Supplementary Material

Figure 1. Distribution of the 1297 segmented lung nodules; a) proportion of the lung nodules with respect to class labels; b) frequency of the nodules in terms of nodules diameter; c) frequency of the nodules with respect to radiological attributes.

Figure 2. Illustration of the top 20 important features contributed to the prediction. Plots (a) and (b) show the features with significant contribution in the target radiomics and context radiomics, respectively. Plots (c) and (d) represent the important features of hybrid target and hybrid context feature sets, respectively.

Figure 3. 2D visualization of feature space with respect to the class labels after nonlinearly reduced the dimensionalities by PCA and TSNE. Columns (a), (b), and (c) show the scatter plots corresponding to radiomics, deep, and hybrid feature pools. The first row shows the features extracted and learned from target nodule and the second row demonstrates the context nodule based features.

	Radiom	ic Features
Category	# of features	Names
First-order statistics	18	10Percentile, 90Percentile, Energy, Entropy, InterquartileRange, Kurtosis, Maximum, MeanAbsoluteDeviation, Mean,Median, Minimum, Range, RobustMeanAbsoluteDeviation, RootMeanSquared, Skewness, TotalEnergy, Uniformity, Variance
Geometric	14	Elongation, Flatness, LeastAxisLength, MajorAxisLength, Maximum2DDiameterColumn, Maximum2DDiameterRow, Maximum2DDiameterSlice, Maximum3DDiameter, MeshVolume, MinorAxisLength, Sphericity, SurfaceArea, SurfaceVolumeRatio, VoxelVolume
Gray level co-occurrence matrix	24	Autocorrelation, ClusterProminence, ClusterShade, ClusterTendency, Contrast, Correlation, DifferenceAverage, DifferenceEntropy, DifferenceVariance,Id, Idm, Idm, Idn, Imc1, Imc2, InverseVariance, JointAverage, JointEnergy, JointEntropy,MCC, MaximumProbability, SumAverage, SumEntropy, SumSquares
Gray level run-length matrix	16	GrayLevelNonUniformity, GrayLevelNonUniformityNormalized, GrayLevelVariance, HighGrayLevelRunEmphasis, LongRunEmphasis, LongRunHighGrayLevelEmphasis, LongRunLowGrayLevelEmphasis, LowGrayLevelRunEmphasis, RunEntropy, RunLengthNonUniformity, RunLengthNonUniformityNormalized, RunPercentage, RunVariance, ShortRunEmphasis, ShortRunHighGrayLevelEmphasis, ShortRunLowGrayLevelEmphasis
Gray level size-zone matrix	16	GrayLevelNonUniformity, GrayLevelNonUniformityNormalized, GrayLevelVariance, HighGrayLevelZoneEmphasis, LargeAreaEmphasis, LargeAreaHighGrayLevelEmphasis, LargeAreaLowGrayLevelEmphasis, LowGrayLevelZoneEmphasis, SizeZoneNonUniformity, SizeZoneNonUniformityNormalized, SmallAreaEmphasis, SmallAreaHighGrayLevelEmphasis, SmallAreaLowGrayLevelEmphasis, ZoneEntropy, ZonePercentage, ZoneVariance
Gray level dependence matrix	14	DependenceEntropy, DependenceNonUniformity, DependenceNonUniformityNormalized, DependenceVariance, GrayLevelNonUniformity, GrayLevelVariance, HighGrayLevelEmphasis, LargeDependenceEmphasis, LargeDependenceHighGrayLevelEmphasis, LargeDependenceLowGrayLevelEmphasis, LowGrayLevelEmphasis, SmallDependenceEmphasis, SmallDependenceHighGrayLevelEmphasis, SmallDependenceLowGrayLevelEmphasis
Multi-scale Wavelet	704	First-order statistics and textural features were extracted from 8 levels of Wavelet decompositions
Multiscale Laplacian of Gaussian	528	First-order statistics and textural features were extracted from LoG images with Gaussian radius varied from 0.5 to 3 (0.5 increments)

ruble r. Entracted rubleme reatures	Table 1.	Extracted	radiomic	features.
-------------------------------------	----------	-----------	----------	-----------

Table 2. The prediction power of the radiomic features extracted from target nodule images with different learning algorithms and feature selection methods over the unbalanced dataset. For each feature selection algorithm, the highest value is marked in bold.

Loomina		Targ	et Nodule R	adiomic Pro	ediction Per	formance (A	AUC)	
Algorithm				Feature S	Selection			
Algorithm	None	CST	Corr	LASSO	RELIEF	MI	PCA	FFS
Adab	0.779 ± 0.032	0.766 ± 0.033	0.752 ± 0.025	0.746 ± 0.028	0.626 ± 0.015	0.611 ± 0.035	0.755 ± 0.035	0.823 ± 0.016
DT	0.631 ± 0.027	0.620 ± 0.032	0.594 ± 0.032	0.613 ± 0.026	0.604 ± 0.029	0.568 ± 0.015	0.619 ± 0.033	0.677 ± 0.046
RF	$0.792 {\pm} 0.025$	$0.788 {\pm} 0.031$	$0.770 {\pm} 0.025$	0.761 ± 0.027	0.765 ± 0.027	0.592 ± 0.051	$0.772 {\pm} 0.032$	$0.825 {\pm} 0.025$
KNN	0.756 ± 0.020	0.744 ± 0.026	0.725 ± 0.030	0.748 ± 0.030	0.714 ± 0.023	0.600 ± 0.059	0.744 ± 0.028	0.792 ± 0.021
SVM	0.779 ± 0.027	0.778 ± 0.031	0.762 ± 0.032	0.779±0.032	0.763 ± 0.025	0.570 ± 0.041	0.749 ± 0.031	0.771 ± 0.031
LDA	0.577 ± 0.022	0.555 ± 0.018	0.763 ± 0.035	0.773±0.034	0.770±0.038	0.720±0.036	0.762 ± 0.031	0.801 ± 0.020
QDA	0.518 ± 0.020	0.512 ± 0.016	0.714±0.029	0.768 ± 0.035	0.752 ± 0.038	0.626 ± 0.026	0.753 ± 0.029	0.808 ± 0.024
Naive	0.765 ± 0.033	0.765 ± 0.033	0.753 ± 0.030	0.760 ± 0.034	0.761 ± 0.041	0.574 ± 0.032	0.749 ± 0.038	0.795 ± 0.018

Table 3. The prediction power of the radiomic features extracted from context nodule images with different learning algorithms and feature selection methods over the unbalanced dataset. For each feature selection algorithm, the highest value is marked in bold.

T		Conte	xt Nodule R	adiomic Pr	ediction Per	formance (A	AUC)	
Learning		Feature Selection						
Algorithm	None	CST	Corr	LASSO	RELIEF	MI	PCA	FFS
Adab	0.761 ± 0.023	0.657 ± 0.034	0.685 ± 0.026	0.690 ± 0.038	0.574 ± 0.045	0.590 ± 0.055	0.672 ± 0.030	0.772 ± 0.025
DT	0.609 ± 0.039	0.565 ± 0.035	0.555 ± 0.022	0.583 ± 0.039	0.547 ± 0.026	0.558 ± 0.031	0.564 ± 0.020	0.666 ± 0.020
RF	0.777±0.017	$0.680 {\pm} 0.035$	0.713±0.053	0.713±0.057	0.586 ± 0.043	0.595 ± 0.059	$0.711 {\pm} 0.037$	0.794 ± 0.044
KNN	0.746 ± 0.022	0.651 ± 0.020	0.672 ± 0.043	0.672 ± 0.024	0.592 ± 0.022	0.548 ± 0.019	0.661 ± 0.025	0.700 ± 0.027
SVM	0.776 ± 0.016	0.670 ± 0.049	0.683 ± 0.033	0.707 ± 0.050	0.677 ± 0.052	0.549 ± 0.030	0.694 ± 0.049	0.799±0.029
LDA	0.542 ± 0.056	0.657 ± 0.035	0.682 ± 0.052	0.701 ± 0.041	0.722 ± 0.067	0.644±0.033	0.725 ± 0.043	$0.818 {\pm} 0.031$
QDA	0.523 ± 0.027	0.677 ± 0.037	0.674 ± 0.032	0.706 ± 0.039	0.718 ± 0.053	0.499 ± 0.001	0.701 ± 0.035	0.788 ± 0.024
Naive	0.762 ± 0.013	0.673 ± 0.036	0.681 ± 0.021	0.702 ± 0.042	0.670 ± 0.056	0.561 ± 0.057	0.686 ± 0.044	0.798±0.031

Table 4. The prediction power of the joint target and context radiomic features with different learning algorithms and feature selection methods over the unbalanced dataset. For each feature selection algorithm, the highest value is marked in bold.

Loomina		Combi	ned Nodule	Radiomic P	rediction Pe	erformance	(AUC)	
Learning				Feature S	Selection			
Algorithm	None	CST	Corr	LASSO	RELIEF	MI	PCA	FFS
Adab	0.762 ± 0.010	0.748 ± 0.012	0.752 ± 0.024	0.759 ± 0.030	0.482 ± 0.029	0.620 ± 0.034	0.718 ± 0.033	$0.845 {\pm} 0.011$
DT	0.652 ± 0.012	0.616 ± 0.020	0.585 ± 0.012	0.628 ± 0.017	0.480 ± 0.032	0.552 ± 0.025	0.603 ± 0.037	0.687 ± 0.047
RF	0.773±0.022	0.750±0.019	$0.761 {\pm} 0.022$	$0.776 {\pm} 0.020$	$0.568 {\pm} 0.022$	0.662±0.059	0.741±0.038	0.826 ± 0.012
KNN	0.691 ± 0.026	0.680 ± 0.027	0.665 ± 0.028	0.693 ± 0.052	$0.561 {\pm} 0.026$	0.615 ± 0.058	0.690 ± 0.035	0.770 ± 0.022
SVM	0.774 ± 0.015	0.706 ± 0.033	0.672 ± 0.041	0.707 ± 0.035	0.600 ± 0.029	0.618 ± 0.078	0.714 ± 0.035	0.795 ± 0.016
LDA	0.555 ± 0.021	0.720 ± 0.037	0.738 ± 0.013	0.741 ± 0.037	$0.694 {\pm} 0.026$	0.567 ± 0.045	0.734 ± 0.041	0.821 ± 0.016
QDA	0.541 ± 0.027	0.696 ± 0.051	0.693 ± 0.037	0.724 ± 0.040	0.689 ± 0.026	0.507 ± 0.007	0.712 ± 0.044	0.828 ± 0.024
Naive	0.734 ± 0.020	0.692 ± 0.034	0.689 ± 0.012	0.718 ± 0.035	0.639 ± 0.018	0.594 ± 0.042	0.692 ± 0.035	0.814 ± 0.014

Table 5. The 20 most informative radiomic features identified with forward feature selection method integrated within different learning algorithms.

Learning Algorithms	Feature subset		
Adab	original_shape_Flatness, original_firstorder_Energy,original_glcm_ClusterProminence log-sigma-0-5-mm-3D_firstorder_RootMeanSquared, log-sigma-0-5-mm-3D_gldm_HighGrayLevelEmphasis log-sigma-1-mm-3D_firstorder_Range, log-sigma-1-mm-3D_glszm_LargeAreaEmphasis log-sigma-1-5-mm-3D_firstorder_Mean, log-sigma-2-mm-3D_glszm_LargeAreaEmphasis log-sigma-2-5-mm-3D_firstorder_Energy, log-sigma-2-5-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis log-sigma-3-mm-3D_firstorder_TotalEnergy, wavelet-LLH_glrlm_RunLengthNonUniformity wavelet-LHL_firstorder_Energy, wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasis wavelet-HHH_glszm_LargeAreaHighGrayLevelEmphasis, wavelet-LLL_firstorder_Variance, wavelet-LLL_gldm_HighGrayLevelEmphasis wavelet-LLL_firstorder_Variance, wavelet-LLL_gldm_HighGrayLevelEmphasis		
DT	original_glcm_ClusterTendency, original_glrlm_GrayLevelNonUniformity original_gldm_GrayLevelNonUniformity, log-sigma-0-5-mm-3D_glcm_Autocorrelation log-sigma-0-5-mm-3D_glrlm_GrayLevelNonUniformity, log-sigma-1-5-mm-3D_gldm_GrayLevelNonUniformity log-sigma-2-mm-3D_glrlm_GrayLevelNonUniformity, log-sigma-2-mm-3D_gldm_GrayLevelNonUniformity log-sigma-2-mm-3D_glrlm_GrayLevelNonUniformity, log-sigma-2-5-mm-3D_glsm_LargeAreaEmphasis log-sigma-2-5-mm-3D_firstorder_10Percentile, log-sigma-2-5-mm-3D_glcm_ClusterShade wavelet-LHL_glrlm_LongRunHighGrayLevelEmphasis, wavelet-HLL_firstorder_Variance wavelet-HLL_glcm_ClusterProminence, wavelet-HLL_firstorder_Variance wavelet-LLL_firstorder_10Percentile, wavelet-HLL_firstorder_Variance wavelet-LLL_firstorder_10Percentile, wavelet-HLL_firstorder_MeanAbsoluteDeviation wavelet-LLL_glrlm_GrayLevelNonUniformity		
RF	original_firstorder_Energy, log-sigma-1-mm-3D_firstorder_Variance, log-sigma-1-mm-3D_glszm_ZoneVariance log-sigma-2-mm-3D_firstorder_Range, log-sigma-2-mm-3D_firstorder_TotalEnergy log-sigma-2-mm-3D_firstorder_Variance, log-sigma-2-mm-3D_glszm_LargeAreaEmphasis log-sigma-2-5-mm-3D_firstorder_Energy, log-sigma-2-5-mm-3D_firstorder_Range log-sigma-2-5-mm-3D_glrm_GrayLeveNonUniformity log-sigma-2-5-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis log-sigma-2-5-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis log-sigma-3-mm-3D_firstorder_TotalEnergy, log-sigma-3-mm-3D_glcm_ClusterProminence wavelet-LLH_firstorder_TotalEnergy, wavelet-LHL_firstorder_Energy, wavelet-HLL_firstorder_Energy		

	wavelet-LLL_firstorder_Variance, wavelet-LLL_glcm_Autocorrelation
	wavelet-LLL_gIrlm_ShortRunHighGrayLevelEmphasis
	original_shape_Elongation, original_firstorder_Energy, log-sigma-0-5-mm-3D_glszm_LargeAreaEmphasis
	log-sigma-0-5-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis
	log-sigma-1-mm-3D_firstorder_Energy, log-sigma-1-5-mm-3D_glszm_LargeAreaEmphasis
	log-sigma-1-5-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis, log-sigma-2-mm-3D_firstorder_Energy
KNN	log-sigma-3-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis, wavelet-LLH_firstorder_Energy
IXININ	wavelet-LLH_glszm_LargeAreaEmphasis, wavelet-LLH_glszm_LargeAreaLowGrayLevelEmphasis
	wavelet-LLH_glszm_ZoneVariance,wavelet-LHL_firstorder_Energy
	wavelet-LHL_glszm_LargeAreaEmphasis, wavelet-HLL_firstorder_Energy
	wavelet-HLL_glszm_LargeAreaEmphasis, wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasis
	wavelet-HHL_glszm_ZoneVariance
	original_shape_Elongation, original_shape_Flatness,original_shape_LeastAxisLength
	original_shape_MajorAxisLength, original_shape_Maximum2DDiameterColumn
	original_shape_Maximum2DDiameterRow, original_shape_Maximum2DDiameterSlice
	original_shape_Maximum3DDiameter, original_shape_MeshVolume
SYM	original_shape_MinorAxisLength, original_shape_Sphericity,original_shape_SurfaceArea
S V IVI	original_shape_SurfaceVolumeRatio,original_shape_VoxelVolume
	original_firstorder_10Percentile, original_firstorder_90Percentile
	log-sigma-1-5-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis
	wavelet-LHH glszm ZoneVariance, wavelet-HHL glszm ZoneVariance
	wavelet-LLL_glszm_LargeAreaHighGrayLevelEmphasis
	original glrlm GrayLevelNonUniformity, original gldm SmallDependenceLowGrayLevelEmphasis
	log-sigma-0-5-mm-3D firstorder 90Percentile, log-sigma-0-5-mm-3D glszm LargeAreaEmphasis
	log-sigma-1-mm-3D glszm LargeAreaHighGravLeveIEmphasis
	log-sigma-1-mm-3D glszm SmallAreaLowGrayLevelEmphasis
	log-sigma-1-5-mm-3D glszm LargeAreaHighGrayLevelEmphasis
	log-sigma-1-5-mm-3D glzm ZoneVariance log-sigma-2-mm-3D glrm GrayLevelNonUniformity
LDΔ	log-signa-2-mm-3D glzm ZoneVariance log-signa 2-5-mm-3D firstorter Skewness
LDA	log signa 2 min 55 log signa 2 min 55 log signa 2 min 55
	log signal 3 mil-3D_gistan_Lag ov Gravitation
	wavalat LI H alom ClusterShada wavalat HHL alom Imol
	wavelet HHI dozm Small Amel ow Cover and Emphasic available HHI dozm ZanaDarantaga
	wavelet-Infl_gistan_onalarteat.owGayLevel.nphasis, wavelet-Infl_gistan_control etechage
	wavelet III i giszur zonet elemage, wavelet LL grim grad zona zona zona zona zona zona zona zona
	log sigma 0.5 mm 2D firstored r00Dergentile log sigma 1 mm 2D slogm SmallArsel ou/Gravi avalEmphasis
	log-signa-0-3-inin-5D_instorder_overcentie, log-signa-1-inin-5D_gizzin_Smarkea.towordy.tevereniphasis
	log-sigma-1-5-mm-5D_giszm_LargeAreaEmphasis, log-sigma-1-5-mm-5D_giszm_Zone variance
	log-sigma-2-5-mm-3D_gicm_ClusterProminence, log-sigma-2-5-mm-3D_gicm_ClusterSnade
	log-sigma-2-5-mm-5D_glszm_LargeAreaEmphasis, log-sigma-3-mm-3D_glszm_LargeAreaEmphasis
ODA	log-sigma-3-mm-3D_gldm_LowGrayLevelEmphasis, wavelet-LLH_firstorder_variance
4 2	wavelet-LLH_glrIm_GrayLevelNonUniformity, wavelet-LLH_glszm_SizeZoneNonUniformity
	wavelet-LHL_girlm_GrayLevelNonUniformity, wavelet-LHH_gidm_DependenceNonUniformity
	wavelet-HLL_glrlm_LongRunLowGrayLevelEmphasis, wavelet-HLH_glrlm_GrayLevelNonUniformity
	wavelet-HLH_gldm_DependenceNonUniformity, wavelet-HHH_glrlm_RunLengthNonUniformity
	wavelet-HHH_glszm_LargeAreaHighGrayLevelEmphasis, wavelet-LLL_firstorder_90Percentile
	original_shape_Elongation, original_shape_Flatness,original_shape_LeastAxisLength
	original_gldm_GrayLevelNonUniformity, original_gldm_LargeDependenceHighGrayLevelEmphasis
	log-sigma-1-mm-3D_firstorder_Variance, log-sigma-1-5-mm-3D_glcm_ClusterShade
	log-sigma-1-5-mm-3D_glszm_ZoneVariance, log-sigma-2-mm-3D_firstorder_Variance
	log-sigma-2-mm-3D_glszm_ZoneVariance, log-sigma-2-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis
Naivo	log-sigma-2-5-mm-3D_glcm_ClusterProminence, log-sigma-2-5-mm-
inaive	3D_gldm_LargeDependenceHighGrayLevelEmphasis, log-sigma-3-mm-3D_glcm_ClusterProminence
	log-sigma-3-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis
	log-sigma-3-mm-3D_gldm_LargeDependenceHighGrayLevelEmphasis
	wavelet-HLL_gldm_LargeDependenceHighGrayLevelEmphasis, wavelet-HHL_firstorder_Energy
	wavelet-HHH_glszm_LargeAreaHighGrayLevelEmphasis
	wavelet-LLL_firstorder_10Percentile

Table 6. Effect of training size on the prediction power of radiomics features.

Nodulo Imogo	Prediction Perfor	Prediction Performance with Feature Fractioning (AUROC)				
Noulle Illage	25%	50%	70%			
Target nodule	0.827 ± 0.006	0.843 ± 0.008	0.859 ± 0.011			
Context nodule	0.822 ± 0.008	0.847 ± 0.007	0.863±0.016			
Combined	0.825 ± 0.012	0.853±0.014	0.886 ± 0.020			

Nadala Imaga	Prediction Performance with Feature Fractioning (AUROC)						
Nodule Image	25%	50%	70%				
Target nodule	0.841±0.010	0.872 ± 0.006	0.887 ± 0.010				
Context nodule	0.875 ± 0.004	0.906±0.011	0.915 ± 0.006				
Combined	0.883±0.004	0.901 <u>+</u> 0.011	0.920 ± 0.009				

Table 7. Effect of training size on the prediction power of deep features.

 Table 8. Statistical comparison of AUROC curves between radiomic features and deep features for original as well as augmented feature sets. Significant differences were marked in bold.

Footuro Turo	Radiomics vs. Deep Features (<i>p-value</i>)			
reature Type	Imbalanced Sets	Balanced Sets		
Target nodules	0.0021	0.0032		
Context nodules	0.9477	0.2319		
Combined	0.0238	0.0115		

Table 9. Statistical comparison of AUROC curves between target, context, and combined hybrid poos for original as well as augmented feature. Significant differences were marked in bold.

Footure Two	Hybrid Feature Sets (<i>p-value</i>)			
reature Type	Imbalanced Sets	Balanced Sets		
Target vs. Context	0.0359	0.0153		
Target vs. Combined	0.4315	0.1276		
Context vs. Combined	0.0077	0.0005		