths (higher values on PC2), 362 

whereas older leaves tended to develop deeper petiolar sinuses and more shallow superior sinuses (lower 363 

values on PC2). The degree of this separation decreased across the season, and the shapes converged on 364 

the mean leaf shape on PC2, consistent with the middle leaf at all three phenological stages. PC2 365 

additionally reflected the interaction of leaf position and rootstock (0.22%; p = 0.04; Supplemental Figure 366 

4B), but post-hoc comparisons did not find any significant pairwise comparisons.  367 
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Machine learning on the GPA-rotated coordinate space identified moderate division of 368 

developmental and phenological classes. Random forest models could predict the leaf position with 369 

73.1% accuracy, with the most important feature being the y-component of the leaf apex (MDA = 0.051). 370 

A model trained to predict phenology performed at 64.3% with the most important features being the x-371 

components of the points corresponding to superior sinus depth (left sinus MDA = 0.030, right sinus 372 

MDA = 0.019). A model trained to predict rootstock performed only marginally better than chance at 373 

28.1% accuracy.  374 

 375 

Vine physiology 376 

For the 72-vine set, we measured intracellular CO2 concentration (Ci), stomatal conductance (gs), 377 

leaf transpiration, water potential (𝜓), and soil moisture (Figure 5). Each physiological trait varied 378 

significantly across phenology and the block by phenology interaction (Figure 5A). For example, at 379 

harvest, we observed specific differences in leaf CO2 concentration (A vs C: p=0.003; B vs C: p=0.002) 380 

and leaf transpiration (A vs B: p < 1e-03; A vs C: p < 1e-05; B vs C: p < 1e-05). Leaf transpiration and 381 

stomatal conductance varied significantly with the interaction of rootstock and phenology. A post-hoc 382 

comparison of means showed that leaf transpiration and stomatal conductances were elevated in 383 

‘Chambourcin’ vines grafted to ‘1103P’ at veraison as compared to leaves of ungrafted vines (leaf 384 

transpiration: p = 0.001; stomatal conductance: p = 0.002 Figure 5B-C). 385 

 386 

 387 

Phenomic trait covariation 388 

Four leaf data modalities consisted of at least 10 traits and were measured for all plants in the 72-389 

vine set (leaf ionome, leaf metabolomics, gene expression, leaf shape). Using these data, we explored the 390 

extent to which different phenotypes covaried over phenology and rootstock genotype (Figure 6; 391 

Supplemental Figure 5; Supplemental Figure 6). Within each phenotyping modality, we summarized the 392 

primary dimensions of variation using PCA (see Methods). From each PCA, we extracted the top 10 PCs, 393 
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which explained a total of 88.9% of variation in the ionomics PCA (iPCA), 55.9% of the variation for the 394 

metabolomics PCA (mPCA), 74.8% of the variation in the gene expression PCA (gPCA) and 87.9% of 395 

the variation in the leaf shape PCA (sPCA).  396 

Pairwise correlations of each PC within each phenological stage showed diverse correlation 397 

magnitudes and directions both within a phenotyping modality and between phenotyping modalities 398 

(Figure 6A-C; Supplemental Figure 5). Generally, the strongest relationships were between PCs within 399 

phenotypic modalities. For example, the strongest correlations identified were between gPC1 and gPC2 at 400 

anthesis (r = 0.85, CI = [0.81, 0.87]; Supplemental Figure 5A, and mPC1 and mPC2 at harvest (r = -0.78, 401 

CI = [-0.82. -0.76]). Correlations between modalities represented a diversity of responses across 402 

phenological stages. For example, the correlation between gPC4 and sPC3 is similar across the 403 

phenological stages, but only the correlation at veraison is significant (r = 0.41, CI = [0.34, 0.47]; 404 

Supplemental Figure 5B). Correlations such as between mPC3 and gPC6 were similar and significant at 405 

both veraison (r = -0.44, CI = [-0.50, -0.37]; Supplemental Figure 5C) and harvest (r = -0.37, CI = [-0.45, 406 

-0.28]; Supplemental Figure 5C). While many correlations varied over the course of the season, some 407 

relationships entirely shifted in direction. For example, the correlation between mPC3 and mPC6 shifted 408 

from a positive significant relationship (r = 0.58, CI = [0.52, 0.63]) at veraison to a negative significant 409 

relationship at veraison (r = -0.66, CI = [-0.73, -0.59]) (Supplemental Figure 5D). 410 

Pairwise comparisons of PCs within each rootstock genotype show a suite of traits with 411 

significant presence/absence variation in significant correlations. Where each phenological stage showed 412 

modularity by phenotyping modality, variation over rootstock genotype shows a strong ionomics module 413 

with latent combination of other modalities interspersed (Supplemental Figure 6). For example, in 414 

ungrafted vines, mPC1 was correlated with four PCs from the ionome (Supplemental Figure 6A). Each of 415 

the other rootstock genotypes have dramatically different topologies with the ionome tending to be more 416 

connected within the ionome and connected to other modalities only on the periphery (Supplemental 417 

Figure 6B-D). Examples of presence/absence variation are shown in small modules of two latent 418 

phenotypes that are present in only one rootstock genotype. For example, in the ungrafted vines, the 419 
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correlation between gPC4 and mPC3 was significant (r = -0.58, CI = [-0.65, -0.51]) and, in ‘1103P’-420 

grafted vines, the correlation between mPC3 and sPC6 (r = 0.59, CI = [0.53, 0.70]) was significant.   421 

 422 

Discussion 423 

 424 

In this study, we used grafted grapevines as an experimental system for characterizing root system 425 

impacts on high dimensional leaf phenotypes over the course of a growing season. We detected 426 

ubiquitous but subtle effects of the root system on all assayed phenotypes, and demonstrated that rootock 427 

influences on leaf phenotypes can be season-specific. The strongest signals of rootstock influences on 428 

leaves were observed in the ionomics dataset, phenotypes for which the root systems have a noted and 429 

well-understood role. 430 

 431 

Phenology explains significant variation in all leaf phenotypes 432 

The timing of sampling or phenological stage of the vines (anthesis, veraison, harvest) was the 433 

strongest driver of phenotypic variation for most leaf phenotypes. For example, all 20 ions varied with 434 

phenology and most ions showed that phenology, or the interaction of phenology with leaf developmental 435 

position, was the strongest source of variation (Figure 1). Nearly one third of all measured transcripts 436 

responded to seasonal variation, and the strongest effects on the transcriptome were phenology and row, a 437 

correlate for the time within a three-hour sampling window. The only phenotype for which phenology 438 

was not the most explanatory factor is leaf shape. Consistent with previous studies [23], we confirm that 439 

most of the leaf shape variation measured reflects development along a single shoot, but much of this 440 

variation is explained via interaction with phenology. These data highlight the dynamic nature of 441 

biological processes taking place within grapevines over the course of a season.  442 

 The seasonal component to grapevine phenotypic variation is a subject of much research, 443 

especially in the berry. In studies designed to quantify molecular underpinnings of terroir, seasonal 444 

variation was identified as the strongest signal in the metabolome [46–49]. Several studies have 445 

https://paperpile.com/c/NSL3pn/SwcUe
https://paperpile.com/c/NSL3pn/HotfB+ZzdKE+6ikTc+pkPD4
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characterized transcriptomic variation over the course of the season. For example, in conjunction with 446 

metabolomics, seasonal variation of berry development was used to identify transcriptomic and 447 

metabolomic developmental markers in ‘Corvina’ [50]. Follow-up analysis showed that nearly 18% of 448 

transcripts varied seasonally [51]. Grapevine leaves also vary tremendously in shape over the growing 449 

season [23] and are stable over multiple growing seasons; interestingly, grapevine leaves are patterned in 450 

the previous year, and the climate of the season in which the leaves were patterned influence aspects of 451 

leaf shape [52,53].  452 

 453 

Grafting and rootstock genotype exhibit a complex and subtle signal on leaf phenotypes 454 

Consistent with previous studies, we confirm that grafting, as well as rootstock genotype, has a 455 

complex effect on phenotypic variation in the scion (the grafted shoot system). Most notably, we show 456 

that the rootstock to which a scion is grafted influences ion concentrations in leaves. Rootstock genotype 457 

is predictable from ion concentrations in the leaves; further, this signal is strengthened when phenological 458 

stage is included in the model. For example, we previously showed that nickel concentration was elevated 459 

in vines grafted to the rootstock ‘SO4’ [19]. At a similar point in the season, we observe the same pattern, 460 

but by harvest, nickel was almost entirely excluded from the leaf. This suggests that the biological 461 

implications of this differential uptake could be missed if not surveyed across the season. We also 462 

confirm that rootstock genotype influences the metabolome of grafted grapevine, in some cases in a 463 

season-specific manner. In the transcriptome, PCA was able to identify dimensions of variation that were 464 

significantly described by rootstock and the interaction of rootstock and time of day, confirming prior 465 

observations [19]. Patterns of gene expression were associated with rootstock in some analyses; for 466 

example, supervised methodologies identified linear discriminants in the PC space that separated some 467 

rootstock genotypes. However, gene-by-gene analysis found no genes modulated by rootstock genotype, 468 

or even just from the act of grafting that were not driven entirely by a single outlier. We suspect these 469 

results are due, at least in part, to the strength of the phenology effect overpowering more subtle variation 470 

imparted by rootstock genotype. Finally, of the physiology traits we measured, leaf transpiration and 471 

https://paperpile.com/c/NSL3pn/M1Fvs
https://paperpile.com/c/NSL3pn/TJyvK
https://paperpile.com/c/NSL3pn/SwcUe
https://paperpile.com/c/NSL3pn/7gvTZ+4Kbst
https://paperpile.com/c/NSL3pn/kPkfy
https://paperpile.com/c/NSL3pn/kPkfy
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stomatal conductance were higher vines grafted to ‘1103P’ in the middle of the season. Thus, the impact 472 

of grafting on leaf phenotypic variation varies by phenotype. Regardless, we identify subtle but 473 

ubiquitous effects from rootstock genotype on shoot system phenotype.  474 

Understanding of rootstock genotype influence shoot system phenotypes is a growing area of 475 

research, especially in grapevine. For example, in ‘Cabernet Sauvignon’, grafting increased ion uptake 476 

globally and some rootstock genotypes provide a clear signal in the scion [28,54]. Also, the metabolome 477 

is a key driver of the formation of the graft junction and some key metabolites could be responsible for 478 

graft incompatibility [55]. Building on this work, targeted metabolomics showed two classes of 479 

metabolites, flavanols and stilbenes, were differentially abundant at graft junctions and in the rootstocks 480 

of ‘Cabernet Sauvignon’ vines one month after grafting [56]. However, flavanols were not differentially 481 

abundant in the scion, but scion stilbene concentrations were apparently controlled by rootstock genotype. 482 

The effect of rootstock genotype on the scion transcriptome is perhaps the most varied. For example, 483 

‘Cabernet Sauvignon’ shoot apical meristems show no effects by rootstock genotype [14], but berries of 484 

the same cultivar do, although the effect is tempered by seasonal variation [15]. Variation in 485 

‘Chambourcin’ leaf shape is also driven by rootstock genotype, especially in conjunction with differences 486 

in irrigation [19]. Collectively, these studies all suggest that rootstock genotype influences scion 487 

phenotypes, but those effects will vary by phenotype, scion genotype, and perhaps other experimental 488 

conditions. Data presented here confirm and expand upon previous observations of rootstock effects on 489 

scion phenotypes. Notably, the robust experimental design (288 vine set and 72 vine set comprising 490 

replicates of three rootstocks grafted with a common scion and an ungrafted control), coordinated 491 

collection of five multi-dimensional leaf phenotypes, and inclusion of three sampling points spanning the 492 

growing season allow us to hone in on the comprehensive nature of rootstock influences on the scion. 493 

Further, this thorough analysis demonstrates that rootstock effects on scion phenotypes shift in magnitude 494 

over the course of the season, indicating that aspects of time are tremendously influential to the observed 495 

results regardless of phenotype.  496 

 497 

https://paperpile.com/c/NSL3pn/Am2lZ+TwLqs
https://paperpile.com/c/NSL3pn/kosIA
https://paperpile.com/c/NSL3pn/KooZZ
https://paperpile.com/c/NSL3pn/hlg1m
https://paperpile.com/c/NSL3pn/33rGo
https://paperpile.com/c/NSL3pn/kPkfy
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Phenomic covariation warrants work toward latent phenotypes 498 

In the present study, we assess the extent of covariation among leaf phenotypes. For the primary 499 

dimensions of variation in each data type, within-data-type correlations are strongest when accounting for 500 

phenological timing. Correlations also exist between phenotypes, suggesting room for the analysis of 501 

latent phenotypic structure for experimental questions. For example, aspects of the metabolome were 502 

frequently correlated with the transcriptome and leaf shape when accounting for both phenological stage 503 

and rootstock genotype. Interestingly, correlations within and between data types are highly dynamic over 504 

a growing season and across rootstock genotype. For example, several correlations with leaf shape were 505 

present at veraison, but were not detected at anthesis and harvest. Moreover, the topology of connections 506 

in the ionomic network was variable over the rootstock genotype (Supplemental Figure 6). This variation 507 

in topology confirms that root system genotype has a strong influence on shoot system elemental 508 

composition, and suggests that root system genotype can alter correlative patterns in the ionome. We 509 

believe the work of understanding phenomic covariation warrants further investigation, specifically, by 510 

further including additional phenotypes such as lncRNA expression [57,58], epigenetics [59], and 511 

microbiomes [60,61]. Much of the work constituting phenomics in grapevine has addressed how berries 512 

develop over the growing season, how cultivars differ from one another, and how the concept of terroir 513 

influences wine [46,47,50,62–64]. Despite data integration techniques becoming more popular, there are 514 

still many open questions as to what analytical methods are most appropriate and how to most effectively 515 

utilize them (reviewed for grapevine in [65,66]; reviewed broadly in [67,68]). Ongoing work attempts to 516 

integrate high-dimensional phenotypic datasets generated within a single organ system (e.g., leaves); and 517 

future studies will expand this to explore phenomic covariation in and among organs, over time, and 518 

across space.  519 

 520 

Potential Implications 521 

Our work on the influence of root system genotype on shoot system phenotype has broad 522 

implications for a holistic understanding of how plants detect and respond to changing environmental 523 

https://paperpile.com/c/NSL3pn/03pxC+jKqwB
https://paperpile.com/c/NSL3pn/Ngvf2
https://paperpile.com/c/NSL3pn/Lhgr7+MtSIf
https://paperpile.com/c/NSL3pn/M1Fvs+VqGLE+HotfB+MxzSi+2UDTw+ZzdKE
https://paperpile.com/c/NSL3pn/PWijl+AUkEe
https://paperpile.com/c/NSL3pn/hzp9j+mfJTV
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conditions. In particular, this study highlights the influence of root system genotype and its interaction 524 

with phenology on shoot system phenotype: there is a seasonal component to the extent to which 525 

rootstock shapes phenotypic variation in the scion. Expanding this multi-dimensional understanding of 526 

phenotypic variation over time to include different tissues (e.g., root architecture, floral and fruit 527 

development), and different spatial scales (replicated root-shoot combinations located in geographically 528 

distinct vineyards) presents a challenging but exciting next frontier. Of particular note, patterns of 529 

phenomic covariation derived from complex datasets have implications for understanding how 530 

individuals perceive and respond to their environments, and how that response is coordinated throughout 531 

the plant body. This work is relevant for breeding efforts aimed at optimizing yield and other desired 532 

traits that can be optimized, or constrained by, phenotypic variation elsewhere in the plant. 533 

 534 

Methods 535 

 536 

Study Design 537 

Data were collected in 2017 in an experimental rootstock trial at the University of Missouri’s 538 

Southwest Research Center near Mount Vernon, MO (37.074167 N; 93.879167 W; Supplemental Figure 539 

1). The rootstock trial includes the interspecific hybrid cultivar ‘Chambourcin’ growing ungrafted (own-540 

rooted) and grafted to three rootstocks: ‘1103P’, ‘3309C’, and ‘SO4’ (Supplemental Figure 1D). Each of 541 

the four rootstock-scion combinations was replicated 72 times for a total of 288 vines planted in nine 542 

rows. Each row was treated with one of three irrigation treatments: full evapotranspiration replacement, 543 

partial (50%) evapotranspiration replacement (reduced deficit irrigation; RDI), or no evapotranspiration 544 

replacement (Supplemental Figure 1A). However, rainfall in 2017 likely mitigated the applied irrigation 545 

treatment (see Supplemental Note at: 546 

https://github.com/PGRP1546869/mt_vernon_2017_leaf/blob/main/On_the_irrigation_treatment.pdf). 547 

Vine position in the vineyard corresponded to time of sampling for some phenotypes, as samples were 548 

taken from one end of the vineyard to the other over the course of two to three hours. Because vineyard 549 

https://github.com/PGRP1546869/mt_vernon_2017_leaf/blob/main/On_the_irrigation_treatment.pdf
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microclimates and sampling time may be associated with phenotypic variation, we defined ‘temporal 550 

block’ as a factor that captures this spatial and temporal variation inherent in sampling. Unique rootstock-551 

scion combinations were planted in cells of four adjacent replicated vines (Supplemental Figure 1B), with 552 

rows consisting of eight cells (32 vines/row). To our knowledge, a field-planted rootstock experimental 553 

vineyard of this size and age is rare. For some phenotypes (leaves for ionome and leaf shape analysis), it 554 

was possible to collect samples from all vines in the experimental vineyard (the 288-vine set; 555 

Supplemental Figure 1C). For other phenotypes (physiology, metabolomics, and gene expression), time 556 

and/or expense associated with the phenotyping process required that we reduce sampling to a nested set 557 

of 72 vines representing the middle two vines in each four-vine cell (the 72-vine set; Supplemental Figure 558 

1C). All phenotypes were assayed \at three phenological stages: anthesis (~80% of open flowers; 22 May 559 

2017); veraison (~50% of berries had transitioned from green to red; 30 July 2017); and immediately 560 

prior to harvest (25 September 2017).  561 

 562 

Linear Models 563 

Linear models were fit to the 20 measured ion concentrations, the top 20 PCs of the leaf 564 

metabolome, the top 100 PCs of the leaf transcriptome, the top 20 PCs of leaf morphospace, and each 565 

measured physiological trait. Outliers were detected using the R function ‘anomalize’ (options: 566 

alpha=0.03, max_anoms=0.1). Each model was fit with fixed effect factors representing phenological 567 

stage (anthesis, veraison, or harvest), rootstock (Ungrafted, ‘1103P’, ‘3309C’, or ‘SO4’), leaf position 568 

(youngest, middle, or oldest; only used in leaf morphology and leaf ion concentration models), and all 569 

pairwise interactions of those terms. Both irrigation and block were included as fixed, non-interacting 570 

effects with the exceptions of physiology and metabolomics, for which we allowed the interaction of 571 

‘Block’ as it correlates with the time of sampling, potentially capturing temporal variation. Row, an 572 

additional correlate for time and spatial variation, was included in place of a temporal block for the gene 573 

expression models after removal of the variation attributable to irrigation, a factor collinear with row. All 574 

linear models were interpreted using a type-3 sum of squares computation using the R package ‘car’ [69]. 575 

https://paperpile.com/c/NSL3pn/NPngm
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Estimated p-values for each term in the models were corrected for multiple tests (within phenotype) using 576 

FDR correction as implemented by the R package ‘stats’ [70]. Results from the models are reported as the 577 

variation explained by a particular term in the model and the estimated p-value. When appropriate, post-578 

hoc mean comparisons were computed using the package ‘emmeans’ [71]. Where multiple linear models 579 

were being simultaneously interpreted, we applied a Bonferonni correction to reduce the number of false 580 

positives.  581 

 582 

Machine Learning to Identify Rootstock Effects 583 

For visualization of between-class variation, we fit linear discriminant analysis models (LDA) to 584 

the full phenotypic data sets of ionomics, metabolomics, gene expression, and leaf morphology using the 585 

‘lda’ function of the R package ‘MASS’ [72]. Projections of all samples into the LD space were plotted 586 

using ggplot2 [73]. In addition, we employed machine learning to capture subtle experimental effects. We 587 

partitioned phenotypic data sets into 80% training partitions and 20% testing partitions. Models were fit 588 

to predict the phenological stage from which a sample was taken, the rootstock to which the scion was 589 

grafted, and the joint prediction of phenology and rootstock. We also tested the predictability of leaf 590 

position for ionomics and leaf shape, and the interaction of rootstock and leaf position for ionomics. We 591 

used the ‘randomForest’ [74] implementation of the random forest algorithm. Models were fit and tuned 592 

using the R package ‘caret’ [75]. Each performance was assessed using accuracy, with performance on 593 

each class being assessed using the balanced accuracy, the midpoint of class-wise sensitivity and 594 

specificity. Where appropriate, models were compared to ‘chance’, or the occurrence frequency of each 595 

class. Confusion matrices were visualized from the out-of-bag predictions using ggplot2. Important 596 

features were identified from the randomForest object based on a phenotype-specific mean decrease in 597 

model accuracy (MDA).  598 

 599 
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Phenomic trait covariation 600 

We extracted ionomics, metabolomics, gene expression, and leaf shape data for the youngest 601 

available leaf from the 72 vine-set. Each class of phenotypic data was summarized along the primary 602 

dimensions of variation using PCA. For each class, we extracted the top 10 PCs and fit Pearson’s 603 

correlations across all pairs of PCs at each phenological stage. P-values from computed correlations were 604 

corrected using the FDR method from the package ‘stats’ [76]. Correlations and their strengths were 605 

visualized using the R package ‘igraph’ [77]. Example correlations were reported after running 10,000 606 

bootstrapped subsamples of 90% of data for paired traits. From the distribution of estimated correlation 607 

coefficients, confidence intervals were computed from the 0.025 and 0.975 quantiles. A subset of example 608 

correlations were plotted using the R package ‘ggplot2’ [73]. 609 
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 618 

Figure Legends: 619 

Figure 1:  The ionome shows strong signal from rootstock genotype, leaf position, and phenological stage 620 

(A) Percent variation captured in linear models fit to each of 20 ions measured in the ionomics pipeline. 621 

Presence of a cell indicates the model term (top) was significant (FDR; p.adj < 0.05) for that ion (left). 622 

(B) Example ions shown to vary significantly by the interaction of leaf position and phenological stage. 623 

Boxes are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. (C) Example 624 

ions shown to vary significantly by the interaction of rootstock genotype and phenological state. Boxes 625 

https://paperpile.com/c/NSL3pn/GCsa0
https://paperpile.com/c/NSL3pn/PnQdj
https://paperpile.com/c/NSL3pn/sw4EJ
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are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. (D) Standardized 626 

heatmap for out-of-bag (OOB) predictions by a random forest trained to predict rootstock genotype, (E) 627 

the interaction between rootstock genotype by phenology, and (F) the interaction between rootstock 628 

genotype and leaf position.   629 

 630 

Figure 2: The metabolome is influenced by rootstock genotype, phenological stage, and time of sampling. 631 

(A) Percent variation captured in linear models fit to each of the top 20 principal components of the 632 

metabolome (661 measured metabolites). Presence of a cell indicates the model term (top) was significant 633 

for that PC (left, percent variation explained by the PC in parentheses). (B) The distribution of projections 634 

onto PC17, the strongest captured rootstock effect in the metabolome. Boxes are bound by the 25th and 635 

75th percentiles with whiskers extending 1.5 IQR from the box. (C) Projections of all samples into the 636 

first two dimensions of a linear discriminant space trained to maximize variation between rootstock 637 

genotypes.  638 

 639 

Figure 3: Gene expression primarily responds to time of season and circadian correlates 640 

(A) Heatmap showing 500 genes with the highest variance following the filtering of lowly expressed 641 

genes and gene-by-gene variance stabilizing transformations (VST) ordered by example model factors 642 

(below). (B) Percent variation captured in linear models fit to the top 100 Principal Components of the 643 

VST-transformed gene-expression space. Presence of a cell indicates the model term (top) was significant 644 

for that PC (left, percent variation explained by the PC in parentheses). (C) Projections of all samples into 645 

the first two principal component dimensions to show that the largest descriptors of variation are due to 646 

phenology. (D) Projections of all samples into the first two dimensions of the linear discriminant space 647 

trained to maximize variation between the rows of the vineyard, and (E) rootstock genotype.  648 

 649 

Figure 4: Leaf shape variation is primarily determined by shoot position but changes over the season  650 
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(A) Representative shapes showing leaf variation (-3 sd, mean, +3 sd) captured in each of the top 4 651 

principal components of the Generalized Procrustes Analysis-rotated leaf shapes. (B) Projections of all 652 

leaves into the first two dimensions of principal component space colored by the strongest determinant of 653 

variation in the top two PCs. (C) Projections of all leaves into the first two dimensions of a linear 654 

discriminant space trained to maximize variation between phenological stages. (D) Variation in leaf shape 655 

captured on PC2 shown by leaf position and phenological stage. Large points represent the mean of the 656 

group when projected onto PC2. Bars surrounding the mean show one standard deviation. Variation in 657 

each group is shown as a composite leaf trace scaled to a standard size and centered over the mean.  658 

 659 

Figure 5: Vine physiology measurements show signal from most experimental manipulation 660 

(A) Percent variation explained by model terms (top) from linear models fit to each of four physiology 661 

traits (left). (B) Variation in leaf transpiration rate for each rootstock genotype over the course of the 662 

season. Boxes are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box. 663 

(C) Variation in stomatal conductance for each rootstock genotype over the course of the season. Boxes 664 

are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box.  665 

 666 

Figure 6: Trait covariation varies over the course of the season 667 

Correlation networks showing patterns of covariation within and between phenotyping modalities. Nodes 668 

of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). Edge 669 

thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color reflects 670 

the direction of the correlation where blue edges indicate positive correlations and orange edges indicate 671 

negative correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; 672 

purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf shape (sPCs; green). Network 673 

topologies are shown for (A) anthesis, (B) veraison, and (C) harvest.  674 

 675 



27 

Figure Supplement Legends: 676 

Supplemental Figure 1: Experimental Design 677 

(A) Vineyard Map. The vineyard features a randomized block design where ‘Chambourcin’ is grown 678 

ungrafted and grafted to three rootstock genotypes: ‘1103P’, ‘3309C’, and ‘SO4’. Each row is treated 679 

with one of three irrigation treatments: full replacement of ET, reduced-deficit, no replacement of ET. 680 

Each cell of the vineyard contains four replicate grafts. (B) Phenotype sampling scheme across the four 681 

replicates in a cell. All vines (288) were sampled for ionomics and leaf shape. The middle two vines in 682 

the front half of the vineyard (72) were additionally sampled for metabolomics, gene expression, and 683 

physiology. (C) Phenotype sample scheme within a vine (along a shoot). For each plant, young leaves 684 

were sampled for ionomics, leaf shape, and gene expression. Middle leaves were sampled for ionomics, 685 

leaf shape, metabolomics, and physiology. Older leaves were sampled for ionomics and leaf shape. 686 

Samples for ionomics and leaf shape were taken from the same shoot. All other phenotypes were sampled 687 

from independent shoots. (D) Rootstock relatedness. Each of the rootstocks in this trial shares a parent 688 

species with a different rootstock. ‘1103P’ is a cross between Vitis rupestris and V. berlandieri. ‘3309C’ 689 

is a cross between V. rupestris and V. riparia. ‘SO4’ is a cross between V. riparia and V. berlandieri. The 690 

parent that is shared between each pair of rootstocks is highlighted. This figure is partially reproduced 691 

from [19] available under a Creative Common license (CC BY 4.0).  692 

 693 

Supplemental Figure 2:  Patterns of ion covariation change over experimental treatments 694 

Correlation networks showing patterns of ion covariation across phenological stages and shoot position. 695 

Nodes of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). 696 

Edge thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color 697 

reflects the direction of the correlation where blue edges indicate positive correlations and orange edges 698 

indicate negative correlations. 699 

 700 

Supplemental Figure 3: Patterns of variation contributing to gene expression linear discriminants 701 

https://paperpile.com/c/NSL3pn/kPkfy
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(A) Projections of leaf gene expression samples into the first two dimensions of a linear discriminant 702 

space trained to maximize variation between phenological stages, rows in the vineyard, and rootstock 703 

genotype. For each LD, the PCs that loaded significantly (>1.96 sd from the mean loading) are listed in 704 

order of loading magnitude. (B) Distribution of the top loading PCs onto LD1 and LD2 for each of the 705 

trained models.  706 

 707 

Supplemental Figure 4: Patterns of variation in leaf shape are subtle 708 

(A) Percent variation captured in linear models fit to each of the top 20 principal components of leaf 709 

morphology. Presence of a cell indicates the model term (top) was significant for that PC (left, percent 710 

variation explained by the PC in parentheses). (B) Composite leaf traces for the main rootstock genotype 711 

effect identified on PC1.  712 

 713 

Supplemental Figure 5: Example correlations within and between data modalities over the course of the 714 

season 715 

(A) Example correlation showing a strong within-modality correlation between the ionomics gPC1 and 716 

gPC2 at anthesis. Pearson correlations by phenological stage and CIs derived from 10000 random 90% 717 

draws are shown for each panel. Generally speaking, CIs overlapping with 0 were not accepted as 718 

significant. (B) Example correlation showing one of the stronger between-modality correlations between 719 

the gene expression gPC4 and morphology (shape) sPC3 at veraison. (C) Example correlation of a 720 

relationship that is present multiple times over the course of the season between metabolomics mPC3 and 721 

gene expression gPC6 at both veraison and harvest. (D) Example correlation that is dynamic over the 722 

course of the growing season between the ionomics mPC3 and mPC6.  723 

 724 

Supplemental Figure 6: Trait covariation varies over rootstock genotype 725 

https://drive.google.com/file/d/1v6bdfBWRiQ6vOrxUxyVT9CijdTkgv-yT/view?usp=sharing
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Correlation networks showing patterns of covariation within and between phenotyping modalities. Nodes 726 

of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). Edge 727 

thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color reflects 728 

the direction of the correlation where blue edges indicate positive correlations and orange edges indicate 729 

negative correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; 730 

purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf shape (sPCs; green). Network 731 

topologies are shown for (A) Ungrafted, (B) ‘1103P’-grafted vines, (C) ‘3309C’-grafted vines, and (D) 732 

‘SO4’-grafted vines.  733 

 734 

Availability of Data: 735 

Ionomics data are available at https://dx.doi.org/10.6084/m9.figshare.13200980 . Metabolomics data are 736 

available at https://dx.doi.org/10.6084/m9.figshare.13201043. Gene expression data are available in the 737 

Sequence Read Archive under BioProject PRJNA674915. Leaf scans and leaf landmarks are available at  738 

https://dx.doi.org/10.6084/m9.figshare.13200953. Weather and physiology data are available at  739 

https://dx.doi.org/10.6084/m9.figshare.13198682 and https://dx.doi.org/10.6084/m9.figshare.13201016, 740 

respectively.  741 

 742 

Availability of Code: 743 

All code for this paper including shell scripts for RNAseq analysis and Jupyter Notebooks for data 744 

analysis in R can be found on the Vitis Underground GitHub 745 

(https://github.com/PGRP1546869/mt_vernon_2017_leaf).  746 
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Dear Editorial Board,  

 

We are excited to submit our manuscript entitled “Multi-dimensional leaf phenotypes reflect root system 

genotype in grafted grapevine over the growing season” to be considered for peer review at GigaScience. 

Our manuscript describes advances in the fundamental question of how phenotypic variation changes 

over time in perennial plants, focusing primarily on the influence of below-ground organs on above-

ground phenotypes using multi-dimensional phenomic platforms. We believe our manuscript matches the 

journal’s focus on using big data in the life sciences and to ensure reproducibility through extensive data 

and analytical transparency; further, our work fits nicely within the thematic series on Plant Phenomics. 

We note that our work has been uploaded as a preprint on BioRxiv: 

https://www.biorxiv.org/content/10.1101/2020.11.10.376947v1.abstract 

 

In plants, understanding how the root system affects above-ground structures of the shoot system is a 

fundamental question in plant biology. Grafting offers a powerful experimental approach where clonally 

propagated genotypes are fused to form grafted individuals with genetically distinct root and shoot 

systems. Populations generated via grafting can include replicated individuals with genetically identical 

shoot systems but genetically distinct root systems. This allows for quantification of phenotypic variation 

expressed in the shoot system as a function of root system genotype. Our study quantifies root system 

influence on shoot system phenotypes in grafted grapevines through comprehensive phenotyping of 

leaves, the primary site of photosynthesis and important markers of cultivar identification. In an 

experimental grafted vineyard in southwestern Missouri, we surveyed five multi-dimensional 

phenotyping modalities in leaves at three time points in the season: ionomics, metabolomics, 

transcriptomics, morphometrics (shape), and physiology. These data were used to address the broad 

questions: to what extent do root system genotypes influence leaf phenotypes, and how does this change 

over the course of a season?  

 

To our knowledge, this work is the largest study of its kind both in the size of the population (a ten-year 

old experimental vineyard with four root-shoot combinations replicated 72 times in a randomized block 

design of 288 vines) and the depth to which we surveyed leaf phenotypes (five multi-dimensional 

phenotyping modalities at three time points throughout a season). This robust study design in addition to 

the application of multi-dimensional phenotyping platforms allowed us to identify the complex nature by 

which root systems can influence shoot system phenotypes.  

 

Work presented here demonstrates that the root system exercises subtle but ubiquitous influence on leaves 

for every phenotypic modality examined. Moreover, our work highlights the dynamic nature of root-shoot 

interactions: root system influence on leaf phenotypes changes over the course of a season, with the most 

dramatic effects observed during early season growth, but with distinct patterns observed across 

modalities. In addition, we show that covariation among multi-dimensional leaf phenotypes is highly 

dynamic across the rootstock genotype and time of season. 

 

We appreciate your time and consideration of our manuscript. We look forward to hearing from you.  

 

Best regards, 

Zachary N. Harris & Allison J. Miller 

Manuscript Click here to access/download;Personal Cover;GigaScience
Cover Letter.docx

https://www.biorxiv.org/content/10.1101/2020.11.10.376947v1.abstract
https://www.editorialmanager.com/giga/download.aspx?id=114573&guid=5db500ed-ff7c-4291-a1f1-c9299c719aec&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=114573&guid=5db500ed-ff7c-4291-a1f1-c9299c719aec&scheme=1

