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Abstract 36 

Background: Modern biological approaches generate volumes of multi-dimensional data, offering 37 

unprecedented opportunities to address biological questions previously beyond reach due to small or 38 

subtle effects. A fundamental question in plant biology is the extent to which below-ground activity in the 39 

root system influences above-ground phenotypes expressed in the shoot system. Grafting, an ancient 40 

horticultural practice that fuses the root system of one individual (the rootstock) with the shoot system of 41 

a second, genetically distinct individual (the scion), is a powerful experimental system to understand 42 

below-ground effects on above-ground phenotypes. Previous studies on grafted grapevines have detected 43 

rootstock influence on scion phenotypes including physiology and berry chemistry. However, the extent 44 

of the rootstock’s influence on leaves, the photosynthetic engines of the vine, and how those effects 45 

change over the course of a growing season, are still largely unknown.  46 

Results: Here, we investigate associations between rootstock genotype and shoot system phenotypes 47 

using five multi-dimensional leaf phenotyping modalities measured in a common grafted scion: ionomics, 48 

metabolomics, transcriptomics, morphometrics, and physiology. Rootstock influence is ubiquitous but 49 

subtle across modalities with the strongest signature of rootstock observed in the leaf ionome. Moreover, 50 

we find that the extent of rootstock influence on scion phenotypes and patterns of phenomic covariation 51 

are highly dynamic across the season.  52 

Conclusions: These findings substantially expand previously identified patterns to demonstrate that 53 

rootstock influence on scion phenotypes is complex and dynamic and underscore that broad 54 

understanding necessitates volumes of multi-dimensional data previously unmet. 55 

 56 

Background 57 

 58 

High-throughput data acquisition has afforded unprecedented capacity to quantify and understand 59 

plant form and function. Recent advances in imaging and computation have expanded our ability to 60 

measure plant traits or phenotypes [1,2], and to extend those comprehensive measurements into latent 61 

https://paperpile.com/c/1wVmZp/YdsWT+BlnsW
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space phenotypes [3]. Now broadly known as phenomics, this burgeoning field is characterized as the 62 

acquisition and analysis of high-dimensional phenotypic data at different hierarchical levels [4,5], often 63 

with an eye toward multiscale data integration. A holistic and hierarchical approach to plant phenotypic 64 

variation affords unique insights into plant evolution and how plants change over development and in 65 

response to environmental cues and horticultural manipulation.  66 

A fundamental question in plant biology is how root systems influence phenomic variation in 67 

above-ground shoot systems including leaves, flowers, and fruits. Grafting, a common horticultural 68 

manipulation that joins the shoot system of one individual (the scion) with the root system of another 69 

individual (the rootstock), is commonly used in crop species to confer favorable phenotypes to 70 

commercial scions [6], including enhanced disease resistance [7,8], fruit quality, plant form [9], response 71 

to water stress [10], and growth on particular soils [11,12]. Because grafting often uses clonally 72 

propagated materials, it is possible to manipulate and replicate different combinations of root systems and 73 

shoot systems, offering a valuable experimental system in which root system impacts on shoot system 74 

phenotypes can be evaluated.  75 

The European grapevine (Vitis vinifera) is among the most economically important grafted crops 76 

in the world. Grapevines are cultivated primarily for fruits used to make wine and juice, as well as for 77 

table grape and raisin production. Grafting in grapevines became widespread in the mid-1800’s following 78 

the accidental introduction of the root-feeding aphid phylloxera from its native North America into 79 

Europe, where it began attacking the roots of European grapevines [13]. Because European grapevines 80 

often do not survive phylloxera infestation, in regions where phylloxera has been introduced most 81 

grapevine cultivation consists of European grapevines grafted to rootstocks derived from phylloxera-82 

resistant North American Vitis species including V. berlandieri, V. riparia, and V, rupestris, and their 83 

hybrid derivatives. In addition to grapevines, more than 70 major perennial crops are grafted including 84 

many fruit trees and vines [9]. Grafting decouples the breeding of shoot systems and root systems, with 85 

selection in plants targeted for use as scions focusing primarily on fruit phenotypes, and selection in 86 

https://paperpile.com/c/1wVmZp/xcx5E
https://paperpile.com/c/1wVmZp/gXRqg+H6p5q
https://paperpile.com/c/1wVmZp/kplv3
https://paperpile.com/c/1wVmZp/O605D+qRlvl
https://paperpile.com/c/1wVmZp/NrW9u
https://paperpile.com/c/1wVmZp/OAdIb
https://paperpile.com/c/1wVmZp/rXGUy+jn0vc
https://paperpile.com/c/1wVmZp/oIn9z
https://paperpile.com/c/1wVmZp/NrW9u
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plants targeted for use as rootstocks focused on below-ground biotic and abiotic stress resistance, as well 87 

as their impacts on shoot system phenotypes.  88 

The effects of grafting in grapevine show a remarkable breadth of scion response patterns. For 89 

example, a study of Vitis vinifera cv. ‘Cabernet Sauvignon’ grafted to different rootstocks identified 90 

transcriptome reprogramming in the scion of grafted plants; this appeared to be a general effect of 91 

grafting to a rootstock and was not rootstock-specific [14]. In contrast, other studies have found 92 

signatures of rootstock genotype in the transcriptome in early berry development, although this distinction 93 

was lost in later development [15,16], but see [17]. Comprehensive phenomic analyses, including those 94 

that link transcriptome data with other high-throughput phenotyping assays, offer an opportunity to 95 

expand understanding of rootstock effects on grapevine shoots. In one study, leaves of the V. vinifera 96 

cultivar ‘Gaglioppo’ showed variation in stilbene and abscisic acid concentrations due to rootstock 97 

genotype, as well as differences in transcriptional profiles [18]. Likewise, gene expression, ion 98 

concentrations, and leaf shape in the cultivar ‘Chambourcin’ varied in response to rootstock genotype 99 

[18,19]. Collectively, these studies suggest the impacts of grafting are diverse and may vary over the 100 

course of vine development. However, to date few studies have surveyed multiple high-dimensional scion 101 

phenotypes to understand rootstock influence on shoot system phenotypes over the course of the growing 102 

season or the extent to which grafting effects on the scion covary with one another. 103 

 Leaves are the photosynthetic engine of the organism and a primary site for perception and 104 

response to environmental change. Grapevine leaves have been used for centuries as markers of species 105 

and cultivar delimitation, developmental variation, disease presence, and nutrient deficiency [20,21]. 106 

More recently, analysis of grapevine leaf morphology has identified genetic architecture of leaf shapes 107 

[22], developmental patterns across the season [23], and signatures of evolution in the grapevine genus 108 

[24]. Grapevine leaves respond to stress through gas and water exchange with the atmosphere [25,26] and 109 

have been shown to differentially partition the ionome depending on their position on the shoot [19] and 110 

their rootstock genotype [19,27,28]. The volume of work on grapevine leaves provides a foundation for 111 

the analysis of phenomic variation in a vineyard over a season in response to grafting.  112 

https://paperpile.com/c/1wVmZp/QRgkB
https://paperpile.com/c/1wVmZp/1B2o2+axfOD
https://paperpile.com/c/1wVmZp/g8VOL
https://paperpile.com/c/1wVmZp/uCJXB
https://paperpile.com/c/1wVmZp/uCJXB+TQJh
https://paperpile.com/c/1wVmZp/xJzc5+e9g5m
https://paperpile.com/c/1wVmZp/vnguv
https://paperpile.com/c/1wVmZp/jmsZg
https://paperpile.com/c/1wVmZp/ZTNkd
https://paperpile.com/c/1wVmZp/NWzKS+z24T0
https://paperpile.com/c/1wVmZp/TQJh
https://paperpile.com/c/1wVmZp/F3EmE+rNVFq+TQJh
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In this study, we investigate effects of grafting on high dimensional leaf phenotypes of the hybrid 113 

cultivar ‘Chambourcin’ over the course of the growing season. We quantify leaf elemental (ion) 114 

concentrations, metabolite abundance, gene expression, shape, and vine physiology in a replicated 115 

rootstock trial where the hybrid grapevine cultivar ‘Chambourcin’ is growing ungrafted and grafted to 116 

three different rootstocks. The four root-shoot combinations (‘Chambourcin’ ungrafted, ‘Chambourcin’ 117 

grafted to three different rootstocks) are replicated 72 times in a randomized block experimental design 118 

with an irrigation treatment (Supplemental Figure 1). Phenotypic data, data that describe variation for a 119 

particular trait within a particular modality, were collected either on the full 288-vine set (ion 120 

concentrations, leaf shape) or on a subset of 72 vines (the 72-vine set; metabolite abundance, gene 121 

expression, vine physiology). Using data collected at three time points that span the growing season 122 

(anthesis, veraison, and harvest), we show that all phenotyping modalities (ionomic, metabolomic, 123 

transcriptomic, morphometric, and physiology phenotypes) reflect subtle but ubiquitous responses to 124 

grafting and rootstock genotype. Rootstock effects on shoot system phenotypes were often dynamic 125 

across the season, suggesting that accounting for seasonal variation could enhance our understanding of 126 

grafting effects in viticulture.  127 

 128 

Data Description 129 

 130 

Leaf Ionomics 131 

The ionome describes elemental composition of a tissue at a particular time point [29]. Three 132 

leaves per vine were collected from the 288-vine set at three seasonal time points: anthesis (~mid May), 133 

veraison (~late July), and harvest ~mid September). Leaves were sampled from a single shoot and 134 

included the youngest fully opened leaf at the shoot tip, the approximate middle leaf, and the oldest leaf at 135 

the shoot base. Teams were deployed in the vineyard so that multiple vineyard rows were being sampled 136 

concurrently. As such, ‘block’ represented unmeasured spatial variation, but did not strictly correlate with 137 

time of sampling due to the nature of sampling (see Methods). Whole leaves were placed in zip-lock bags 138 

https://paperpile.com/c/1wVmZp/bHw3A
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in the field and stored in a cooler on ice packs, scanned for leaf shape analysis in the lab (see Leaf Shape) 139 

and then dried in coin envelopes at 50°C for one to three days for elemental analysis. Between 20 and 100 140 

mg of leaf tissue was acid digested and 20 ions were quantified using inductively coupled plasma mass 141 

spectrometry (ICP-MS) following standard protocol of the Donald Danforth Plant Science Center 142 

(DDPSC) Ionomics Pipeline [30,31]. Ion quantifications were corrected for internal standard 143 

concentrations, instrument drift and by initial sample mass. The output of the Pipeline contained 144 

estimated concentrations of each of the following 20 elements: Al, As, B, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, 145 

Mo, Na, Ni, P, Rb, S, Se, Sr, and Zn. For each ion concentration, we computed z-score distributions and 146 

used those values as the basis for linear models. Following convention, non-standardized values were 147 

used for machine learning analysis.  148 

 149 

Leaf Metabolomics 150 

 The metabolome comprises small mostly organic molecules present in a tissue and represents a 151 

catalogue of the products of metabolic processes [32,33]. Metabolomic analysis was completed at 152 

veraison (the onset of fruit ripening) and immediately prior to harvest for the 72-vine set. For each vine, 153 

three mature leaves were sampled from the middle of a single shoot and immediately flash frozen in 154 

liquid nitrogen in the field to capture the metabolic state of the leaves when attached to the vine. Leaves 155 

were sampled by a single team near midday in row and block order, ensuring that ‘block’ captured both 156 

unmeasured spatial variation and temporal variation over the sampling window (see Methods). Frozen 157 

leaves were transported to the University of Missouri Enology Lab on dry ice and stored at -80˚C. 158 

Following the protocol of [34], whole leaves were manually ground in liquid nitrogen with a mortar and 159 

pestle, 0.5g of powder was weighed into a centrifuge tube, 1.5ml of 1:1 MeOH: ACN was added. 160 

Samples were vortexed to suspend leaf particles and sonicated for 20 minutes in an ice bath. After 161 

extraction, samples were centrifuged for 10 minutes at 3,000 g and filtered with a 0.22 PTFE syringe filter 162 

into a 1.5ml sample vial before injecting into a Waters XEVOTM QToF LCMS system (Waters 163 

https://paperpile.com/c/1wVmZp/S3XsF+wn3B1
https://paperpile.com/c/1wVmZp/sG3ug+tmLpa
https://paperpile.com/c/1wVmZp/UqhME
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Corporation, Milford, MA, USA). Chromatographic separation was achieved using a Waters Acquity TM 164 

Ultra Performance LC H-Class system (Waters Corporation, Milford, MA, USA) equipped with Waters 165 

Acquity BEH C18 column (2.1mmx150mm and 1.7um particle size) and a diode array detector. Samples 166 

were injected in random order across the sampling periods. The injection volume was set at 2.5ul and the 167 

flow rate was set at 0.4 ml/min. The mobile phase consisted of 0.1% formic acid in water (solvent A) and 168 

0.1% formic acid and 5% water in acetaldehyde (solvent B) and the gradient was as follows: 100% A for 169 

0.5 min; 0.5-18min increased to 99% B; 18-19 min. held at 99% B; mobile phase was re-equilibrated for 170 

2 min between runs. Diode array was monitored at 225-500nm. Mass spectrometry was performed on a 171 

XevoTM QTof (Waters Corporation, Milford, MA, USA). The electrospray ionization (ESI) was operated 172 

in both positive or negative ionization modes in separate runs. The scan range was set as m/z 50-1500 173 

with 0.2 sec accumulation time. MS settings were as follows: capillary voltage was 2.5kV; cone voltage 174 

ramped from 20-40V; collision energy was set to 6V; detector voltage was set to 1950V; desolvation gas 175 

was set to 1000 L/hour; cone gas was set to 50 L/hr; source temperature was 120 C̊ and desolvation 176 

temperature was set at 550 C̊.  177 

LC-MS instrument files were converted to .cdf format and uploaded to XCMS online [35] for 178 

chromatogram normalization and feature detection via “single job” parameters. The 661 identified 179 

metabolomic features were used as the basis of a principal components (PC) analysis. The top 20 PCs 180 

were treated as distinct phenotypes to model according to the experimental design. In PCs that varied 181 

significantly by rootstock, features that loaded more than 1.96 standard deviations above or below the 182 

mean were fit independently with the same model design.  183 

Leaf Gene Expression 184 

 The youngest fully-opened leaves on two shoots were collected from each plant of the 72-vine set 185 

(see Study Design). The two leaves, which were distinct from leaves used for ionomics, leaf shape, 186 

metabolomics and physiology data collection, were pooled for RNA sequencing. Leaves were sampled by 187 

a single team near midday between 10AM and 2PM in row order, ensuring that ‘block’ and ‘row’ 188 

https://paperpile.com/c/1wVmZp/tkoG1
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accounted for unmeasured spatial variation and temporal variation over the sampling window (see 189 

Methods). Samples were sequenced using 3’-RNAseq, a method ideal for organisms with reasonably 190 

characterized reference genomes [36]. Total RNA was extracted from plant tissues using the Sigma 191 

Spectrum Plant Total RNA kit with modification of the addition of 2% PVP40 to the extraction buffer to 192 

decrease phenolic inhibitors. All RNA extractions were checked for quality control using a Nanodrop. 193 

Sequencing was conducted using the Illumina NextSeq500 platform which returned single-end 86 bp 194 

reads. To accommodate the large number of samples in this study, we opted to obtain fewer reads per 195 

sample, which might have limited our ability to detect differential expression in lowly-expressed genes. 196 

The first 12 nucleotides from each read were trimmed to remove low-quality sequences using 197 

Trimmomatic (options: HEADCROP:12; [37]). Low quality trimmed reads were additionally identified 198 

based on overrepresentation of kmers and removed using BBduk (April 2019 release) [38]. Trimmed and 199 

QC-controlled reads were mapped to the 12Xv2 reference Vitis vinifera genome [39,40] using STAR 200 

(v2.7.2b) [41] with default alignment parameters. RNAseq read alignments were quantified using HTSeq-201 

count (v0.11.2) [42] and a modified version of the VCost.v3 reference V. vinifera genome annotation 202 

[40]. To capture mis-annotated gene body boundaries in the genome, all gene boundaries in the 203 

annotation were extended 500 bp.  204 

 Variation in gene expression was assessed using two methodologies. First, we identified 205 

individual genes which responded to specific factors in the experimental design using DESeq2 (v1.24.0) 206 

[43]. Each gene was fit with the model “~ Block + Irrigation + Phenology_Rootstock” where the 207 

‘Phenology_Rootstock’ model term was used to understand the potential interaction of phenology and 208 

rootstock. Genes were filtered to a gene set that included only genes with a normalized count greater than 209 

or equal to two in at least five samples. To check the validity of our expression results, we assayed two 210 

classes of housekeeping genes (Ubiquitin-domain and actin-family) and eight previously annotated 211 

circadian genes [44] (Supplemental Figure 2). Differentially expressed genes were identified for each 212 

pairwise contrast in the model. Second, we used principal component analysis (PCA) to collapse variation 213 

in co-expressed genes into fewer dimensions. Normalized count-filtered genes from DESeq2 were 214 

https://paperpile.com/c/1wVmZp/v8B5I
https://paperpile.com/c/1wVmZp/6JQNC
https://paperpile.com/c/1wVmZp/DSYZv
https://paperpile.com/c/1wVmZp/H9I0A+G5rhN
https://paperpile.com/c/1wVmZp/DtE9S
https://paperpile.com/c/1wVmZp/QZRwD
https://paperpile.com/c/1wVmZp/G5rhN
https://paperpile.com/c/1wVmZp/E8Z8n
https://paperpile.com/c/1wVmZp/JbALl
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transformed using the variance stabilizing transformation (VST; [45]) and input into a PCA. We then 215 

analyzed the top 100 PCs in the context of the broader experimental design. We previously showed that 216 

the transcriptome varied by the time of collection and was potentially interacting with the rootstock effect 217 

[19]. Moreover, the other modalities in this study point to weak if any effects from the irrigation treatment 218 

(see Supplemental Note 1). Due to the nature of the vineyard design, we could not identify both irrigation 219 

and time effects (marked by row) in a single model (irrigation and row are collinear; see Study Design). 220 

To approximate the impact from time of collection (row) in the vineyard on gene expression, linear 221 

models were first fit to remove variation imparted by irrigation from each of the top 100 PCs. The 222 

residuals were then used as the basis for linear models and machine learning analysis. 223 

 224 

Leaf Shape 225 

All leaves from a single shoot directly emerging from a trained cordon were collected from each 226 

vine in the 288-vine set at anthesis and veraison. At harvest, we collected only the oldest (first emerging 227 

leaf), middle (estimated from the middle of a whole shoot), and youngest (smallest fully emerged leaf at 228 

the shoot tip, >1cm). Leaves were collected approximately in row order (from south to north) and stored 229 

in a cooler. Each leaf was imaged using an Epson DS-50000 scanner in color against a white background 230 

at 1200 DPI and written as JPEG formatted images. Following scanning of leaves for leaf shape analysis, 231 

the oldest, middle, and youngest leaves were dried and used to estimate leaf elemental composition (see 232 

Ionomics). As the leaf shape samples and ionomics samples were identical, ‘block’ represented 233 

unmeasured spatial variation, but did not strictly correlate with time of sampling (see Methods). While all 234 

leaves were collected from a single shoot, only the oldest, middle, and youngest leaves were used in this 235 

analysis.  236 

We assessed leaf shape using Generalized Procrustes Analysis (GPA) of landmarks. For the three 237 

leaves per vine used in leaf shape analysis, 17 homologous landmark features were identified [22]. The 238 

GPA-rotated coordinate space was used for all subsequent statistical analysis including PCA in order to 239 

https://paperpile.com/c/1wVmZp/pRJTN
https://paperpile.com/c/1wVmZp/TQJh
https://paperpile.com/c/1wVmZp/vnguv
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summarize variation in leaf shape [46]. From the PCA, we extracted the top 20 PCs and fit linear models 240 

and machine learning models to describe variation. 241 

 242 

Vine physiology 243 

Intracellular CO2 concentration, stomatal conductance and leaf transpiration rate were measured 244 

at midday (each measured simultaneously between 10am to 1pm) on one fully expanded sun-exposed leaf 245 

for each of the vines in the 72-vine set. Physiology measurements were taken in row order ensuring that 246 

‘block’ correlated with temporal variation over the sampling window. Measurements were taken using an 247 

LI-6400XT Portable Photosynthesis system coupled with a pulse amplitude-modulated (PAM) leaf 248 

chamber fluorometer (Li-Cor, Inc., Lincoln, NE, USA) with the following parameters: incident 249 

photosynthetic photo flux density level of 1000 μmol m−2 s−1 generated by a red LED array and 10% 250 

blue light to maximize stomatal opening, CO2 mixer of 400 μmol/s, fixed flow of 300 μmol/s, and 251 

ambient leaf and block temperature. Soil moisture was measured for each plant in the 72-vine set using a 252 

fieldScout TDR 300 Moisture meter equipped with 20 cm rods (Spectrum Technologies, Inc. Aurora, IL, 253 

USA). Midday stem water potential was measured using a pressure bomb/chamber (PMS Instrument Co., 254 

Albany, OR, USA) after enclosing the leaves in an aluminum foil bag for at least 15 minutes to 255 

equilibrate the water potential of the xylem in the stem to that attached leaf (for a discussion on 256 

equilibration time, see [47,48]).  257 

 258 

Analyses 259 

 260 

Leaf ionome 261 

 To characterize the leaf ionome over the growing season, we sampled the youngest, middle, and 262 

oldest leaf from a single shoot from each of the vines within the 288-vine set at three phenological stages 263 

and measured the concentrations of 20 ions in each leaf individually. Bivariate correlations showed that 264 

https://paperpile.com/c/1wVmZp/zC5p3
https://paperpile.com/c/1wVmZp/myS4h+pWQAr
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ion concentrations are not independent of each other, but that the strength and direction of relationships 265 

between ions vary with respect to phenological stage and leaf position (Supplemental Figure 3). As such, 266 

we fit independent linear models to each ion. Leaf position, phenological stage, or the interaction of 267 

phenological stage and leaf position explained the highest amount of variation for most ions (Figure 1A-268 

B). Many ions significant for the interaction showed a clear signal of leaf position at anthesis and 269 

veraison, and either no explainable variation or muted variation at harvest. For example, calcium (Figure 270 

1B) varied with leaf position (22.7% variation explained; p < 1e-05), phenology (24.0%; p < 1e-05), and 271 

their interaction (7.4%, p < 1e-05). All possible pairwise combinations of leaf position were significantly 272 

different at anthesis, and both the youngest and middle leaves were different from the oldest leaves at 273 

veraison and harvest. In the case of potassium (Figure 1B), significant variation was explained by leaf 274 

position (16.1%; p < 1e-05), phenology (19.6%; p < 1e-05), and their interaction (10.6%; p < 1e-05). 275 

However, post-hoc comparisons of phenology-wise mean calcium concentrations showed that differences 276 

were present only at anthesis and veraison.  277 

Rootstock genotype showed remarkable influence on the composition of the leaf ionome. All ions 278 

except aluminum, sodium, and zinc were significant for rootstock as a single fixed effect (Figure 1A). 279 

Rootstock explained between 0.4% (rubidium; p = 3.2e-05) and 14.3% (nickel; p < 1e-05) of variation ion 280 

concentrations (Figure 1A). For some ion concentrations (such as cobalt and nickel), significant variation 281 

was explained by the interaction of rootstock and phenology; this pattern was observed mostly in ions that 282 

responded weakly to the interaction of leaf position and phenology. These ions showed similar patterns to 283 

the leaf position by phenology interaction where a clear signal was exhibited at anthesis and veraison then 284 

was either absent or muted at harvest. For example, cobalt was most abundant in ‘1103P’-grafted vines at 285 

anthesis (Figure 1C). At veraison, both ‘1103P’-grafted and ‘SO4’-grafted had elevated concentrations 286 

compared to Ungrafted and ‘3309’-grafted vines. However, by harvest, cobalt concentration variation was 287 

muted and only ‘SO4’-grafted vines showed evidence of elevated concentration. Similarly, nickel showed 288 

significant variation partitioned into the rootstock by the phenology effect (Figure 1C). Both anthesis and 289 
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veraison show reduced nickel concentration in ‘1103P’-grafted vines and elevated concentrations in 290 

‘SO4’-grafted vines. However, at harvest, no comparisons are significant.   291 

 Machine learning on ion concentrations confirms that the leaf ionome contains a signature from 292 

the rootstock genotype and the interactions of rootstock genotype with phenology and leaf position. A 293 

random forest model trained to predict rootstock showed an overall accuracy of 75.2% (Figure 1D). Ions 294 

important for this classification were nickel (Mean Decrease in Accuracy (MDA)=0.089), molybdenum 295 

(MDA=0.058), and magnesium (MDA=0.054), corroborating the rootstock term’s significance in the 296 

linear models. Notably, when we trained a model to simultaneously predict rootstock and phenological 297 

stage, rootstock prediction accuracy increased appreciably (Figure 1E). For example, the ability of the 298 

model to detect ungrafted vines (the balanced accuracy of ungrafted predictions) improved from 81.7% 299 

accuracy overall to 91.1% accuracy at anthesis and 85.9% at harvest. Generally, performance at veraison 300 

matched the rootstock-only model performance. The ions most important for this joint 301 

(rootstock/phenological stage) prediction were nickel (MDA=0.167), phosphorus (MDA=0.110), and 302 

strontium (MDA=0.065). The rootstock by phenology model term was significant in the linear models for 303 

these ions, but was not a largest descriptor of variation. The joint prediction of rootstock and leaf position 304 

performed substantially better than chance (p < 1e-05), but accounting for leaf position did not improve 305 

rootstock prediction as was the case in the joint prediction of rootstock and phenology (Figure 1F). Ions 306 

important for this classification were sulfur (MDA = 0.051), rubidium (MDA = 0.051), and nickel (MDA 307 

= 0.049).  308 

 309 

Leaf metabolomics 310 

 We performed untargeted metabolomics on leaves from the 72-vine set at veraison and harvest, 311 

quantifying the concentrations of 661 metabolites (Figure 2). The top 20 PCs accounted for a total of 312 

67.3% of the total metabolomic variation, with the top three capturing 23.1%, 9.2%, and 6.2%, 313 

respectively. Individual PCs after the top 20 explained less than 0.82% of the metabolome. Linear models 314 

for each of the top 20 PCs found that the strongest drivers of variation in leaf metabolomics were 315 
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phenology and temporal blocking factor. For example, 90.6% of variation on PC1 was due to phenology 316 

(p < 1e-05; Figure 2A). PC2 primarily reflected the interaction of phenology and temporal block (26.4%, 317 

p < 1e-05) and temporal block as a main effect (18.9%, p < 1e-05). The patterns of variation attributable 318 

to PC2 were similar in PCs 3-10 (Figure 2A).  319 

PC17 was controlled by rootstock as a main effect (18.5%, p < 1e-03; Figure 2B). On PC17, 320 

ungrafted vines were significantly different from vines grafted to ‘3309C’ (p = 0.02) and ‘SO4’ (p < 1e-321 

05). Vines grafted to ‘1103P’ were also significantly different from vines grafted to ‘SO4’ (p = 0.009). 322 

Metabolites that loaded more than 1.96 sd from the mean loading on PC17 were extracted and 323 

independently fit to additional linear models. We identified four metabolite features (M374T1 [rt = 1.33,  324 

m/z = 374.1146], M117T1 [rt = 0.61, m/z = 117.0583], M175T1_1 [rt = 0.87,  m/z = 175.1269], and 325 

M333T1_3 [rt = 0.71; m/z = 333.1582]) which were influenced by rootstock as a main effect and the 326 

metabolite (M112T1 [rt = 1.48, m/z =  112.0061]) which was influenced by the interaction of rootstock 327 

genotype and phenological stage. At this time, the identification of these features remains unknown.  328 

 Linear discriminant analysis confirmed that many experimental factors likely influence the 329 

metabolome. For example, when trained to maximize variation between classes of rootstocks, the model 330 

identified a space that weakly separates ‘1103P’-grafted and ‘SO4’-grafted vines from ungrafted and 331 

‘3309C’-grafted vines (LD1) and separates ‘3309C’-grafted vines from other classes (on LD2) (Figure 332 

2C). Despite this, machine learning showed minimal predictability for any class other than phenology, 333 

which was predictable with an accuracy of 100% for withheld samples. Rootstock genotype based on the 334 

metabolome was not predictable with accuracy only marginally better than chance (34.6%).  335 

 336 

Gene Expression 337 

We performed 3’-RNAseq on the youngest fully-opened leaves of the 72-vine set at three time 338 

points (Figure 3). On average, each sample contained 4.1 million 3’-reads and measured the expression of 339 

17,852 genes. Overall, we identified variation in 23,460 genes that had a DESeq2-normalized count 340 

greater than two in at least five samples. We computed the expression of two classes of housekeeping 341 
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genes, and showed that they are generally stable across samples over phenological time (Supplemental 342 

Figure 2). We noted that some variation is expected for housekeeping genes; see, for example, [49]. 343 

Moreover, we showed that patterns of previously annotated circadian genes conform to expected results 344 

over the sampling window. For example, predicted orthologs of LHY and RVE1 are correlated and 345 

decreasing over our sampling window, and a predicted TOC1 ortholog is invariant. The results of these 346 

analyses provide general confidence in the gene expression data presented here.   347 

Using a traditional differential expression analysis framework based on established DGE software 348 

(Deseq2), all genes returned as significantly differentially expressed by rootstock appeared to be false 349 

positives, evidenced by a single extreme outlier altering group means. Hierarchical clustering of the 500 350 

most variable genes after variance stabilizing transformation (VST) showed strong latent structure in the 351 

transcriptome and that most variation in the transcriptome was explained by the phenological stage 352 

(Figure 3A). The top 100 PCs on the VST-transformed gene counts accounted for nearly 92.3% of 353 

variation in the transcriptome. Linear models on each of the top 100 PCs indicated that 82.4% and 61.4% 354 

of the variation on PC1 and PC2 respectively were attributable to the phenological stage (Figure 3B-C). 355 

Row was also a significant descriptor of variation as a single, fixed effect and in interactions with 356 

rootstock and phenological stage. For example, row accounted for 36.0% and 43.3% of the variation on 357 

PC4 and PC6, respectively. Interacting with the phenological stage, row accounted for >10% of variation 358 

on 17 additional PCs. 359 

Patterns of gene expression identified through LDA corresponded to phenological stage, vine 360 

row, and rootstock. LDA separated phenological stages into three distinct, non-overlapping groups in the 361 

space spanning LD1 and LD2 (Supplemental Figure 4). When trying to separate rows into distinct classes, 362 

the model converged on a ‘horseshoe’ shape in the LD1- LD2 space (Figure 3D), suggesting either a 363 

circadian topology to the transcriptome or continuous spatial variation over the vineyard [50]. LD1 364 

maximized the variation between row 8 (sampled early in the day) and row 16 (sampled a few hours 365 

later). LD2 maximized the separation of both rows 8 and 16 with row 12 (the row sampled in the middle 366 

of the sampling window). A model trained to separate rootstock classes (Figure 3E) showed that LD1 367 

https://paperpile.com/c/1wVmZp/9AES7
https://paperpile.com/c/1wVmZp/GfsDb
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separated the rootstock 1103P from other rootstock genotypes, and LD2 primarily separated the rootstock 368 

‘3309C’ from ungrafted vines (Supplemental Figure 4).  369 

Formal machine learning on gene expression PCs largely supported the linear models. A random 370 

forest trained to predict phenological stage classified testing samples with 92.9% accuracy. Anthesis was 371 

the most predictable class with a balanced accuracy of 100%; veraison and harvest displayed balanced 372 

accuracies of 92.7% and 92.4%, respectively. The PCs most important in phenology prediction were PC1 373 

(MDA = 0.16) and PC2 (MDA = 0.12). Gene expression PCs were unable to predict rootstock, with a 374 

total prediction accuracy of 23.4%. While no features were especially important in the prediction 375 

processes, PC44 showed the largest mean decrease in Gini impurity corroborating its signal in the linear 376 

models.  377 

 378 

Leaf shape 379 

We collected leaves from the 288-vine set at three time points and landmarked a total of 2,422 380 

leaves (Figure 4). Homologous leaf landmarks were used for Generalized Procrustes Analysis (GPA). 381 

PCA on the GPA-rotated coordinates revealed ~97.2% of the total shape variation was captured by the 382 

top 20 principal components with PC1, PC2, and PC3 explaining 24.1%, 19.0%, and 13.3% of the 383 

variation respectively. Lower values on PC1 primarily capture leaves with shallow petiolar sinuses and 384 

short midvein distance from the depth of the superior sinus to the top of the midvein, whereas higher 385 

values on PC1 capture the opposite (Figure 4A). Similarly, lower values on PC2 capture deep petiolar 386 

sinuses combined with very shallow superior sinuses, and vice versa for higher values. PC3 primarily 387 

captures asymmetry (Figure 4A).   388 

In total, 5.76% of variation on PC1 was explained by the experimental design. Of this, variation 389 

in leaf shape was explained by phenology (2.63%; padj < 1e-05), then rootstock (0.95%; padj < 0.001), 390 

leaf position (2.61%; padj = 0.03), and the interaction of phenology and leaf position (0.62%; padj = 391 

0.009) (Supplemental Figure 5A). Post-hoc mean comparisons on PC1 showed that shapes of leaves from 392 

ungrafted vines were significantly different from leaves of vines grafted to 1103P (p < 0.001), 3309C (p < 393 
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0.001) and SO4 (p < 0.001) (Supplemental Figure 5B). Moreover, PC1 captured subtle variation in the 394 

leaf position by phenological stage interaction where middle leaves showed significant differences 395 

between anthesis and veraison (p < 1e-03), and the oldest leaves showed significant differences when 396 

comparing anthesis to veraison (p < 1e-05) and anthesis to harvest (p < 1e-03).  397 

For PC2, 61.4% of variation could be assigned to an experimental factor. This included 398 

significant variation from leaf position (46.9%, padj < 1e-05), phenology (1.4%; padj < 1e-05), and the 399 

interaction of leaf position and phenology (12.05%; padj < 1e-05; Figure 4D). Specifically, younger 400 

leaves tended to have shallower sinuses and exaggerated superior sinus depths (higher values on PC2), 401 

whereas older leaves tended to develop deeper petiolar sinuses and more shallow superior sinuses (lower 402 

values on PC2). The degree of this separation decreased across the season, and the shapes converged on 403 

the mean leaf shape on PC2, consistent with the middle leaf at all three phenological stages. PC2 404 

additionally reflected the interaction of leaf position and rootstock (0.22%; p = 0.04; Supplemental Figure 405 

5B), but post-hoc comparisons did not find any significant pairwise comparisons.  406 

Machine learning on the GPA-rotated coordinate space identified moderate division of 407 

developmental and phenological classes. Random forest models could predict the leaf position with 408 

73.1% accuracy, with the most important feature being the y-component of the leaf apex (MDA = 0.051). 409 

A model trained to predict phenology performed at 64.3% with the most important features being the x-410 

components of the points corresponding to superior sinus depth (left sinus MDA = 0.030, right sinus 411 

MDA = 0.019). A model trained to predict rootstock performed only marginally better than chance at 412 

28.1% accuracy.  413 

 414 

Vine physiology 415 

We measured intracellular CO2 concentration (Ci), stomatal conductance (gs), leaf transpiration, 416 

water potential (𝜓), and soil moisture for the 72-vine set (Figure 5). Each physiological phenotype varied 417 

significantly across phenology and the block by phenology interaction (Figure 5A). For example, at 418 

harvest, we observed specific differences in leaf CO2 concentration (A vs C: p=0.003; B vs C: p=0.002) 419 
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and leaf transpiration (A vs B: p < 1e-03; A vs C: p < 1e-05; B vs C: p < 1e-05). Leaf transpiration and 420 

stomatal conductance varied significantly with the interaction of rootstock and phenology. A post-hoc 421 

comparison of means showed that leaf transpiration and stomatal conductances were elevated in 422 

‘Chambourcin’ vines grafted to ‘1103P’ at veraison as compared to leaves of ungrafted vines (leaf 423 

transpiration: p = 0.001; stomatal conductance: p = 0.002 Figure 5B-C). 424 

 425 

 426 

Phenomic covariation 427 

Four leaf phenotyping modalities consisted of 10 or more measured phenotypes and were 428 

measured for all plants in the 72-vine set (leaf ionome, leaf metabolomics, gene expression, leaf shape). 429 

Using these data, we explored the extent to which different phenotypes (within and between modalities) 430 

covaried over phenology and rootstock genotype (Figure 6; Supplemental Figure 6; Supplemental Figure 431 

7). Within each phenotyping modality, we summarized the primary dimensions of phenotypic variation 432 

using PCA (see Methods), so as to not weigh any modality too heavily. From each PCA, we extracted the 433 

top 10 PCs, which explained a total of 88.9% of variation in the ionomics PCA (iPCA), 55.9% of the 434 

variation for the metabolomics PCA (mPCA), 74.8% of the variation in the gene expression PCA (gPCA) 435 

and 87.9% of the variation in the leaf shape PCA (sPCA).  436 

Pairwise correlations of each PC within each phenological stage showed diverse correlation 437 

magnitudes and directions both within a phenotyping modality and between phenotyping modalities 438 

(Figure 6A-C; Supplemental Figure 6). Generally, the strongest relationships were between PCs within 439 

phenotyping modalities. For example, the strongest correlations identified were between gene expression 440 

PCs gPC1 and gPC2 at anthesis (r = 0.85, CI = [0.81, 0.87]; Supplemental Figure 6A, and metabolomics 441 

PCs mPC1 and mPC2 at harvest (r = -0.78, CI = [-0.82. -0.76]). Correlations between modalities 442 

represented a diversity of responses across phenological stages. For example, the correlation between 443 

gene expression gPC4 and shape sPC3 was similar across the phenological stages, but only the correlation 444 

at veraison was significant (r = 0.41, CI = [0.34, 0.47]; Supplemental Figure 6B). Correlations such as 445 
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between metabolomics mPC3 and gene expression gPC6 were similar and significant at both veraison (r = 446 

-0.44, CI = [-0.50, -0.37]; Supplemental Figure 6C) and harvest (r = -0.37, CI = [-0.45, -0.28]; 447 

Supplemental Figure 5C). While many correlations varied over the course of the season, some 448 

relationships entirely shifted in direction. For example, the correlation between metabolomics mPC3 and 449 

mPC6 shifted from a positive significant relationship (r = 0.58, CI = [0.52, 0.63]) at veraison to a negative 450 

significant relationship at veraison (r = -0.66, CI = [-0.73, -0.59]) (Supplemental Figure 6D). 451 

Pairwise comparisons of PCs within each rootstock genotype show a suite of latent phenotypes 452 

with significant presence/absence variation in significant correlations. Where each phenological stage 453 

showed modularity by phenotyping modality, variation over rootstock genotype shows a strong ionomics 454 

module with latent combination of other modalities interspersed (Supplemental Figure 7). For example, in 455 

ungrafted vines, metabolomics mPC1 was correlated with four PCs from the ionome (Supplemental 456 

Figure 7A). Each of the other rootstock genotypes had dramatically different topologies with the ionome 457 

tending to be more connected within the ionome and connected to other modalities only on the periphery 458 

(Supplemental Figure 7B-D). Examples of presence/absence variation were shown in small modules of 459 

two latent phenotypes that were present in only one rootstock genotype. For example, in the ungrafted 460 

vines, the correlation between gene expression gPC4 and metabolomics mPC3 was significant (r = -0.58, 461 

CI = [-0.65, -0.51]) and, in ‘1103P’-grafted vines, the correlation between metabolomics mPC3 and shape 462 

sPC6 (r = 0.59, CI = [0.53, 0.70]) was significant.   463 

 464 

Discussion 465 

 466 

In this study, we used grafted grapevines as an experimental system for characterizing root system 467 

impacts on multi-dimensional leaf phenotypes over the course of a growing season. We detected 468 

ubiquitous but subtle effects of the root system on all assayed modalities, and demonstrated that rootstock 469 

influences on leaf phenotypes can be specific to the vine’s developmental stage. The strongest signals of 470 
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rootstock influences on leaves were observed in the ionomics dataset, phenotypes for which the root 471 

system has a noted and well-understood role.  472 

 473 

Phenology explains significant variation in all leaf phenotypes 474 

The timing of sampling or phenological stage of the vines (anthesis, veraison, harvest) was the 475 

strongest driver of phenomic variation for most leaf phenotypes. For example, all 20 ions varied with 476 

phenology and most ions showed that phenology, or the interaction of phenology with leaf developmental 477 

position, was the strongest source of variation (Figure 1). Nearly one third of all measured transcripts 478 

responded to seasonal variation, and the strongest effects on the transcriptome were phenology and row, a 479 

correlate for the time within a three-hour sampling window. The only phenotype for which phenology 480 

was not the most explanatory factor is leaf shape. Consistent with previous studies [23], we confirm that 481 

most of the leaf shape variation reflects development along a single shoot, but much of this variation is 482 

explained via interaction with phenology. These data highlight the dynamic nature of biological processes 483 

taking place within grapevines over the course of a season.  484 

 The seasonal component to grapevine phenomic variation is a subject of much research, 485 

especially in the berry. In studies designed to quantify molecular underpinnings of terroir, seasonal 486 

variation was identified as the strongest signal in the metabolome [51–54]. Several studies have 487 

characterized transcriptomic variation over the course of the season. For example, in conjunction with 488 

metabolomics, seasonal variation of berry development was used to identify transcriptomic and 489 

metabolomic developmental markers in ‘Corvina’ [55]. Follow-up analysis showed that nearly 18% of 490 

transcripts varied seasonally [56]. Grapevine leaf shape also varies tremendously over the growing season 491 

[23] and is stable over multiple growing seasons; interestingly, grapevine leaves are patterned in the 492 

previous year, and the climate of the season in which the leaves were patterned influence aspects of leaf 493 

shape [57,58].  494 

 495 

https://paperpile.com/c/1wVmZp/jmsZg
https://paperpile.com/c/1wVmZp/ehFvV+kimCj+otfam+cyDJ5
https://paperpile.com/c/1wVmZp/FRHgl
https://paperpile.com/c/1wVmZp/0aDNa
https://paperpile.com/c/1wVmZp/jmsZg
https://paperpile.com/c/1wVmZp/SJJSM+yVJzW
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Grafting and rootstock genotype exhibit a complex and subtle signal on leaf phenotypes 496 

Consistent with previous studies, we confirm that grafting, as well as rootstock genotype, has a 497 

complex effect on phenomic variation in the scion (the grafted shoot system). Most notably, we show that 498 

the rootstock to which a scion is grafted influences ion concentrations in leaves. Rootstock genotype is 499 

predictable from ion concentrations in the leaves, and this signal is strengthened when phenological stage 500 

is included in the model. For example, we previously showed that nickel concentration was elevated in 501 

vines grafted to the rootstock ‘SO4’ [19]. At a similar point in the season, we observe the same pattern, 502 

but by harvest, nickel was almost entirely excluded from the leaf. This suggests that the biological 503 

implications of this differential uptake could be missed if not surveyed across the season. We also 504 

confirm that rootstock genotype influences the metabolome of grafted grapevine, in some cases in a 505 

season-specific manner. In the transcriptome, PCA was able to identify dimensions of variation that were 506 

significantly described by rootstock and the interaction of rootstock and time of day, confirming prior 507 

observations [19]. Patterns of gene expression were associated with rootstock in some analyses; for 508 

example, supervised methodologies identified linear discriminants in the PC space that separated gene 509 

expression patterns of some rootstock genotypes. However, gene-by-gene analysis found no genes 510 

modulated by rootstock genotype, or even just from the act of grafting that were not driven entirely by a 511 

single outlier. We suspect these results are due, at least in part, to the strength of the phenology effect 512 

overpowering more subtle variation imparted by rootstock genotype. Finally, of the physiology 513 

phenotypes we measured, leaf transpiration and stomatal conductance were higher in vines grafted to 514 

‘1103P’ in the middle of the season. Through these analyses, we have identified subtle but ubiquitous 515 

effects of rootstock genotype on shoot system phenotype across modalities, and have shown that the 516 

impact of grafting on leaf phenomic variation varies from one phenotype to the next.  517 

Understanding the rootstock genotype influence on shoot system phenotypes is a growing area of 518 

research, especially in grapevine. For example, in ‘Cabernet Sauvignon’, grafting increased ion uptake 519 

globally and some rootstock genotypes provide a clear signal in the scion [28]. The wild Vitis species 520 

from which the rootstocks were derived from (Vitis berlandieri, V. riparia, and V. rupestris) differ in root 521 

https://paperpile.com/c/1wVmZp/TQJh
https://paperpile.com/c/1wVmZp/TQJh
https://paperpile.com/c/1wVmZp/rNVFq
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architecture, preferred soil substrate, and genetic background; however, the specific aspects of their 522 

biology that contribute to differences in ion uptake are not known [27]. To our knowledge, there is not yet 523 

a strong causal link between the micronutrient component of the ionome and factors of vine growth or 524 

development that might influence traits like wine quality. However, it is noted that macronutrient 525 

deficiencies can have negative effects on such traits [59,60] and can be mediated by rootstock [61]. This 526 

suggests a strong understanding of the rootstock influence on the vine’s ionome is warranted, and more 527 

work needs to be done to establish these relationships. Similarly, the metabolome is a key driver of the 528 

formation of the graft junction and some key metabolites could be responsible for graft incompatibility 529 

[62]. Building on this work, targeted metabolomics showed two classes of metabolites, flavanols and 530 

stilbenes, were differentially abundant at graft junctions and in the rootstocks of ‘Cabernet Sauvignon’ 531 

vines one month after grafting [63]. However, flavanols were not differentially abundant in the scion, but 532 

scion stilbene concentrations were apparently controlled by rootstock genotype. The effect of rootstock 533 

genotype on the scion transcriptome is perhaps the most varied. For example, ‘Cabernet Sauvignon’ shoot 534 

apical meristems show no effects by rootstock genotype [14], but berries of the same cultivar do, although 535 

the effect is tempered by seasonal variation [15]. Variation in ‘Chambourcin’ leaf shape was also driven 536 

by rootstock genotype, especially in conjunction with differences in irrigation [19]. Collectively, these 537 

studies all suggest that rootstock genotype influences scion phenotypes, but those effects will vary by 538 

phenotype, scion genotype, and perhaps other experimental conditions.  539 

Data presented here confirm and expand upon previous observations of rootstock effects on scion 540 

phenotypes. Notably, this study was carried out using a robust experimental design (288-vine set and 72-541 

vine set comprising replicates of three rootstocks grafted with a common scion and an ungrafted control) 542 

in a vineyard that had been in the ground for eight years at the time of sampling. Our coordinated 543 

collection of five multi-dimensional leaf phenotypes, and inclusion of three sampling points spanning the 544 

growing season allowed us to investigate the comprehensive nature of rootstock influences on the scion. 545 

Further, this thorough analysis demonstrates that rootstock effects on scion phenotypes shift in magnitude 546 

https://paperpile.com/c/1wVmZp/F3EmE
https://paperpile.com/c/1wVmZp/S8dvI+A7fJY
https://paperpile.com/c/1wVmZp/GJlH6
https://paperpile.com/c/1wVmZp/FaJGw
https://paperpile.com/c/1wVmZp/CMk1z
https://paperpile.com/c/1wVmZp/QRgkB
https://paperpile.com/c/1wVmZp/1B2o2
https://paperpile.com/c/1wVmZp/TQJh
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over the course of the season, indicating that aspects of time are tremendously influential to the observed 547 

results regardless of phenotype. 548 

While the results of previous studies on grafted grapevine are worthy of comparison, the work 549 

presented here has a few limitations that render comparisons with other studies challenging for a variety 550 

of reasons. One novelty in our study is the exploration of a hybrid grapevine system, ‘Chambourcin’. 551 

‘Chambourcin’ has a complex pedigree, including contributions from Vitis riparia and V. rupestris, 552 

species which are each parent to two of the rootstocks used in this study [64]. Many of the significant 553 

effects we observed in this study were subtle, which could reflect the genomic similarity between shoot 554 

and root systems. It might be expected that rootstocks derived from V. riparia, V. rupestris and other 555 

North American species might prompt more pronounced responses in European scions that lack North 556 

American Vitis in their pedigrees. Moreover, our results were derived from data collected in a single year 557 

at a single location. The phenotypes we measured are known to be heavily influenced by the environment, 558 

and we expect some inter-annual variation in rootstock influences on shoot system phenotypes. This study 559 

focused on a single scion, and as a result we are unable to explore how rootstock effects on shoot system 560 

phenotypes vary across scions. To our knowledge, this is among the largest populations to have been 561 

surveyed for such phenotypes in a near-decade-old established vineyard. While many studies have been 562 

conducted in green houses or recently planted vineyards, the juxtaposition of our results and those 563 

previously established serve as a powerful foundation for the generation of hypotheses for future studies.  564 

 565 

Phenomic covariation warrants work toward latent phenotypes 566 

In the present study, we assess the extent of covariation among leaf phenotypes. For the primary 567 

dimensions of variation in each modality, within-modality correlations were strongest when accounting 568 

for phenological timing. Correlations also existed between modalities, suggesting room for the analysis of 569 

latent phenomic structure or targeted integrative analyses for experimental questions. For example, 570 

aspects of the metabolome were frequently correlated with the transcriptome and leaf shape when 571 

accounting for both phenological stage and rootstock genotype. Interestingly, correlations within and 572 

https://paperpile.com/c/1wVmZp/Vvj1C
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between modalities were highly dynamic over a growing season and across rootstock genotype. For 573 

example, several correlations with leaf shape were present at veraison, but were not detected at anthesis 574 

and harvest. Moreover, the topology of connections in the ionomic network was variable over the 575 

rootstock genotype (Supplemental Figure 6). This variation in topology confirms that root system 576 

genotype has a strong influence on shoot system elemental composition, and suggests that root system 577 

genotype can alter correlative patterns in the ionome. We believe phenomic covariation warrants further 578 

investigation, specifically, by further including additional phenotypes such as lncRNA expression [65,66], 579 

epigenetics [67], and microbiomes [68,69] which could yield more mechanistic understandings of the 580 

influence of root systems on shoot systems and how plants interact with their environments through their 581 

root systems. These mechanistic understandings could be used to further understand and optimize 582 

consumer-facing traits such as fruit quality and yield. To date, much of the work constituting phenomics 583 

in grapevine has addressed how berries develop over the growing season, how cultivars differ from one 584 

another, and how the concept of terroir influences wine [51,52,55,70–72]. Despite data integration 585 

techniques becoming more popular, there are still many open questions as to what analytical methods are 586 

most appropriate and how to most effectively utilize them (reviewed for grapevine in [73,74]; reviewed 587 

broadly in [75,76]). Ongoing work attempts to integrate high-dimensional phenomic datasets generated 588 

within a single organ system (e.g., leaves); and future studies will expand this to explore phenomic 589 

covariation in and among organs, over time, and across space.  590 

 591 

Potential Implications 592 

Our work on the influence of root system genotype on shoot system phenotype has broad 593 

implications for a holistic understanding of how plants detect and respond to changing environmental 594 

conditions, and how this response is coordinated among different organ systems. Data presented here 595 

demonstrate that root systems that are genetically distinct from the scion exert influence on the scion, 596 

leading to statistically significant differences in scion phenotypes based on the identity of their root 597 

systems. This observation suggests that the above-ground phenotype results, at least in part, from below-598 

https://paperpile.com/c/1wVmZp/6gQC6+f1sko
https://paperpile.com/c/1wVmZp/xxFGh
https://paperpile.com/c/1wVmZp/kKrfd+UmYUG
https://paperpile.com/c/1wVmZp/FRHgl+LBzdE+ehFvV+5qkgp+Nbql7+kimCj
https://paperpile.com/c/1wVmZp/k86mT+KEFnr
https://paperpile.com/c/1wVmZp/mLLHn+YyTIR
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ground activity of the root system. Further, these data highlight the value of coordinated collection of 599 

different multi-dimensional phenotypes for comparative studies, and for describing whole-plant 600 

phenotypic shifts over seasons and in response to horticultural manipulations. 601 

Beyond its use as an experimental model that is ideal for studying root/shoot interaction, grafting 602 

is an important horticultural technique that is used in over 70 major crops. In grapevines, grafting was 603 

developed primarily to combat the below-ground pest phylloxera, and grapevine rootstocks were selected 604 

initially based on their resistance to this pest. Results presented here indicate that beyond phylloxera 605 

resistance, grafting to genetically distinct rootstocks is a potential source of variation for the scion. 606 

Ongoing work explores how root system impacts on shoot system phenotypes vary across scion 607 

genotypes, and how the rootstock × scion interaction changes over space. The long-term implications of 608 

this study are the potential honing of viticulture for future climates including the optimization of 609 

rootstock-scion combinations based in part on an understanding of how rootstock effects on scion 610 

phenotypes change over the course of the season. This work is relevant for breeding efforts, and may play 611 

a role in the optimization of quantitative phenotypes such as vigor, fruit quality, and yield that may be 612 

enhanced by, constrained by, or partially predicted from phenotypic variation elsewhere in the plant. 613 

 614 

Methods 615 

 616 

Study Design 617 

Data were collected in 2017 from a split-plot experimental rootstock trial established in 2009 at 618 

the University of Missouri’s Southwest Research Center near Mount Vernon, MO (37.074167 N; 619 

93.879167 W; Supplemental Figure 1). The rootstock trial includes the interspecific hybrid cultivar 620 

‘Chambourcin’ growing ungrafted (own-rooted) and grafted to three rootstocks: ‘1103P’, ‘3309C’, and 621 

‘SO4’ (Supplemental Figure 1D). Clonal replicates of each of the four rootstock-scion combinations were 622 

planted 72 times for a total of 288 vines planted in nine rows. Each row was treated with one of three 623 

irrigation treatments: full evapotranspiration replacement, partial (50%) evapotranspiration replacement 624 
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(reduced deficit irrigation; RDI), or no evapotranspiration replacement (Supplemental Figure 1A). 625 

However, rainfall in 2017 likely mitigated the applied irrigation treatment (see Supplemental Note 1). 626 

Vine position in the vineyard corresponded to time of sampling for some phenotypes (metabolomics, gene 627 

expression, and physiology), as samples were taken from one end of the vineyard to the other over the 628 

course of two to three hours. Because vineyard microclimates and sampling time may be associated with 629 

phenomic variation, we defined ‘block’ as a factor that captures this spatial and temporal variation 630 

inherent in sampling for those phenotypes. In the other phenotypes (ionomics and leaf shape), neither row 631 

nor block correlated with time, so ‘block’ was simply a spatial covariate. Unique rootstock-scion 632 

combinations were planted in cells of four adjacent replicated vines (Supplemental Figure 1A-B), with 633 

rows consisting of eight cells (32 vines/row). To our knowledge, a field-planted rootstock experimental 634 

vineyard of this size and age is rare. For some phenotypes (ionomics and leaf shape), it was possible to 635 

collect samples from all vines in the experimental vineyard (the 288-vine set; Supplemental Figure 1A-636 

B). For other phenotypes (metabolomics, gene expression, and physiology), time and/or expense 637 

associated with the phenotyping process required that we reduce sampling to a nested set of 72 vines 638 

representing the middle two vines in each four-vine cell in the front half of the vineyard (the 72-vine set; 639 

Supplemental Figure 1B-C). All phenotypes were assayed at three phenological stages: anthesis (~80% of 640 

open flowers; 22 May 2017); veraison (~50% of berries had transitioned from green to red; 30 July 2017); 641 

and immediately prior to harvest (25 September 2017). At each phenological stage, effort was made to 642 

sample on days with full to partial sun and minimal precipitation.  643 

This design was used to assess the following questions: 1) What is the influence of root system 644 

genotype on shoot system phenotype? 2) How do systems of plant phenotypes vary over the growing 645 

season and does rootstock genotype influence this variation? And 3) how do phenotypes covary within 646 

and between phenotyping modalities?  647 

 648 
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Linear Models 649 

Linear models were fit to the 20 measured ion concentrations, the top 20 PCs of the leaf 650 

metabolome, the top 100 PCs of the leaf transcriptome, the top 20 PCs of leaf morphospace, and each 651 

measured physiological trait. Outliers were detected using the R function ‘anomalize’ (options: 652 

alpha=0.03, max_anoms=0.1). Each model was fit with fixed effect factors representing phenological 653 

stage (anthesis, veraison, or harvest), rootstock (Ungrafted, ‘1103P’, ‘3309C’, or ‘SO4’), leaf position 654 

(youngest, middle, or oldest; only used in leaf morphology and leaf ion concentration models), and all 655 

pairwise interactions of those terms. Both irrigation and block were included as fixed, non-interacting 656 

effects with the exceptions of physiology and metabolomics, for which we allowed the interaction of 657 

‘Block’ as it correlates with the time of sampling, potentially capturing temporal variation. Row, an 658 

additional correlate for time and spatial variation, was included in place of a temporal block for the gene 659 

expression models after removal of the variation attributable to irrigation, a factor collinear with row. All 660 

linear models were interpreted using a type-3 sum of squares computation using the R package ‘car’ [77]. 661 

Estimated p-values for each term in the models were corrected for multiple tests (within phenotype) using 662 

FDR correction as implemented by the R package ‘stats’ [78]. Results from the models are reported as the 663 

variation explained by a particular term in the model and the estimated p-value. When appropriate, post-664 

hoc mean comparisons were computed using the package ‘emmeans’ [79]. Where multiple linear models 665 

were being simultaneously interpreted, we applied a Bonferonni correction to reduce the number of false 666 

positives.  667 

 668 

Machine Learning to Identify Rootstock Effects 669 

For visualization of between-class variation, we fit linear discriminant analysis models (LDA) to 670 

each modality (ionomics, metabolomics, gene expression, and leaf morphology) using the ‘lda’ function 671 

of the R package ‘MASS’ [80]. Projections of all samples into the LD space were plotted using ggplot2 672 

[81]. In addition, we employed machine learning to capture subtle experimental effects. We partitioned 673 

data from each modality into 80% training partitions and 20% testing partitions. Models were fit to 674 

https://paperpile.com/c/1wVmZp/u9oY1
https://paperpile.com/c/1wVmZp/FwhRZ
https://paperpile.com/c/1wVmZp/Z0qNz
https://paperpile.com/c/1wVmZp/EzwAN
https://paperpile.com/c/1wVmZp/CdAbo
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predict the phenological stage from which a sample was taken, the rootstock to which the scion was 675 

grafted, and the joint prediction of phenology and rootstock. We also tested the predictability of leaf 676 

position for ionomics and leaf shape, and the interaction of rootstock and leaf position for ionomics. We 677 

used the ‘randomForest’ [82] implementation of the random forest algorithm. Models were fit and tuned 678 

using the R package ‘caret’ [83]. Each performance was assessed using accuracy, with performance on 679 

each class being assessed using the balanced accuracy, the midpoint of class-wise sensitivity and 680 

specificity. Where appropriate, models were compared to ‘chance’, or the occurrence frequency of each 681 

class. Confusion matrices were visualized from the out-of-bag predictions using ‘ggplot2’. Important 682 

features were identified from the randomForest object based on a phenotype-specific mean decrease in 683 

model accuracy (MDA).  684 

 685 

Phenomic trait covariation 686 

We extracted ionomics, metabolomics, gene expression, and leaf shape data for the youngest 687 

available leaf from the 72-vine set. Each data modality was summarized along the primary dimensions of 688 

variation using PCA. For each class, we extracted the top 10 PCs and fit Pearson’s correlations across all 689 

pairs of PCs at each phenological stage. P-values from computed correlations were corrected using the 690 

FDR method from the package ‘stats’ [84]. Correlations and their strengths were visualized using the R 691 

package ‘igraph’ [85]. Example correlations were reported after running 10,000 bootstrapped subsamples 692 

of 90% of data for paired phenotypes. From the distribution of estimated correlation coefficients, 693 

confidence intervals were computed from the 0.025 and 0.975 quantiles. A subset of example correlations 694 

were plotted using the R package ‘ggplot2’. 695 

Availability of Code: 696 

All code to replicate the findings of this paper including shell scripts for RNAseq analysis and Jupyter 697 

Notebooks for data analysis in R can be found on the Vitis Underground GitHub: 698 

Project name: mt_vernon_2017_leaf 699 

Project home page: https://github.com/PGRP1546869/mt_vernon_2017_leaf 700 

https://paperpile.com/c/1wVmZp/xGbje
https://paperpile.com/c/1wVmZp/NGnyq
https://paperpile.com/c/1wVmZp/e429W
https://paperpile.com/c/1wVmZp/fIW9i
https://github.com/PGRP1546869/mt_vernon_2017_leaf
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Operating system(s): Platform independent 701 

Programming language: R and Shell 702 

Other requirements: R requirements are listed in the Jupyter Notebooks. Shell requirements: trimmomatic 703 

v0.36, bbmap (Feb. 11, 2019), STAR v2.7.1a, htseq-count v0.11.2.  704 

License: GNU GPL 3.0 705 

Any restrictions to use by non-academics: None 706 

 707 

Data Availability: 708 

Raw metabolomics data are available at MetaboLights, accession MTBLS2831. Gene expression data are 709 

available in the Sequence Read Archive under BioProject PRJNA674915. All other data supporting this 710 

manuscript including ionomics, partially processed metabolomics, leaf scans, leaf landmarks, physiology 711 

and weather data are available from figshare [86-90]. Other data further supporting this work are openly 712 

available in the GigaScience repository, GigaDB [91] 713 
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 742 

Figure Legends: 743 

Figure 1:  The ionome shows strong signal from rootstock genotype, leaf position, and phenological stage 744 

(A) Percent variation captured in linear models fit to each of 20 ions measured in the ionomics pipeline. 745 

Presence of a cell indicates the model term (top) was significant (FDR; p.adj < 0.05) for that ion (left). 746 

(B) Example ions shown to vary significantly by the interaction of leaf position (Y=Youngest, 747 

M=Middle, O=Oldest) and phenological stage in parts per million. Boxes are bound by 25th and 75th 748 

percentile with whiskers extending 1.5 IQR from the box. Significant changes are indicated by letters 749 

above boxes, and are only meant for comparison within each phenological stage. Group means are 750 

displayed with black squares. (C) Example ions shown to vary significantly by the interaction of 751 
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rootstock genotype and phenological stage in parts per million. Significant changes are indicated by 752 

letters above boxes, and are only meant for comparison within each phenological stage. Boxes are bound 753 

by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. Group means are displayed 754 

with black squares. (D) Standardized heatmap for out-of-bag (OOB) predictions by a random forest 755 

trained to predict rootstock genotype, (E) the interaction between rootstock genotype by phenology, and 756 

(F) the interaction between rootstock genotype and leaf position.   757 

 758 

Figure 2: The metabolome is influenced by rootstock genotype, phenological stage, and time of sampling. 759 

(A) Percent variation captured in linear models fit to each of the top 20 principal components of the 760 

metabolome (661 measured metabolites). Presence of a cell indicates the model term (top) was significant 761 

for that PC (left, percent variation explained by the PC in parentheses). (B) The distribution of projections 762 

onto PC17, the strongest captured rootstock effect in the metabolome. Boxes are bound by the 25th and 763 

75th percentiles with whiskers extending 1.5 IQR from the box. (C) Projections of all samples into the 764 

first two dimensions of a linear discriminant space trained to maximize variation between rootstock 765 

genotypes.  766 

 767 

Figure 3: Gene expression primarily responds to time of season and circadian correlates 768 

(A) Heatmap showing 500 genes with the highest variance following the filtering of lowly expressed 769 

genes and gene-by-gene variance stabilizing transformations (VST) ordered by example model factors 770 

(below). (B) Percent variation captured in linear models fit to the top 100 Principal Components of the 771 

VST-transformed gene-expression space. Presence of a cell indicates the model term (top) was significant 772 

for that PC (left, percent variation explained by the PC in parentheses). (C) Projections of all samples into 773 

the first two principal component dimensions to show that the largest descriptors of variation are due to 774 

phenology. (D) Projections of all samples into the first two dimensions of the linear discriminant space 775 

trained to maximize variation between the rows of the vineyard, and (E) rootstock genotype.  776 

 777 
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Figure 4: Leaf shape variation is primarily determined by shoot position but changes over the season  778 

(A) Representative shapes showing leaf variation (-3 sd, mean, +3 sd) captured in each of the top 4 779 

principal components of the Generalized Procrustes Analysis-rotated leaf shapes. (B) Projections of all 780 

leaves into the first two dimensions of principal component space colored by the strongest determinant of 781 

variation in the top two PCs. (C) Projections of all leaves into the first two dimensions of a linear 782 

discriminant space trained to maximize variation between phenological stages. (D) Variation in leaf shape 783 

captured on PC2 shown by leaf position and phenological stage. Large points represent the mean of the 784 

group when projected onto PC2. Bars surrounding the mean show one standard deviation. Variation in 785 

each group is shown as a composite leaf trace scaled to a standard size and centered over the mean.  786 

 787 

Figure 5: Vine physiology varies with rootstock and the rootstock by phenology interaction 788 

(A) Percent variation explained by model terms (top) from linear models fit to each of four physiology 789 

traits (left). (B) Variation in leaf transpiration rate for each rootstock genotype over the course of the 790 

season. Boxes are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box. 791 

Significant changes are indicated by letters above boxes, and are only meant for comparison within each 792 

phenological stage. Group means are displayed with black squares. (C) Variation in stomatal conductance 793 

for each rootstock genotype over the course of the season. Boxes are bound by the 25th and 75th 794 

percentiles with whiskers extending 1.5 IQR from the box. Group means are displayed with black 795 

squares. Significant changes are indicated by letters above boxes, and are only meant for comparison 796 

within each phenological stage. 797 

 798 

Figure 6: Phenomic covariation varies over the course of the season 799 

Correlation networks showing patterns of covariation within and between phenotyping modalities. Nodes 800 

of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). Edge 801 

thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color reflects 802 

the direction of the correlation where blue edges indicate positive correlations and orange edges indicate 803 
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negative correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; 804 

purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf shape (sPCs; green). Network 805 

topologies are shown for (A) anthesis, (B) veraison, and (C) harvest.  806 

 807 

Figure Supplement Legends: 808 

Supplemental Figure 1: Experimental Design 809 

(A) Vineyard Map. The vineyard features a randomized block design where ‘Chambourcin’ is grown 810 

ungrafted and grafted to three rootstock genotypes: ‘1103P’, ‘3309C’, and ‘SO4’. Each row is treated 811 

with one of three irrigation treatments: full replacement of ET, reduced-deficit, no replacement of ET. 812 

Each cell of the vineyard contains four replicate grafts. (B) Phenotype sampling scheme across the four 813 

replicates in a cell. For example, the top panel (purple) shows all four vines in the first cell of Row 8 in 814 

Block D. From each vine in that cell, ionomics and leaf shape were sampled. In contrast, the lower panel 815 

shows the first cell in Row 8 in Block A. Here, the first and fourth replicates were sampled for ionomics 816 

and leaf shape while the second and third replicates were sampled for all phenotypes. All vines (288) 817 

were sampled for ionomics and leaf shape. The middle two vines in the front half of the vineyard (72 818 

) were additionally sampled for metabolomics, gene expression, and physiology. (C) Phenotype sample 819 

scheme within a vine (along a shoot). For each plant, young leaves were sampled for ionomics, leaf 820 

shape, and gene expression. Middle leaves were sampled for ionomics, leaf shape, metabolomics, and 821 

physiology. Older leaves were sampled for ionomics and leaf shape. Samples for ionomics and leaf shape 822 

were taken from the same shoot. All other phenotypes were sampled from independent shoots. (D) 823 

Rootstock relatedness. Each of the rootstocks in this trial shares a parent species with a different 824 

rootstock. ‘1103P’ is a cross between Vitis rupestris and V. berlandieri. ‘3309C’ is a cross between V. 825 

rupestris and V. riparia. ‘SO4’ is a cross between V. riparia and V. berlandieri. The parent that is shared 826 

between each pair of rootstocks is highlighted. This figure is partially reproduced from [19] available 827 

under a Creative Common license (CC BY 4.0).  828 

 829 

https://paperpile.com/c/1wVmZp/TQJh
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Supplemental Figure 2: Quality and validity assessment of 3’ RNAseq data. (A) A survey of recently 830 

annotated circadian clock orthologs from the grapevine genome annotation [44]. Orthologs surveyed 831 

included the morning-phased RVE1 and LHY, evening-phased LUX and ELF4, and the nigh-phased 832 

TOC1 (B) A survey of genes with housekeeping domains related to IPR000626 (ubiquitin) and 833 

IPR004000 (actin).  834 

 835 

Supplemental Figure 3:  Patterns of ion covariation change over experimental treatments 836 

Correlation networks showing patterns of ion covariation across phenological stages and shoot position. 837 

Nodes of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). 838 

Edge thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color 839 

reflects the direction of the correlation where blue edges indicate positive correlations and orange edges 840 

indicate negative correlations. 841 

 842 

Supplemental Figure 4: Patterns of variation contributing to gene expression linear discriminants 843 

(A) Projections of leaf gene expression samples into the first two dimensions of a linear discriminant 844 

space trained to maximize variation between phenological stages, rows in the vineyard, and rootstock 845 

genotype. For each LD, the PCs that loaded significantly (>1.96 sd from the mean loading) are listed in 846 

order of loading magnitude. (B) Distribution of the top loading PCs onto LD1 and LD2 for each of the 847 

trained models.  848 

 849 

Supplemental Figure 5: Patterns of variation in leaf shape are subtle 850 

(A) Percent variation captured in linear models fit to each of the top 20 principal components of leaf 851 

morphology. Presence of a cell indicates the model term (top) was significant for that PC (left, percent 852 

variation explained by the PC in parentheses). (B) Composite leaf traces for the main rootstock genotype 853 

effect identified on PC1.  854 

 855 

https://drive.google.com/file/d/1v6bdfBWRiQ6vOrxUxyVT9CijdTkgv-yT/view?usp=sharing
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Supplemental Figure 6: Example correlations within and between phenotyping modalities over the course 856 

of the season 857 

(A) Example correlation showing a strong within-modality correlation between the ionomics gPC1 and 858 

gPC2 at anthesis. Pearson correlations by phenological stage and CIs derived from 10000 random 90% 859 

draws are shown for each panel. Generally speaking, CIs overlapping with 0 were not accepted as 860 

significant. (B) Example correlation showing one of the stronger between-modality correlations between 861 

the gene expression gPC4 and morphology (shape) sPC3 at veraison. (C) Example correlation of a 862 

relationship that is present multiple times over the course of the season between metabolomics mPC3 and 863 

gene expression gPC6 at both veraison and harvest. (D) Example correlation that is dynamic over the 864 

course of the growing season between the ionomics mPC3 and mPC6.  865 

 866 

Supplemental Figure 7: Phenomic covariation varies over rootstock genotype 867 

Correlation networks showing patterns of covariation within and between phenotyping modalities. Nodes 868 

of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). Edge 869 

thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color reflects 870 

the direction of the correlation where blue edges indicate positive correlations and orange edges indicate 871 

negative correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; 872 

purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf shape (sPCs; green). Network 873 

topologies are shown for (A) Ungrafted, (B) ‘1103P’-grafted vines, (C) ‘3309C’-grafted vines, and (D) 874 

‘SO4’-grafted vines.  875 

 876 
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Dr. Nicole Nogoy,  

 

We are happy to submit the revised version of our manuscript (GIGA-D-21-00137R2) with the 

suggested formatting revisions. To the best of our knowledge, we have addressed the requests of 

the editor and reviewers. If we missed anything by accident, please let us know and we will 

respond promptly to meet the journal and reviewer requirements. Thank you for your patience 

and support through this submission process, we are grateful for the guidance. 

 

In this revision, we have addressed the following:  

1. We have added information into the Code Availability Section so that it now meets the 

required format.  

2. All figshare links were added to the references. Additionally, the GigaDB citation was 

added to the references. These are all referenced in the Availability of Data section. We 

also lightly edited the Availability of Data Section to be less redundant.  

3. Abbreviations, Competing Interests, and Funding information has all been added/moved 

to the appropriate sections.  

 

As the analysis scripts that we provided are very specific to the data at hand and are not a 

standalone software package, we have not sought registration with bio.tools or SciCrunch. If this 

is a misunderstanding on our part and needs to be completed, please let us know.  

 

We look forward to hearing back.  

 

Best,  

Zachary N. Harris and Allison J Miller 

 

 

Personal Cover Click here to access/download;Personal
Cover;MV2017Leaves_CoverLetter_structRev.docx

https://www.editorialmanager.com/giga/download.aspx?id=124543&guid=fe922617-7b28-4e46-b3b8-c2424fb8107b&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=124543&guid=fe922617-7b28-4e46-b3b8-c2424fb8107b&scheme=1

