Supplementary materials

Lead Exposure Induces Dysregulation of Constitutive Heterochromatin Hallmarks in Live Cells

Oscar F. Sánchez¹, Li F. Lin¹, Junkai Xie¹, Jennifer L. Freeman^{2,3}, Chongli Yuan^{1,3*}

- 1. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
- 2. School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- 3. Purdue Center of Cancer Research, Purdue University, West Lafayette, IN, 47907

* To whom correspondence should be addressed. Tel: + 1 765 494 5824; Fax: + 1 765 494 0805; Email: <u>cyuan@purdue.edu</u>

Table of Contents

Supporting Tables

Table S1. Amino acid sequence of ^{me}CG, H3K9me3, H3K27me3 and H3K14ac protein sensors conjugated to either mEGFP N- or C- terminus, and negative control mEGFP N – and C-terminus lacking "reading" domain. SV40 NLS (italic), flexible linker (underscored), protein sensor (bold), and mEGFP N – or C-terminus (double underscored). **Table S2.** qPCR primer list for DNA methylation and H3K9me3. **Table S3.** ^{me}CpG and H3K9me3 data were adjusted for unimodal and bimodal distributions using Gauss and a mixture of Gauss models, respectively. **Table S4.** The $\Delta\Delta C_t$, defined as the ΔC_t treated with Pb compared to ΔC_t of untreated

samples, with 95% confidence interval (CI) and expression fold change of selected genes in HEK293T cells after Pb exposure, 100 or 500 ppb, for 48 h. Statistical difference, *P* value (*P*), in the expression fold change against the control, HEK293T cells Pb untreated, was calculated using a one-way ANOVA followed by a Tukey's HSD post-hoc test.

Supporting Figures

Figure S1. Schematic representation of BiFC strategy for recognizing one or two different epigenetic marks closely localized. Probes fused to the split fluorescence protein (*i.e.*, N-terminal or C-terminal of mEGFP) that are close to each other will produce a fluorescence signal distinctive from background and non-interacting molecules remain dark. Homodimeric constructs refer to the same epigenetic probe fused to split mEGFP for sensing one specific epigenetic mark. Heterodimeric constructs refer to two different epigenetic probes fused to split mEGFP for sensing two different epigenetic marks.

Figure S2. No particular features such as foci or fluorescent islands are observed in transfected cells with the BiFC negative control. Transfected cells with BiFC-mEGFP shows diffusive fluorescence while transfected cells with either mEGFP-N or mEGFP-C exhibited auto-fluorescence at high laser power. Scale bar = $5 \mu m$.

Figure S3. Quantitative determination of H3K9me3 levels in HEK293T cells exposed to Pb via immunostaining. A. Representative 2D projected images of HEK293T cells after 24 h exposure for 24 h to Pb, 100 or 500 ppb and immunostained with anti-H3K9me3 antibody. Scale bar = 2 µm. B. Relative H3K9me3 levels to the control, or 0 ppb of Pb, using the integrated intensity per nuclei (IIN) obtained from image analysis. Data is presented as the mean \pm S.D., N=3. C. Probability density distribution of the IIN obtained from single cell image analysis, n≥150. Presented data corresponds to at least 50 cells per biological repeat, N = 3. ** represents *p* < 0.01 and *** represents *p* < 0.001 from a One-way ANOVA followed by Tukey's post hoc test.

Figure S4. Change of H3K9me3 (A and B) and ^{me}CpG (C and D) levels in HEK293T cells exposed to Pb captured by homodimeric probes mCDY-BiFC and dMBD-BiFC, respectively. For both homodimeric probes, the probability distribution from FACS histograms (A and C) reveals two subpopulations. The total population was divided in low fluorescence intensity (LFI) and high fluorescence intensity (HFI) sub-populations. Like the image analysis a drop in the relative H3K9me and ^{me}CpG level was

S-10

S-11

S-12

S-7

S-4

S-6

S-9

obtained from the comparison of the median fluorescence intensity of the total cell population analyzed between Pb-treated groups and the untreated control group (**B** and **D**). *, p < 0.05, $n \ge 3$, one-way ANOVA followed by Tukey's HSD post-hoc test. **Figure S5. Quantitative determination of** ^{me}**CpG levels in HEK293T cells exposed to Pb via immunostaining. A.** Representative 2D projected images of HEK293T cells after 24 h exposure for 24 h to Pb, 100 or 500 ppb and immunostained with anti- ^{me}CpG antibody. Scale bar = 2 µm. **B.** Relative ^{me}CpG levels to the control, or 0 ppb of Pb, using the integrated intensity per nuclei (IIN) obtained from image analysis. Data is presented as the mean ± S.D., N=3. C. Probability density distribution of the IIN obtained from single cell image analysis, n≥150. Presented data corresponds to at least 50 cells per biological repeat, N = 3. ** represents p < 0.01 and *** represents p < 0.001 from a One-way ANOVA followed by Tukey's post hoc test.

Figure S6. Relative H3K9me3 (A) and meCpG (B) levels after 24 h of Pb cessation determined by immunostaining. HEK293T cells were immunostained at the end of a Pb exposure of 24 h followed by a Pb cessation of 24 h. Relative H3K9me3 and meCpG levels were calculated against a control group, or 0 ppb of Pb, after 24 h of culture. Presented data corresponds to at least 1500 cells per biological repeat, N = 3. NS: stands for non-significant difference, *** represents p < 0.001 from a One-way ANOVA followed by Tukey's post hoc test.

S-15

S-14

S-13

Table S1. Amino acid sequence of ^{me}CG, H3K9me3, H3K27me3 and H3K14ac protein sensors conjugated to either N- or C-mEGFP terminus, and negative control N – and C–mEGFP terminus lacking "reading" domain. SV40 NLS (italic), flexible linker (underscored), protein sensor (bold), and mEGFP N – or C–terminus (double underscored).

Name	Amino acid sequence					
	10	20) 30) 40) 50	
meCnG-N-	M <i>pkkkrkv</i> gs g	SGSGSGSGS E	FAEDWLDSPA	LGPGWKRREV	FRKSGATAGR	
mEGEP	60	70) 80) 90	100	
meori	SDTYYQSPTG D	RIRSKVELT	RYLGPAGDLT	lfdfkqgil G	GG QFAEDWLD	
	110	120) 130) 140	150	
	SPALGPGWKR R	EVFRKSGAT	AGRSDTYYQS	PTGDRIRSKV	ELTRYLGPAG	
	160	170	180) 190	200	
	DLTLFDFKQG I	L GGGQFVPV	AT <u>MVSKGEEL</u>	FTGVVPILVE	LDGDVNGHKF	
	210	220) 230) 240	250	
	SVSGEGEGDA T	YGKLTLKFI	CTTGKLPVPW	PTLVTTLTYG	VQCFSRYPDH	
	260	270	280) 290	300	
	MKQHDFFKSA M	IPEGYVQERT	IFFKDDGNYK	TRAEVKFEGD	TLVNRIELKG	
	310	320) 330) 340)	
	<u>IDFKEDGNIL</u> <u>G</u>	HKLEYNYNS	<u>HNVYIMADKQ</u>	<u>KNGIKVNFKI</u>	RHNIE	
	10	20) 30) 40) 50	
meCG-C-	M <i>PKKKRKV</i> GS G	SGSGSGSGS E	FAEDWLDSPA	LGPGWKRREV	FRKSGATAGR	
mEGFP	60	70) 80) 90	100	
	SDTYYQSPTG D	RIRSKVELT	RYLGPAGDLT	lfdfkqgil <u>G</u>	GG QFAEDWLD	
	110	120	130	140	150	
	SPALGPGWKR R	EVFRKSGAT	AGRSDTYYQS	PTGDRIRSKV	ELTRYLGPAG	
	160	170	180) 190	200	
	DLTLFDFKQG I	L <u>GGG</u> QFVPV	AT <u>DKQKNGIK</u>	VNFKIRHNIE	DGSVQLADHY	
	210	220) 230) 240	250	
	<u>QQNTPIGDGP</u> V	'LLPDNHYLS	<u>TQSKLSKDPN</u>	EKRDHMVLLE	FVTAAGITLG	
	MDELYK					
	10	20)30) 40	50	
H3K9me3-	MPKKKRKV <u>GS</u> G	<u>SGSGSGGS</u> E	FASQEFEVEA	IVDKRQDKNG	NTQYLVRWKG	
N-mEGFP	60	/() 80	90		
	YDKQDDTWEP E		VHDFNRRQTE	KQKKLTWTTT	SRIFSNNAGS	
		<u>IG</u> VDSCLPVA	T <u>MVSKGEELF</u>	<u>TGVVPILVEL</u>	DGDVNGHKFS	
	TOO TOOL					
	<u>VSGEGEGDAI</u> <u>I</u> 210	GRUIDAFIC	<u>IIGALPVPWP</u>		<u>QCFSRIPDHM</u> 250	
	ZIU VOUDEERCAM D					
	<u>NUTERSAM</u> <u>P</u>	<u>EGIVQERII</u> 270			TANKIETVĜT	
	200 DEVEDONTIC U	Z/U IVT EVNIVNCU		NCTRUNERTD	, האודב	
	DEREDGNILG I		NVIIMADRQR	NGINVNENIK		
H3K0mo2	10	20) २०) 40	50	
C mECED	MPKKKRKVGS G	SGSGSGSGS F	FASOEFEVEA		NTOYLVRWKG	
C-IIIEGFP	60	70) 80) 90	100	
	YDKODDTWEP E	OHLMNCEKC	VHDFNRROTE	KOKKLTWTTT	SRIFSNNAGS	
		120) 1.30) 140	150	

	GGGGGSQLGS GGVDSCLPVA T <u>DKQKNGIKV</u> <u>NFKIRHNIED</u> <u>GSVQLADHYQ</u>
	<u> </u>
	ONTPIGDGPV LLPDNHYLST OSKLSKDPNE KRDHMVLLEF VTAAGITLGM
	DELYK
	10 20 30 40 50
mECED N	MPKKKRKVGS GSGSGSGGSE LGSGGVDSCL PVATMVSKGE ELFTGVVPIL
IIILGFT N-	<u>60</u> 70 80 90 100
terminus	VELDEDVNCH KESVSGEGEE DATYCKLTIK FICTTCKLEV PWPTLVTTLT
(Control)	1100000000000000000000000000000000000
	<u>IGVOCFSRIP</u> DHMKQHDFFK SAMPEGIVOE <u>KITFFKDDGN</u> <u>IKTRAEVKFE</u>
	160 170 180 190 200
	<u>GDTLVNRIEL KGIDFKEDGN ILGHKLEYNY NSHNVYIMAD KQKNGIKVNF</u>
	KIRHNIE
mEGFP C-	10 20 30 40 50
torminus	M <i>PKKKRKV</i> GS GSGSGSGGSE LSVGVDSCLP VATDKOKNGI KVNFKIRHNI
(Control)	60 70 80 90 100
(Control)	EDGSVOLADH YOONTPIGDG PVLLPDNHYL STOSKLSKDP NEKEDHMVLL
	EFVTAAGITL GMDELIK

Table S2. A list of qPCR primers used to quantify mRNA level of "writer" and "eraser" proteins for DNA methylation and H3K9me3.

Gene Name	Primer Sequence 5' – 3'	Reference
DNMT1	Forward: GGTTTTCCTTCCTCAGCTACTGCGA	(Liao et al., 2015)
	Reverse: CACTGATAGCCCATGCGGACCA	
TET1	Forward: CAGAACCTAAACCACCCGTG	(Yang et al., 2015)
	Reverse: TGCTTCGTAGCGCCATTGTAA	
KMT1A	Forward: GCACAAGTTTGCCTACAA	(Lee et al., 2011)
	Reverse: CCAGGTCAAAGAGGTAGGTG	
KDM4A	Forward: GAAGCCA CGAGCATCCTATGA	(Wang et al., 2017)
	Reverse: GCGGAACTCTCGAACAGTCA	
β-ACTIN	Forward: GGAGTCCTGTGGCATCCACG	(Missiaglia et al., 2010)
-	Reverse: CTAGAAGCATTTGCGGTGGA	

Table S3. ^{me}CpG and H3K9me3 data were adjusted for unimodal and bimodal distributions using Gauss and a mixture of Gauss models, respectively.

Gauss model:
$$y = y_o + \left(\frac{A}{w\sqrt{\frac{\pi}{2}}}\right)e^{\left(-2\left(\frac{x-x_c}{w}\right)^2\right)}$$

A. H3K9me3

[Pb] ppb	Parameters	Peak 1	Peak 2
	Уo	-0.0161±0.099	-0.0161±0.099
0	Xc	21.321±2.511	43.762±9.150
0	W	12.243 ± 1.109	46.537±5.767
	А	1.222 ± 0.092	5.018 ± 1.222
	\mathbb{R}^2	0.8	36
	Уo	-0.0022±0.0026	-0.0022±0.0026
100	Xc	23.198±0.617	45.729±0.360
100	W	20.695±1.423	10.663 ± 0.705
	А	2.619±0.183	1.528 ± 0.125
	\mathbf{R}^2	0.9	98
	Уo	0.0018 ± 0.0056	0.0018 ± 0.0056
500	Xc	20.062 ± 1.740	40.243±1.750
300	W	17.052 ± 3.081	13.562 ± 2.820
	А	2.534 ± 0.498	1.677±0.470
	\mathbb{R}^2	0.9	94

B. ^{me}CpG

[Pb] ppb	Parameters	Peak 1	Peak 2
0	Уo	0.0093±0.0073	0.0093±0.0073
	Xc	60.188 ± 7.008	110.670±8.916
0	W	35.443±9.63	43.365±15.678
	А	3.070 ± 1.378	4.340 ± 1.758
	\mathbb{R}^2	0.8	39
	Уo	0.0270 ± 0.0042	0.0270 ± 0.0042
100	Xc	43.201±1.111	74.558±1.271
100	W	13.433 ± 1.962	15.914 ± 2.846
	А	1.996±0.300	2.133±0.346
	\mathbf{R}^2	0.9	90
	Уo	-0.0019±1.8E-4	-0.0019±1.8E-4
500	X _c	59.941±0.032	113.927±0.084
300	W	33.209±0.076	28.556±0.187
	А	8.023±0.018	2.538±0.017
	\mathbb{R}^2	0.9	97

C. meCpG-N-H3K9me3-C

[Pb] ppb	Parameters	Peak 1	Peak 2
	Уo	-0.0103±0.0134	-0.0103±0.0134
0	Xc	10.620±0.479	31.113±2.269
0	W	9.871±0.952	25.109±7.944
	А	1.579 ± 0.244	1.865 ± 0.906
	\mathbf{R}^2	0.9	94
	Уo	-6.03E-4±0.0055	-6.03E-4±0.0055
100	Xc	6.438±0.508	17.993 ± 2.005
100	W	5.344 ± 1.912	19.874±3.763
	А	0.514 ± 0.304	2.614 ± 0.584
	\mathbb{R}^2	0.9	95
	yo	-0.0032±0.0040	
500	Xc	11.757±0.544	NL A
300	W	19.877±1.403	N.A.
	А	3.616±0.273	
	\mathbb{R}^2	0.9	96

D. H3K9me3-N-^{me}CpG-C

[Pb] ppb	Parameters	Peak 1	Peak 2
	yo	-0.0145±0.0213	-0.0145±0.0213
0	Xc	12.029±0.750	31.196±3.733
0	W	9.533±1.598	24.161±11.454
	А	1.598 ± 0.488	2.189 ± 1.496
	\mathbb{R}^2	0.	.90
	yo	-0.0027±0.0060	-0.0027±0.0060
100	Xc	9.414±0.479	22.316±4.931
100	W	9.216±2.044	20.884 ± 7.395
	А	1.265±0.704	1.955 ± 0.976
	\mathbb{R}^2	0.	.97
	yo	0.0014 ± 0.0055	
500	Xc	9.869±1.237	NI A
500	W	24.100±3.000	N.A.
	А	3.667±0.502	
	\mathbb{R}^2	0.	.94

Table S4. The $\Delta\Delta C_t$, defined as the ΔC_t treated with Pb compared to ΔC_t of untreated samples, with 95% confidence interval (CI) and expression fold change of selected genes in HEK293T cells after Pb exposure, 100 or 500 ppb, for 48 h. Statistical difference, *P* value (*P*), in the expression fold change against the control, HEK293T cells Pb untreated, was calculated using a one-way ANOVA followed by a Tukey's HSD post-hoc test.

Epigenetic Function	Target Gene	[ATZ] ppb	$\Delta\!\Delta C_t \pm SE$	95% CI	Fold Change	Р
5 mC writer	DNMT1	100	-0.16 ± 0.09	-0.260.06	1.12 ± 0.06	0.636
5-mC writer		500	-0.15 ± 0.14	-0.31 - 0.01	1.12 ± 0.11	0.642
5-mC eraser	TET1	100	-0.42 ± 0.06	-0.490.35	1.34 ± 0.05	0.034
		500	-0.64 ± 0.11	-0.760.51	1.57 ± 0.11	0.003
H3K9me3 writer	KMT1A	100	-1.04 ± 0.09	-1.140.94	2.07 ± 0.14	0.005
		500	-0.90 ± 0.13	-1.050.75	1.88 ± 0.17	0.013
H3K9me3 eraser	KDM4A	100	$\textbf{-0.28} \pm 0.18$	-0.480.08	1.23 ± 0.14	0.558
		500	-0.25 ± 0.23	-0.51 - 0.01	1.22 ± 0.21	0.584

A.

(a) BiFC protein sensors mEGFP mEGFP Engineered reader Engineered reader NLS NLS + N terminus domain(s) C terminus domain(s) (b) BiFC negative control mEGFP mEGFP NLS NLS + C terminus N terminus B. Homodimer detection scheme -Split GFP Heterodimer detection scheme Flexible Linker 'Reader" Domain

Figure S1. A. Schematic representation of designed protein sensor. B. Schematic representation of BiFC strategy for recognizing one or two different epigenetic marks closely localized. Probes fused to the split fluorescence protein (*i.e.*, N-terminal or C-terminal of mEGFP) that are close to each other will produce a fluorescence signal distinctive from background and non-interacting molecules remain dark. Homodimeric constructs refer to the same epigenetic probe fused to split mEGFP for sensing one specific epigenetic mark. Heterodimeric constructs refer to two different epigenetic probes fused to split mEGFP for sensing two different epigenetic marks.

Figure S2. No particular features such as foci or fluorescent islands are observed in transfected cells with the BiFC negative control. Transfected cells with BiFC-mEGFP shows diffusive fluorescence while transfected cells with either mEGFP-N or mEGFP-C exhibited auto-fluorescence at high laser power. Scale bar = $5 \mu m$.

Figure S3. Quantitative determination of H3K9me3 levels in HEK293T cells exposed to Pb via immunostaining. A. Representative 2D projected images of HEK293T cells after 24 h exposure to Pb of 0, 100 or 500 ppb and immunostained with anti-H3K9me3 antibody. Scale bar = 2 µm. B. Relative H3K9me3 levels to the control, or 0 ppb of Pb, using the integrated intensity per nuclei (IIN) obtained from image analysis. Data = mean \pm S.E., N=3. C. Probability density distribution of the IIN obtained from single cell image analysis, n ≥ 150. The data presented corresponds to at least 50 cells per biological repeat, N = 3. **: p < 0.01 and ***: p < 0.001 from a One-way ANOVA followed by Tukey's post-hoc test.

Figure S4. Change of H3K9me3 (A and B) and ^{me}CpG (C and D) levels in HEK293T cells exposed to Pb captured by homodimeric H3K9me3 and ^{me}CpG BiFC probes, respectively. For both homodimeric probes, the probability distribution from FACS histograms (A and C) reveals two subpopulations. The cell population consist of a low fluorescence intensity (LFI) and high fluorescence intensity (HFI) sub-population. Like the image analysis a drop in the relative H3K9me and ^{me}CpG level was obtained from the comparison of the median fluorescence intensity of the total cell population analyzed between Pb-treated groups and the untreated control group (**B and D**). *, p < 0.05, $n \ge 3$, one-way ANOVA followed by Tukey's HSD post-hoc test.

Figure S5. Quantitative determination of ^{me}CpG levels in HEK293T cells exposed to Pb via immunostaining. A. Representative 2D projected images of HEK293T cells after 24 h exposure to Pb, 100 or 500 ppb and immunostained with anti- ^{me}CpG antibody. Scale bar = 2 µm. B. Relative ^{me}CpG levels to the control, or 0 ppb of Pb, using the integrated intensity per nuclei (IIN) obtained from image analysis. Data is presented as the mean \pm SEM, N=3. C. Probability density distribution of the IIN obtained from single cell image analysis, n ≥ 150. The data presented corresponds to at least 50 cells per biological repeat, N = 3. **: p < 0.01 and ***: p < 0.001 from a one-way ANOVA followed by Tukey's post-hoc test.

Figure S6. Relative H3K9me3 (A) and ^{me}CpG (B) levels after 24 h of Pb cessation determined by immunostaining. HEK293T cells were immunostained at the end of a Pb exposure of 24 h followed by a Pb cessation of 24 h. Relative H3K9me3 and ^{me}CpG levels were calculated against a control group, or 0 ppb of Pb, after 24 h of culture. Presented data corresponds to at least 1500 cells per biological repeat, N = 3. NS: stands for non-significant difference, *** represents p < 0.001 from a one-way ANOVA followed by Tukey's post hoc test.