Supplementary figures

Figure S1. SARS-CoV-2 infection has minimal impact on host miRNA levels. A) Relative transcript levels of ACE2 in the three lung cell lines used in the study. B) A bar graph summarizing the sizes of obtained reads from all conditions sequenced. Error bars signify SD.
C) Plots summarizing the fold-change in miRNA levels upon SARS-CoV-2 infection of various cell lines, n = 3. Colored dots denote miRNAs that significantly (p < 0.05) changed (at least two-

fold). Significance was calculated using edgeR. **D**) A heat-map showing fold changes (FC) in miRNA levels after SARS-CoV-2 infection. The data are shown only for miRNAs that significantly changed (at least 2-fold) in any of the conditions. **E**) Northern blot showing that miR-210-3p slightly increases after infection with SARS-CoV-2 infection of Calu-3 cells at MOI 0.05, n = 5. **F**) GO term analyses for miR-210-3p targets suggest that this miRNA regulates responses to various stimuli. ** - p = 0.004, as calculated by Wilcoxon test. **G**) miR-210-3p targets (13) exhibit stronger downregulation than other host mRNAs after SARS-CoV-2 infection in human lungs (data replotted from (14, 15)). **H**) Host miRNAs may escape host shutoff induced by SARS-CoV-2 infection. hpi — hours post infection; MOI — multiplicity of infection; CPM — counts per million; cdf — cumulative distribution function.

3 G U A A C A C U U G C U A C U U

111111

ACUU<mark>G</mark>CU<mark>A</mark>CUU

SARS-CoV-2 Bat coronavirus (RaTG13) Pangolin coronavirus SARS-CoV

CoV2-miR-O7a

G A U A A G A U U G

UUCUU<mark>GG</mark>U<mark>A</mark>CU

CA

ACAUU

UUCUU

UUCCU

CoV2-miR-O7a-3p

GUGAGCUUUAUCA

CUUUA

Figure S2. SARS-CoV-2 expresses a small RNA derived from the ORF7a sequence. A)

Sequencing tracks for all replicates are shown. **B)** Location of CoV2-miR-O7a and CoV2-miR-O7a-3p annotated on an alignment of coronavirus reference sequences. The hairpin base pairs are indicated by arcs above the sequence alignment with the two previously-identified covarying base pairs (21) indicated in green. Alignment and base pairs visualized using the program R-CHI (78).

Figure S3. Western blots confirming anti-Argonaute immunoprecipitation. A) anti-pan Ago

IPs detected with anti-Ago2 antibodies. B) anti-HA IP of FLAG-HA-tagged Ago2 detected with

anti-FLAG antibodies.

miR-16 probe	CGCCAATATTTACGTGCTGCTA
miR-210-3p probe	TCAGCCGCTGTCACACGCACAG
CoV2-miR-O7a	CGAGTGTTATCAGTGCCAAGAA
probe	
CoV2-miR-O7a-3p	TCTTGGTAGTGATAAAGCTCAC
probe	
RdRp_SARSr-F	GTGARATGGTCATGTGTGGCGG
(qPCR primer)	
RdRp_SARSr-R	CARATGTTAAASACACTATTAGCATA
(qPCR primer)	
RdRp_SARSr-P2	FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ
(qPCR probe)	
Synthetic CoV2-	/5Phos/rUrUrCrUrUrGrGrCrArCrUrGrArUrArArCrArCrUrC
miR-O7a	
Passenger strand	/5Phos/rGrUrGrUrUrArUrCrArCrUrGrCrCrUrArGrArUrUrG
for CoV2-miR-O7a	
siContol	rArArGrCrGrArUrArCrCrUrCrGrUrGrUrGrUrGrArUrU
T7_F (amplification)	GAATTTAATACGACTCACTATAGGTTCTCCTCTAAACGAACATGAA
T7_R (amplification)	GAATGTACCTCTAACACACTCTTGGT

WT (template)	GGTTCTCCTCTAAACGAACATGAAAATTATTCTTTCTTGGCACTGATAA
	CACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTACA
m3p (template)	GGTTCTCCTCTAAACGAACATGAAAATTATTCTTTCTTGGCACTGATAA
	CACTCGCTACTTCTCCCTTATAGACTACCAAGAGTGTGTTAGAGGTACA
m5p (template)	GGTTCTCCTCTAAACGAACATGAAAATTATTCTTTAGAACGCACTCTATT
	CACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTACA
ACE2_F	CAAGAGCAAACGGTTGAACAC
ACE2_R	CCAGAGCCTCTCATTGTAGTCT
HSPG2_F	TTGACCAACCCGATGACTTCA
HSPG2_R	CGCCATAGGAGTCCACCTT
BATF2_F	TCAGGAAGCAGCCTTAGCAC
BATF2_R	AGGAGAAGGAGGAGCAGAGG
ZBTB5_F	CCATTTCAGATGTTACACCGGA
ZBTB5_R	TCGCACTATCTTCCTGGTTATCA
BATF1_F	GAGAACTGCGCTTACTAGGCT
BATF1_R	GCCTCAAGTGGCATGAGTCT
PRKCH_F	CGGGATCAACATCCCACACA
PRKCH_R	ACCGCATTTACCCCACAGTT
FAM13A_F	TGCTCATGTACCCCAAGTCAG
FAM13A_R	CTTGTCTCCCATGTCGAAC
SUFU_F	GCCTGAGTGATCTCTATGGTGA
SUFU_R	TCTCTCTTCAGACGAAAGGTCAA

Table 2. Oligonucleotides used in the study