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Supplementary Discussion 

Simple model for the interaction potential between crosslinked and uncrosslinked shells  

We first consider the case of crosslinked shells where the shell protrudes significantly into the water 
subphase (see Figure 1a top).(1–3) To simplify our discussion, we approximate the quasi three-
dimensional shape of the soft shell as two wide-based cones (base radius 𝑟𝑟1 2⁄ ) with their bases stuck 
together and their axis of symmetry perpendicular to the liquid interface (Figure S13a,b and Figure 1a 
top). From simple geometry, the angle 𝜓𝜓 is given by sin𝜓𝜓 = 𝑟𝑟0 𝑟𝑟1⁄  while the height of the shell as a 
function of the radial distance 𝜌𝜌 is ℎ(𝜌𝜌) = tan𝜓𝜓�𝑟𝑟1

2
− 𝜌𝜌�. We can approximate the interaction potential 

between two core-shell particles with separation 𝑟𝑟 as (4)  

𝑈𝑈(𝑟𝑟) ≈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)          (1) 

where 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the pressure exerted by the soft shell for typical microgel concentrations found in the 
interacting soft shells and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) is the intersection volume between the two soft shells at 
separation 𝑟𝑟 (see Figure S13a,b). The volume of the volume element corresponding the partial anulus 
shown in Figure S13b is given by  

𝑑𝑑𝑑𝑑 = 8𝜌𝜌𝜌𝜌ℎ(𝜌𝜌)𝑑𝑑𝑑𝑑          (2) 

where 𝜃𝜃 = cos−1(𝑟𝑟 2𝜌𝜌⁄ ) so that the intersection volume is given by 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = 2 tan𝜓𝜓 � cos−1 �
𝑟𝑟

2𝜌𝜌
� 𝜌𝜌 �

𝑟𝑟1
2
− 𝜌𝜌�𝑑𝑑𝑑𝑑

𝑟𝑟1 2⁄

𝑟𝑟 2⁄

.          (3) 

Inserting Eq.(3) into Eq.(1) and defining 𝑈𝑈0 as the interaction potential at core contact we finally have 

𝑈𝑈(𝑟𝑟) = 𝑈𝑈0
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟0)

          (4) 

which is plotted in Figure 1b for the case of 𝑟𝑟1 𝑟𝑟0⁄ = 4 (red curve).   

We next consider the case of uncrosslinked shells where the shells are effectively two dimensional (see 
Figure 1a bottom). To simplify our discussion, we approximate the soft shells as circular disks with radius 
𝑟𝑟1 2⁄  (Figure S13c,d and Figure 1a bottom). In this case, we can approximate the interaction potential 
between two core-shell particles with separation 𝑟𝑟 as (4)  

𝑈𝑈(𝑟𝑟) ≈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)          (5) 

where 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the surface pressure exerted by the soft shell for typical polymeric concentrations found 
in the interacting soft shells and 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) is the intersection area between the two soft shells at 
separation 𝑟𝑟 (see Figure S13c,d). From simple geometry, the intersection area is given by 

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) =
𝑟𝑟12

4
(2𝜃𝜃 − sin 2𝜃𝜃)          (6) 

where 𝜃𝜃 = cos−1 𝑟𝑟
𝑟𝑟1

. Inserting Eq.(6) into Eq.(5) we finally have  

𝑈𝑈(𝑟𝑟) = 𝑈𝑈0
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟0)

          (7) 

which is plotted in Figure 1b for the case of 𝑟𝑟1 𝑟𝑟0⁄ = 4 (blue curve).  

 

Estimation of 𝑼𝑼𝟎𝟎 for experimental core-shell system 

The height of the repulsive shoulder 𝑈𝑈0 can readily be calculated by noting that at the phase boundary 
between the low density hexagonal phase HEXL and the dimer phase (specifically DIM1, see Figure 
S6) the enthalpy per particle of both phases are equal, i.e.,  

𝑈𝑈0 2⁄ + 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷1 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻          (8) 

where 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the coexistence surface pressure and 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷1 are the area per particle in the low 
density hexagonal phase and DIM1 phase respectively. The left hand side of eq.(8) is the enthalpy per 
particle of the chain phase and the 𝑈𝑈0 2⁄  term comes from the fact that there is one soft shell overlap for 
every two particles in this phase. The right hand side of eq.(8) represents the enthalpy per particle in 
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the low density hexagonal phase and there is no energy term as there are no soft shell overlaps in this 
phase. Rearranging eq.(8) we obtain  

𝑈𝑈0 = 2𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷1)          (9) 

From Figure S14a, we see that the area per particle for the HEXL phase is 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = √3
2
𝑟𝑟12. From Figure 

S14b, we see that 𝜃𝜃1 = sin−1(𝑟𝑟0 2𝑟𝑟1⁄ ), 𝜃𝜃2 = (𝜋𝜋 − 2𝜃𝜃1 − 𝜋𝜋 3⁄ ) 2⁄ = 𝜋𝜋 3⁄ − 𝜃𝜃1, the unit cell angle is 𝜙𝜙 =
2𝜃𝜃1 + 𝜃𝜃2 = 𝜋𝜋 3⁄ + 𝜃𝜃1, the unit cell aspect ratio is 𝛾𝛾 = 2𝑟𝑟1 cos𝜃𝜃2 𝑟𝑟1⁄ = 2 cos(𝜋𝜋 3⁄ − 𝜃𝜃1) and the area per 
particle for the DIM1 phase is 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷1 = 𝑟𝑟12𝛾𝛾 sin𝜙𝜙 2⁄ = 𝑟𝑟12 cos(𝜋𝜋 3⁄ − 𝜃𝜃1) sin(𝜋𝜋 3⁄ + 𝜃𝜃1). From Figure 3h, we 
determine the coexistence pressure to be 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 25 mN/m. Inserting this and 𝑟𝑟1 𝑟𝑟0⁄ = 4, 𝑟𝑟0 = 170 nm 
into Eq.(9), we find 𝑈𝑈0 = 7 × 10−15 J, i.e., 𝑈𝑈0 𝑘𝑘𝐵𝐵𝑇𝑇⁄ = 2 × 106, thus justifying our assumption in the main 
paper that 𝑈𝑈0 ≫ 𝑘𝑘𝐵𝐵𝑇𝑇.  

In order to check that this estimate for 𝑈𝑈0 is reasonable, we can also independently calculate 𝑈𝑈0 from 
the work done in compressing two polymeric corona to full overlap which from Eq.(5) is given by 

𝑈𝑈0 ≈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜          (10) 

where 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟0) = 𝑟𝑟12

2
�𝜃𝜃𝑐𝑐 −

𝑟𝑟0
𝑟𝑟1

sin𝜃𝜃𝑐𝑐� is the overlap area of two circular disk-like coronas 

when their corresponding cores are in contact and 𝜃𝜃𝑐𝑐 = cos−1 �𝑟𝑟0
𝑟𝑟1
�. From the plateau pressure in the 

surface pressure-area isotherm in Figure 2k, we estimate 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 28 mN/m. Inserting this into Eq.(10) 
yields 𝑈𝑈0 = 7 × 10−15 J, in excellent agreement with our estimate above based on the coexistence 
pressure. The agreement between the two results confirms that the soft repulsive shoulder in our core-
shell particles indeed arises from the elastic compression of the polymer corona around the 
microspheres.  

 

Comparing our zig-zag chain MEC with that of Fornleitner et al 

In this section, we perform a detailed comparison between the zig-zag chain phase found in our 
minimum energy calculations (i.e., the ZZ phase in Figure 5 or equivalently the ZZ1 phase in Figure 
S6) and the one found by Fornleitner et al for 𝑟𝑟1 𝑟𝑟0⁄ = 5 (i.e., Figure 7 of ref.(5)). Specifically, we first 
calculate the lattice parameters for the ZZ1 phase for a general value of 𝑟𝑟1 𝑟𝑟0⁄ , use these results to 
calculate the bond angle and density for 𝑟𝑟1 𝑟𝑟0⁄ = 5 and compare these with the corresponding values 
for the Fornleitner et al zig-zag chain phase. 

In Figure S15, we sketch a portion of the ZZ1 MEC, where the unit cell is one of the tall red rectangles. 
From this figure, we see that the unit cell angle 𝜙𝜙 = 𝜋𝜋 2⁄ , the unit call aspect ratio 𝛾𝛾 = tan𝜃𝜃1 and the 
coordinate of the second particle in the lattice basis set is 𝛼𝛼 = 0.5, 𝛽𝛽 = 1 − 𝑟𝑟0 sin𝜃𝜃2

𝑟𝑟1 sin𝜃𝜃1
. From the definition 

of the density parameter ℓ, the area per particle is given by √3
2
ℓ2 = 𝑟𝑟12 sin𝜃𝜃1 cos𝜃𝜃1

2
 from which we find ℓ =

𝑟𝑟1 �
sin2𝜃𝜃1
2√3

�
1 2⁄

. In order to find 𝜃𝜃1,𝜃𝜃2 and hence the lattice parameters as a function of 𝑟𝑟1 𝑟𝑟0⁄ , we note 
that from the length of the green line in Figure S15 

2𝑟𝑟0 cos𝜃𝜃2 = 𝑟𝑟1 cos𝜃𝜃1           (11) 

while applying Pythagoras’ theorem to the yellow triangle 

𝑟𝑟12 = (𝑟𝑟1 sin𝜃𝜃1 − sin𝜃𝜃2)2 + (3 cos𝜃𝜃2)2.          (12) 

Solving the simultaneous equations Eqs.(11),(12) yields 

cos𝜃𝜃1 =
𝑟𝑟0
𝑟𝑟1
�

4𝑟𝑟12 − 𝑟𝑟02

𝑟𝑟12 + 6𝑟𝑟02
�
1 2⁄

          (13) 

cos𝜃𝜃2 =
1
2
�

4𝑟𝑟12 − 𝑟𝑟02

𝑟𝑟12 + 6𝑟𝑟02
�
1 2⁄

.          (14) 

Finally, the area fraction is given by 𝜂𝜂 = 𝜋𝜋𝑟𝑟02

2√3ℓ2
. On the other hand, referring to Figure S15, the bond 

vectors 𝒖𝒖1,𝒖𝒖2 are given by 𝒖𝒖1 = 𝒃𝒃 − (𝛼𝛼𝒂𝒂 + 𝛽𝛽𝒃𝒃),𝒖𝒖2 = 𝒂𝒂 + 𝒃𝒃 − (𝛼𝛼𝒂𝒂 + 𝛽𝛽𝒃𝒃) where 𝒂𝒂 = 𝑎𝑎(1,0),𝒃𝒃 =
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𝑎𝑎𝑎𝑎(cos𝜙𝜙 , sin𝜙𝜙) are the lattice vectors and 𝑎𝑎 = ℓ � √3
𝛾𝛾 sin𝜙𝜙

�
1 2⁄

 is a lattice constant. The bond angle 𝛿𝛿 can 
now be readily found from the dot product of 𝒖𝒖1,𝒖𝒖2.  

Substituting Eqs.(13),(14) into the above expressions and setting 𝑟𝑟1 𝑟𝑟0⁄ = 5, we find a bond angle of 
𝛿𝛿 = 127° and an area fraction of 𝜂𝜂 = 0.188 for ZZ1. In contrast, from an image analysis of Figure 7 of 
ref.(5) and an analysis of the slope of the Gibbs free energy vs pressure curve in Figure 8 of ref.(5), 
we estimate a much smaller bond angle of 𝛿𝛿 ≈ 68° and a much larger area fraction of 𝜂𝜂 ≈ 0.70 for the 
zig-zag chain phase of Fornleitner et al. These large differences demonstrate that the zig-zag chain 
phase observed by these authors is not one of our zig-zag chain phases but is instead essentially 
equivalent to the double chain phase DC in Figure 5 or DC1 phase in Figure S6. There is therefore no 
contradiction between the results of ref.(5) and our finding that the zig-zag chain phases are only 
stable for 𝑔𝑔 ≲ 2. 
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Figure S1. Data for silica particles and shell thickness. a) Thermogravimetric analysis (TGA) data 
determining the relative weight loss compared to pure silica particles and thus the amount of organic 
material of core-shell particles at different irradiation times. b) Infrared (IR) spectrum of silica particles 
c) IR spectrum of SiO2@PDMAEMA particles at 80 min irradiation time. d) SEM image of dried pure 
silica particles. e) SEM image of dried iniferter functionalized silica particles. f) SEM image of dried 
SiO2@PDMAEMA particles at 320 min of irradiation. g) Photograph of sedimented pure silica particles. 
h) Photograph of sedimented iniferter functionalized silica particles. Scale bar: 1 µm.  



6 
 

 

 

 

Figure S2. Distribution functions for the different phases and representative complex chain structures 
obtained from slow cool MC simulations (a-c) and compression MC simulations (d-f) of core shell 
particles with 𝑟𝑟1 𝑟𝑟0⁄ = 4,𝑔𝑔 = 1. Note that both zig-zag chains and braided chains could only be obtained 
from the compression MC simulations (right snapshots, e,f) but not the slow cool MC simulations (left 
snapshots, b,c). 
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Figure S3. Large area SEM images of the experimental core-shell system with 80 min irradiation at 
different surface pressures. Scale bar: 2 µm. 
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Figure S4. Large area snapshots of different phases obtained from compression Monte Carlo 
simulations of core-shell particles with 𝑟𝑟1 𝑟𝑟0⁄ = 4,𝑔𝑔 = 1. Note that the snapshot for 𝜂𝜂 = 0.58 was obtained 
from slow cool MC simulations as the area fraction was too high to be reached using compression MC 
simulations.  
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Figure S5. Compression MC simulations of core-shell particles with polydispersity, using 𝑟𝑟1 𝑟𝑟0⁄ = 4,𝑔𝑔 =
1, where 𝑟𝑟1, 𝑟𝑟0 refer to the average shell and core diameter respectively. We assume that the core and 
shell diameters of the simulated particles follow a Gaussian distribution, with the standard deviation in 
the core diameter approximately equal to the uncertainty measured by zeta-sizer method and the 
standard deviation in the shell diameter equal to the uncertainty in the SEM measured nearest-
neighbour distance (see Figure 2h) in the data on the left side. On the right, the same simulations are 
shown with an increased polydispersity of twice the experimental values. a,b) Distribution functions for 
the populations of the different phases for 4 % core and 7 % shell polydispersity (a) and 8 % core and 
14 % shell polydispersity (b); c,d) Snapshots of representative phases for 4 % core and 7 % shell 
polydispersity (c) and 8 % core and 14 % shell polydispersity (d). 
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Figure S6. The full set of minimum energy configurations (MECs) containing two particles per unit cell 
and their corresponding area fractions 𝜂𝜂 for 𝑟𝑟1 𝑟𝑟0⁄ = 4. In order of increasing 𝜂𝜂 these include: low density 
hexagonal phase (HEXL), dimers (DIM1, DIM2, DIM3), non-close packed and close packed wavy chains 
(WCN, WC), straight chains (SC), non-close packed and close packed zig-zag chains (ZZN, ZZ1, ZZ2), 
non-close packed and close packed double chains (DCN1, DCN2, DC1, DC2, DC3), a series of higher 
density compact structures, similar to the structures seen at high compression in Figure S4 and finally 
close-packed hexagonal phase (HEXH). Note that in Figure 5, DIM corresponds to DIM2, ZZ 
corresponds to ZZ1, DCN corresponds to DCN1 and DC corresponds to DC1.  
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Figure S7. Using Monte Carlo (MC) simulations to bracket the value of 𝑔𝑔 in the experimental systems. 
Successive rows show the evolution of phases with increasing area fraction 𝜂𝜂 obtained from slow cools 
MC simulations of core-shell particles with 𝑟𝑟1 𝑟𝑟0⁄ = 4 and g=0.85; 0.9, 1.0. 
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Figure S8. Compression Monte Carlo simulations of core-shell particles interacting via potentials derived 
from previous monomer-resolved simulations on systems similar to our core-shell particles instead of 
the linear ramp potential. (a) Plot of the Gaussian potential from ref. (6) given by 𝑉𝑉𝑔𝑔(𝑟𝑟) = 𝜀𝜀𝑔𝑔𝑒𝑒−�𝑟𝑟 𝜎𝜎𝑔𝑔⁄ �2 and 

the Hertzian potential from ref. (7) given by 𝑉𝑉𝐻𝐻(𝑟𝑟) =
𝜋𝜋𝜋𝜋𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

2 �1−𝑟𝑟 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒⁄ �2

2 ln� 2
1−𝑟𝑟 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒⁄ �

 compared to the linear ramp Jagla 

potential. We choose 𝜎𝜎𝑔𝑔 = 𝑟𝑟1 2⁄ , 𝜎𝜎𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑟𝑟1 and 𝑟𝑟1 𝑟𝑟0⁄ = 4 so that the range of both potentials is 
approximately the same as the Jagla potential, and we choose 𝜀𝜀𝑔𝑔 and 𝑌𝑌 so that the magnitude of both 
potentials is 𝑈𝑈0 at 𝑟𝑟 = 𝑟𝑟0. (b,c) Snapshots of characteristic phases for core-shell particles interacting via 
the Gaussian and Hertzian potentials respectively. None of the characteristic cluster phases are 
observed for these potentials. 



13 
 

 

 

 

Figure S9. Compression Monte Carlo simulations of core-shell particles interacting via a composite 
potential consisting of a Gaussian potential and a linear ramp potential with different relative 
contributions. (a) Plot of the composite potential given by 𝑉𝑉(𝑟𝑟) = 𝑤𝑤𝑉𝑉𝑔𝑔(𝑟𝑟) + (1 − 𝑤𝑤)𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) for various 
values of 𝑤𝑤, where 𝑤𝑤 is the weighting of the Gaussian potential (0 ≤ 𝑤𝑤 ≤ 1), 𝑉𝑉𝑔𝑔(𝑟𝑟) is the Gaussian 
potential given the caption for Figure S8 and 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) is the Jagla potential given by Eq.(1) with 𝑔𝑔 = 1. 
Note that following the experimental data in Figure 2h, we choose 𝜎𝜎𝑔𝑔 𝑟𝑟0⁄ = 1.25 and 𝑟𝑟1 𝑟𝑟0⁄ = 4 so that 
the range of the linear ramp potential (i.e., due to polymer chains along the interface) is approximately 
1.6 times the range of the Gaussian potential (i.e., due to polymer chains swollen into the bulk). (b-e) 
Snapshots of characteristic phases for core-shell particles interacting via the composite potential with 
𝑤𝑤 = 0.05, 0.1, 0.2, 0.5 respectively. Cluster and chain phases are only observed for 𝑤𝑤 = 0.05. 
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Figure S10: Statistical evaluation of the phase transitions in experiment for 20 min and 320 min 
irradiation. a) Fraction of particles in different phases as a function of area fraction for 10 min irradiation. 
b-e) Post-processed SEM images with color-coded cores (d = 170 nm) detected in image analysis for 
20 min irradiation. Scale bar: 2µm. f) Fraction of particles in different phases as a function of area fraction 
for 320 min irradiation. g-j) Post processed SEM images with color-coded cores (d = 170 nm) detected 
in image analysis for 320 min irradiation. Scale bar: 2µm. 
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Figure S11. Statistical evaluation of the phase transitions in simulation for r1/r0-ratios of 2 and 5. a) 
Fraction of particles in different phases as a function of area fraction for r1/r0 = 2.5. b-e) Simulation 
snapshots with color-coded phases detected in image analysis for r1/r0 = 2.5. f) Fraction of particles in 
different phases as a function of area fraction for r1/r0 = 5. g-j) Simulation snapshots with color-coded 
phases detected in image analysis for r1/r0 = 5. 
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Figure S12. Schematic illustration of the effect of attractive capillary forces that can cause aggregation 
for small shell dimensions or larger core particles. The best agreement of the experimental phase 
behaviour with the theoretical Jagla phases is observed if capillary forces are suppressed, either by 
large shell thicknesses or small core sizes.  
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Figure S13. Simplified geometry used to calculate the soft shell repulsion for crosslinked shells (a,b) 
and uncrosslinked shells (c,d). The thick and thin circles represent the core and shell respectively. A 3D 
view of both cases is shown in Figure 1a.   
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Figure S14. Unit cell and geometrical parameters for (a) HEXL phase; (b) DIM1 phase. The thick and 
thin circles represent the core and shell respectively. 
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Figure S15 Geometric parameters for the ZZ1 phase. The solid disks and thin circles represent the core 
and shell respectively. 
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Movie S1: Animated Monte-Carlo compression simulation for particles with  𝑟𝑟1 𝑟𝑟0⁄ = 4. Legend, area 
fraction and scale are visible in the movie.  
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Movie S2: Animated post-processed SEM-images for particles with an irradiation time of 80 min. 
Legend, area fraction and scale are visible in the movie.  

  


