Supporting Information

Ultralong-time recovery and low-voltage electroporation for biological cell monitoring enabled by a microsized multi-pulse framework

Denise Lee, Sophia Shuwn-Yi Chan, Nemanja Aksic, Natasa Bajalovic^{*}, Desmond K. Loke^{*}

Denise Lee, Sophia Shuwn-Yi Chan, Nemanja Aksic

Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

Dr. Natasa Bajalovic

Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

Email: natasa_bajalovic@sutd.edu.sg

Dr. Desmond K. Loke

Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

Office of Innovation, Changi General Hospital, Singapore, Singapore

Email: desmond_loke@sutd.edu.sg

Figure S1. Schematic of testing setup for cell electroporation.

Figure S2. Electric field distribution of four cells with no excitation (left panel) and with ~ 10 V rectangular-pulse excitation (right panel). The simulation was performed with a ~ 10 V, ~ 1 µs square-wave single-pulse.

Parameters	Values
Conductivity of ITO	$1.3 \times 10^4 \text{S/cm}$
Conductivity of cell	$4.44 \times 10^{-3} \text{ S/cm}$
Size of gap	0.1 mm
Voltage	10 V

 Table S1. Parameters used for finite element simulations.

Table S2. Raw impedance values of MCF-7 cells over a period of 0 - 120 min with different

	Measured impedance over time (Ω)					
Number of pulses	0 min	5 min	10 min	15 min	60 min	120 min
0	1.33E+03	1.18E+03	1.12E+03	1.04E+03	9.77E+02	7.69E+02
10	1.31E+03	1.17E+03	1.10E+03	1.00E+03	7.78E+02	7.13E+02
50	1.31E+03	1.20E+03	1.17E+03	1.09E+03	9.51E+02	8.13E+02
100	1.31E+03	1.17E+03	1.17E+03	1.14E+03	1.07E+03	1.02E+03
150	1.29E+03	1.26E+03	1.26E+03	1.26E+03	1.26E+03	1.19E+03
200	1.33E+03	1.26E+03	1.31E+03	1.28E+03	1.31E+03	1.30E+03

number of bias-voltage pulses.

Paper	Cell type	Type of electroporation	Pulse number	Pulse width	Gap distance	Field strength	Time of recovery
Int. J. Cancer 121, 675–682 (2007) ⁶⁹	4T1 cells	Cell population	80 at 1 Hz	100 μs	4 mm	600 V/cm, 700 V/cm	No info
Biophys. J. 84, 2709– 2714 (2003) 51	Jurkat cells	Cell population	1	60 ns, 300 ns, 10 ms, and 100 ms	0.33 mm	3–150 kV/cm	No info
<i>PLoS One</i> 7 , e51349 (2012) ⁷⁰	N1-S1 cells	Cell population	1	600 ns – 15 ns or 150 ns rise time	10 mm	0-80 kV/cm	No info
Bioelectroma gnetics 33 , 257–264 (2012) ⁷¹	Human Jurkat T lymphocytes	Cell population	5 for 100 μs and 10 for 30 ns, 4 Hz	100 μs, 30 ns	1 mm	0.5 MV/cm 2.5 MV/cm	No info
<i>Cancer Res.</i> 72 , 1336– 1341 (2012) 72	DC-3F, K- 562, Lewis Lung Carcinoma	Cell population	8 at 1 Hz	99 µs	4 mm	1.2 – 1.4 kV/cm	No info
<i>Int. J. Cancer</i> 121, 675–682 (2007) ⁷³	Jurkat and RPMI 8226 cells	Cell population	200, 300 or 500, 20 Hz	20 ns	1 mm	35 kV/cm	No info
Bioelectroche mistry 57 , 167–172 (2002) ⁷⁴	DC3F cells	Cell population	1, 10, 1000, 2500	100 μs, 30 μs	2 mm	-	No info
<i>Technol.</i> <i>Cancer Res.</i> <i>Treat.</i> 17 , 1– 15 (2018) ⁵⁵	CHO-K1 cells	Cell population	1	10 μs, 100 μs, 1000 μs	2, 4, 6, and 8 mm	170, 250, 320, and 400 kV/m	No info
J. Membr. Biol. 245 , 617–624 (2012) ⁴⁹	C2C12 and HEK 293 cells	Cell population	8	100 μs	0.150 mm	1.2, 1.6, 2 and 2.2 kV/cm	30 min
This work	MCF-7 cells	Cell population	10, 50, 100, 150 and 200 pulses	1 μs	0.1 mm	250, 350 and 500 V/cm	120 min

Table S3. Comparison of state-of-the-art electroporation systems.

Table S4. Raw impedance values of MCF-7 cells when electroporated using 200 pulses with

Bias voltage (V)	Measured impedance (Ω)
0	2.65E+03
2.5	1.62E+03
3.5	2.11E+03
5.0	1.64E+03

different voltage amplitudes.