Supplementary Table S1. Summary of immune checkpoint genes

Genes	Ligand	expressed	function	reference
B7-1 (CD80)	CD28, CTLA-4, PD- L1	dendritic cells, macrophages, B-cells, and other antigen-presenting cells	suppresses dendritic cells, also promotes suppressive effects of regulatory T cel PD-L1 binds to CD80 in cis on APC cells, preventing CD80 from activating T cell via CD28.	
B7-2 (CD86)	CD28, CTLA-4	dendritic cells, macrophages, B-cells, and other antigen-presenting cells	impairs the co-stimulation necessary for proper T-cell activation.	31
HHLA2	TMIGD2	Tumor cells, monocytes	Inhibits the proliferation of T cells	32
VSIR (VISTA)	unknown	T cells and activated Treg, myeloid cells, mature APC	Increase threshold for TCR signaling, induce FOXP3 synthesis	33
PD-L1 (CD274)	PD-1, B7-1 (CD80)	dendritic cells, monocytes, macrophages, mast cells, T cells, B cells, NK cells	inhibits TCR-mediated activation of IL-2 production and T cell proliferation.	34
PDCD1LG2	PD-1	dendritic cells and macrophages	inhibits TCR/BCR-mediated immune cell activation	34
B7-H3 (CD276)	unknown	antigen-presenting cells	inhibits polyclonal or allogeneic CD4 and CD8 T cell activation, proliferation and effector cytokine production	35
VTCN1(B7-H4)	BTLA	tumor cells and tumor-associated macrophages	increase the number, function, and stability of tumor-associated Treg cells.	36
CD48	CD244, CD2	T cells, B cells, NK cells and thymocytes.	depletion of memory cells and inhibition of T cell activation	37
NECTIN2 (CD112, PVRL2)	CD226, PVRIG (CD112R)	antigen-presenting cells	diminishes IFN-γ production and cytotoxicity of NK cells	38
PVR (CD155)	CD226, TIGIT, CD96	antigen-presenting cells	suppresses interferon- $\boldsymbol{\gamma}$ production of NK cells and cytotoxic T cells	39, 40
LGALS9	TIM-3, CLEC7A, CD137, CD40	epithelial and stromal cells	Attenuates T-cell expansion and effectors function	41
HVEM (TNFRSF14)	BTLA, TRAF2, TNFSF14, TRAF5	T cells, B cells and immature dendritic cells	exert inhibitory function and reduce the proliferation ability of antigen-initiating T cells	42
CD200	CD200R	Neurons, epithelial cells, endothelial cells, fibroblasts, myeloid cells, and lymphoid cells	Suppresses memory T-cell and NK cell functions	43, 44
IDO1		cancer cells, stromal cells, and immune cells in the tumor microenvironment	limits T-cell function and engage mechanisms of immune tolerance.	45
CTLA4	B7-1 (CD80), B7-2 (CD86)	Activated T cells, Treg	Competitive inhibition of CD28 co-stimulation (binding of B7-1 and B7-2)	46, 47
PD-L1 (CD274)	PD-1, B7-1 (CD80)	dendritic cells, monocytes, macrophages, mast cells, T cells, B cells, NK cells	inhibits TCR-mediated activation of IL-2 production and T cell proliferation.	34
LAG3	MHC-II, LSECtin	Activated CD4 and CD8 T cells, NK cells, Treg	Competitive binding to MHC-II than CD4, negatively regulates cellular proliferation, activation, and homeostasis of T cells	48
B7-1 (CD80)	CD28, CTLA-4, PD- L1	dendritic cells, macrophages, B-cells, and other antigen-presenting cells	suppresses dendritic cells, also promotes suppressive effects of regulatory T cells. PD-L1 binds to CD80 in cis on APC cells, preventing CD80 from activating T cells via CD28.	29, 30
PDCD1	PD-L1, PD-L2	Activated T cells, NK cells, NKT cells, B cells, macrophages, DCs	Attenuate proximal TCR signaling, attenuate CD28 signaling	49
2B4 (CD244)	CD48	NK cell, T cell, eosinophils, mast cells and dendritic cells.	maintenance of an exhausted phenotype in NK cells and T cells	50
BTLA (CD272)	VTCN1, HVEM	Activated T cells	Binding to HVEM negatively regulates T cell immune response. Recruits SHP-1 and SHP-2 and inhibits signaling cascades.	36
CD160	HVEM	NK cells, T cells	inhibits CD4 T cell proliferation and cytokine production.	51
HAVCR2 (TIM3)	Galectin-9, PtdSer, HMGB1, CEACAM-1	Th1 CD4 and Tc1 CD8, Treg, DC, NK cells, monocytes	Negative regulation of proximal TCR components, inhibits NK cell cytotoxicity	52
CD96	PVR	T cells, NK cells	CD96 is co-expressed with PD-1 and TIGIT, Anti-CD96 therapy enhances suppression of primary tumor growth. Detailed mechanism unknown.	53
TIGIT	PVR (CD155), PVRL2 (CD112)	CD4, CD8 T cell, Treg, NK cells	Competitive inhibition of DNAM1, co-stimulation (binding of PVR), binding of DNAM1 in cis; cell-intrinsic ITIM-negative signaling	54
ADORA2A	Adenosine	T cells, macrophages, DCs and NK cells	suppresses immune cells, protecting tissue from inflammation	55
CD200R	CD200	myeloid cells, CD4+ T cells	Suppresses memory T-cell and NK cell functions	43, 44
PVRIG (CD112R)	NECTIN2	T cells	competes with CD226 to bind to CD112, diminishes IFN-γ production and cytotoxicity of NK cells	38

Characteristics	High miR-4759 (n=154)	Low miR-4759* (n=922)
Age	57.8±12.4	59.4 ± 13.3
Gender, n (%)		
Female	150 (97.4%)	912 (98.9%)
Male	4 (2.6%)	10 (1.1%)
Histological type, n (%)		
Infiltrating ductal carcinoma	89 (57.8%)	676 (73.3%)
Infiltrating lobular carcinoma	56 (36.4%)	144 (15.6%)
Infiltrating carcinoma NOS	0 (0%)	1 (0.1%)
Medullary carcinoma	0 (0%)	6 (0.7%)
Metaplastic carcinoma	0 (0%)	9 (1.0%)
Mucinous carcinoma	2 (1.3%)	15 (1.6%)
Mixed histology	3 (1.9%)	25 (2.7%)
Other specify	3 (1.9%)	42 (4.6%)
Not available (NA)	1 (0.6%)	4 (0.4%)
Pathologic stage, n (%)		
Stage I	30 (19.5%)	150 (16.3%)
Stage II	85 (55.2%)	524 (56.8%)
Stage III	32 (20.8%)	213 (23.1%)
Stage IV	5 (3.2%)	15 (1.6%)
NA	2 (1.3%)	20 (2.2%)
ER status, n (%)		
Positive	133 (86.3%)	658 (71.4%)
Negative	13 (8.4%)	219 (23.8%)
NA	8 (5.2%)	45 (4.9%)
PR status, n (%)		
Positive	122 (79.2%)	563 (61.1%)
Negative	24 (15.6%)	311 (33.7%)
NA	8 (5.2%)	48 (5.2%)
HER2 status, n (%)		
Positive	75 (48.7%)	475 (51.5%)
Negative	7 (4.5%)	48 (5.2%)
NA	72 (46.8%)	399 (43.3%)

Supplementary Table S2. Characteristics of breast cancer patients in the TCGA-BRCA cohort.

*The cutoff value of high and low expression was set as the average.

Supplementary Table S3. Correlation analysis of miR-4759 and immune-related genes in BRCA datasets of TCGA.

gene	spearman_cor ¹	spearman_pv ²	² pearson_cor ³	pearson_pv ⁴	kendall_cor⁵	kendall_pv ⁶	max_cor ⁷	Category
STAT1	-0.114806472	0.000164059	-0.121682179	6.44E-05	-0.090911873	0.000159142	0.121682179	tumor inflammation signature
CD80	-0.105988357	0.000505964	-0.11186659	0.000241002	-0.083798234	0.000499815	0.11186659	immune checkpoint genes
PVR	-0.117316333	0.00011729	-0.079696659	0.009009061	-0.091472599	0.000144904	0.117316333	immune checkpoint genes
CCL7	-0.154358614	3.76E-07	-0.081755925	0.007375037	-0.123183795	4.79E-07	0.154358614	cytokines and cytokine receptors
CCL8	-0.107368512	0.00042649	-0.090292251	0.003073643	-0.084858738	0.000423621	0.107368512	cytokines and cytokine receptors

¹spearman_cor=Spearman's rank correlation coefficient. ²spearman_pv=Spearman's rank correlation coefficient p value. ³pearson_cor=Pearson's rank correlation coefficient. ⁴pearson_pv=pearson's rank correlation coefficient p value. ⁵kendall_cor =kendall's rank correlation coefficient. ⁶kendall_pv=kendall's rank correlation coefficient p value. ⁷max_cor=maximum coefficient.

Supplementary Figure S1. MTT assay was conducted to measure the cell growth in breast cancer cells with miR-NC/miR-4759 transfection or IgG/anti-PD-L1 treatment for (A) 24, (B) 48 and (C) 72 hours.

Supplementary Figure S2. Identification of miR-4759 in murine cell line 4T1. (A) Schematic diagram of the strategy to identify miR-4759 in 4T1 cells. (B) the alignment and original traces of TA cloning samples sequenced by Sanger method. (C) the miR-4759 sequence is identified by the alignment of sequencing data and PCR product sequence.

Groups Treatment negative control PBS (every two days, i.v.) paclitaxel (40 µg per dose, every three days, i.v.) paclitaxel PD-L1 Ab (100 µg per dose, every three days, i.v.) paclitaxel + anti-PD-L1 miR-4759 (40 µg per dose, every two days, i.v.) paclitaxel + miR-4759 Days 10 Tumor 5 15 arowth IVIS IVIS Balb/c mice IVIS 6 weeks old Randomization 4T1-Luc tumor inoculation Β С 7.00E+07 negative control (n=15) Comparison P value paclitaxel (n=15) NC vs. paclitaxel 0.44 6.00E+07 paclitaxel + anti-PD-L1 (n=23) NC vs. paclitaxel + anti-PD-L1 0.61 paclitaxel + miR-4759 (n=14) 5.00E+07 NC vs. paclitaxel + miR-4759 0.12 luminescent intensity paclitaxel vs. paclitaxel + anti-PD-L1 0.92 4.00E+07 paclitaxel vs. paclitaxel + miR-4759 0.03 paclitaxel + anti-PD-L1 vs. paclitaxel + 0.11 3.00E+07 miR-4759 2.00E+07 1.00E+07

Α

0.00E+00

0

2

4

6

8

Time (Days)

10

Supplementary Figure S3. miR-4759 systemic treatment combined with chemotherapy in 4T1-Luc tumorbearing mice. (A) Schematic diagram illustrating the protocol of combination treatment of paclitaxel and miR-4759 in BALB/c mice bearing 4T1-Luc tumors. (B) 4T1-Luc tumor growth in BALB/c mice treated with different treatments. (C) Comparison of tumor growth in 4T1-luc tumor bearing Balb/c mice received with different treatments at Day 14.

14

16

12

	•	
Characteristics	High miR-4759 (n=50)	Low miR-4759* (n=131)
Age	49.1 ± 11.9	46.5±10.5
Gender, n (%)		
Female	50 (100%)	131 (100%)
Male	0 (0.0%)	0 (0.0%)
Pathologic stage, n (%)		
Stage I	3 (6.0%)	9 (6.9%)
Stage II	26 (52.0%)	34 (26.0%)
Stage III	7 (14.0%)	13 (10.0%)
Stage IV	0 (0.0%)	0 (0.0%)
NA	14 (28%)	75 (57.2%)
ER status, n (%)		
Positive	32 (64.0%)	87 (66.4%)
Negative	17 (34.0%)	42 (32.1%)
NA	1 (2.0%)	2 (1.5%)
PR status, n (%)		
Positive	25 (50.0%)	70 (53.4%)
Negative	24 (48.0%)	60 (45.8%)
NA	1 (2.0%)	1 (0.8%)
HER2 status, n (%)		
Positive	32 (64.0%)	58 (44.3%)
Negative	18 (36.0%)	70 (53.4%)
NA	0 (0.0%)	3 (2.3%)
Site, n (%)		
Primary	40 (80.0%)	110 (84.0%)
Metastasis	10 (20.0%)	21 (16.0%)

Supplementary Table S4. Characteristics of breast cancer patients in the TMA cohort.

*The cutoff value of high and low expression was set as the average.