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Supplementary Methods 
Data harmonization and quality control  
Raw genomic data of all samples were obtained from the respective data repository as previously 
described. All FASTQ and BAM files aligned to GRCh37 were realigned to hg19 using Picard tool 
kits (https://github.com/broadinstitute/picard). GATK (version 3.7) DepthOfCoverage [1] was used 
to determine the mean target coverage of germline samples. Germline variants in regions with a 
depth of coverage of fewer than 10 reads and those with a variant allelic fraction (VAF) <30% 
were excluded from all analyses. 
 
Selection of Mendelian gene sets  
In this study, we analyzed disease-causing variants in three gene sets, the germline cancer 
predisposition genes, the American College of Medical Genetics (ACMG) genes, and the Online 
Mendelian Inheritance in Men (OMIM) genes (Table S1). The germline cancer predisposition 
genes were selected based on the level of evidence supporting their Mendelian disease 
susceptibility. This is composed of the well-curated COSMIC germline cancer census gene set 
(v86; http://cancer.sanger.ac.uk/census) and the germline cancer gene set listed in Huang et al. 
2018 [2] and Rahman 2014 [3]. Cancer genes with preliminary evidence of cancer association or 
those with no established inheritance pattern were removed. In total, 118 cancer predisposition 
genes (CPGs) were examined in the original cohort. In addition to cancer predisposition genes, 
we also examined 59 Mendelian high-penetrance genes associated with severe life-threatening 
diseases that have been deemed clinically actionable by the American College of Medical 
Genetics (ACMG). Given the well-established clinical utility, pathogenic variants in the ACMG 
genes are highly recommended to be disclosed to patients, even if discovered incidentally and 
regardless of the patient’s phenotype [4]. Finally, we also expanded our head-to-head comparison 
of the examined methods by performing an exome-wide analysis of the clinically relevant genes 
by evaluating putative loss-of-function (LOF) variants in 5197 Mendelian disease-causing genes 
in the OMIM database (collectively called the OMIM genes) (https://www.omim.org/). In addition 
to these 3 gene sets, we also evaluated the number of validated pathogenic variants detected by 
each method in 12 multi-gene panels clinically used to evaluate cardiovascular disorders, 
ciliopathies, dermatological disorders, hearing loss, hematological disorders, mitochondrial 
disorders, neurological disorders, neuromuscular disorders, pulmonary disorders, renal disorders, 
retinal disorders, and expanded prenatal screening (Table S2). 
 
Functional annotation 
Germline variant annotation of all variants was performed using Variant Effect Predictor (VEP) 
(version 92.0) from Ensembl [5]. Only variants impacting the canonical transcript of the examined 
genes were included.  
 
Germline variant pathogenicity evaluation 
All detected germline variants in cancer-predisposition and ACMG gene sets were classified into 
5 categories; benign, likely benign, variants of unknown significance, likely pathogenic and 
pathogenic using the American College of Medical Genetics and Genomics clinically-oriented 
guidelines [6]. Only germline variants that had sufficient evidence of pathogenicity, from 
established epidemiological or functional studies as defined by the widely adopted ACMG 
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guidelines, to be classified as pathogenic or likely pathogenic variants were included in this study 
(hereafter collectively referred to as pathogenic germline variants). Variants of unknown 
significance were excluded from all analyses (Supplementary Methods). For the expanded OMIM 
gene set (n=5197), we analyzed the performance of each germline variant detection tool by 
examining putative loss-of-function (pLOF) variants in this expanded gene set. Putative LOF 
variants were defined as 1) rare variants with minor allele frequency (MAF) <1% in all reference 
populations in gnomAD that are expected to produce a truncated gene product (i.e. stop codon, 
frameshift, and canonical splice site variants) and 2) rare missense variants (MAF<1%) that are 
annotated as pathogenic or likely pathogenic in the Clinical Variation database (ClinVar) 
(https://www.ncbi.nlm.nih.gov/clinvar/).  
 
Validation of detected germline variants 
All unfiltered pathogenic germline variants in the cancer predisposition and ACMG gene sets were 
validated by examining the Binary Alignment Map (BAM) file using the integrative Genomics 
Viewer (IGV; v2.3.81) [7]. IGV snapshots of pathogenic variants were generated using the IGV 
Snapshot Generator (https://github.com/stevekm/IGV-snapshot-automator). IGV snapshots of 
each called pathogenic variants (in the cancer predisposition gene and ACMG gene sets) were 
independently manually evaluated by 2 computational biologists with expertise in next-generation 
sequencing analysis. Variants were marked as “True Positive” or “False Positive” depending on 
the depth of sequencing, the number of alternative allele reads, the variant allelic fraction (VAF), 
and the presence of artifacts at or around the examined variant site. Variants that were called 
“True Positive” by both examiners were considered real variants. Otherwise, the variant was 
labeled as an artifactual call. In addition to pathogenic variants in the cancer predisposition and 
ACMG genes, 100 randomly selected pLOF variants in the OMIM gene sets, that were filtered 
out by GATK-JG in both computational runs, were validated manually using this method. 
 
Performance metrics 
We evaluated the ability of the standard variant detection method, GATK-JG, to detect clinically 
relevant variants in the cancer predisposition genes, the ACMG genes, and the OMIM genes in 
an original cohort of 239 samples in the presence and absence of additional jointly characterized 
germline samples. For each gene set, we looked at the absolute number of pathogenic germline 
variants classified as “high quality” by each computational run. The combined variant callset in 
the original cohort of 239 samples, generated by running GATK with and without an additional 
100 samples, was considered the “reference” against which detection rates of each computational 
run were calculated.  
 
Evaluation of systematic underdetection of filtered common variants  
To evaluate if the probability of germline variants, filtered out by both computational runs, are truly 
absent in the original cohort (n=239), we used established minor allele frequencies of these 
variants in the gnomAD dataset [8]. For each variant, we used a two-sided binomial test where 
the null hypothesis is that the observed frequency in our dataset (zero for filtered our variants) is 
not significantly different from the smallest MAF of this variant across all continental sub-
populations in gnomAD. Bonferroni correction was carried out for the total number of evaluated 
variants (n=284,515).  
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Adjusted GATK pipeline parameters for the additive analysis effect 
To evaluate if there was an additive effect of detecting high quality germline variants when 
concurrently analyzing additional samples, we performed computational runs for the following 
cohorts: the original breast cancer cohort (n = 239), the original cohort plus 50 additional breast 
cancer samples, and the original cohort plus 100 additional breast cancer samples. Each cohort 
was analyzed using the Genome Analysis Toolkit (GATK) pipeline detailed in the Supplementary 
Notes with modifications to the VariantRecalibration (INDELs) step. The modified code is as 
follows:  
 
java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[original_cohort].gvcf.gz \ 
-tranche 100.0 \ 
-tranche 99.9 -tranche 99.9 -tranche 99.8 -tranche 99.7 -tranche 99.6 -
tranche 99.5 \ 
-tranche 99.4 -tranche 99.3 -tranche 99.2 -tranche 99.1 -tranche 99.0 \ 
-tranche 98.9 -tranche 98.8 -tranche 98.6 -tranche 98.5 -tranche 98.3 \ 
-tranche 98.2 -tranche 98.1 -tranche 98.0 -tranche 97.9 -tranche 97.8 \ 
-tranche 97.5 -tranche 97.0 -tranche 95.0 -tranche 90.0 \ 
-resource:mills,known=false,training=true,truth=true,prior=12.0 
~/Mills_and_1000G_gold_standard.indels.b37.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
~/dbsnp_138.b37.vcf \ 
-an FS -an QD -an MQRankSum -an ReadPosRankSum -an InbreedingCoeff \ 
-mode INDEL \ 
--maxGaussians 4 \ 
-recalFile ~/[original_cohort].INDEL.recal \ 
-tranchesFile ~/[original_cohort].INDEL.tranches \ 
-rscriptFile ~/[original_cohort].INDEL.R \ 
-nt 4 
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Supplementary Figures 
Figure S1: Mean depth of sequencing coverage for the testicular cancer (A-D) and 
breast cancer cohorts (E-H). 
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Figure S2: Minor allele frequency of the detected germline variants in the testicular and 
breast cancer cohorts 
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Figure S3: Pathogenic variants that went undetected by one or both computational runs 
in the clinically actionable cancer-predisposition and ACMG genes. IGV snapshots of the 
variants shown in Figures 3C-F and Figures 4B and C using GATK HaplotypeCaller “-
bamout” option to view the tool’s assembled haplotypes and locally aligned reads. 
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Figure S4: Three-way comparison of germline variant detection in the breast cancer 
cohort when concurrently analyzed with no additional samples, 50 additional samples, 
and 100 additional samples. A; Although more germline variants were detected by GATK-
JG in the breast cancer cohort (n=239) when 100 additional germline exomes were 
concurrently characterized, this pattern was not seen when only 50 samples were used 
for joint genotyping. Indeed, germline variant analysis of the breast cancer cohort along 
with 50 additional germline exomes resulted in a substantially lower detection rate for 
germline variants. B & C; This underdetection of germline variants was not confined to 
particular genes or genomic regions.  
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Supplementary Notes: 
 
1- Genome Analysis Toolkit (GATK) pipeline 
Genome Analysis Toolkit (GATK) HaplotypeCaller (HC) pipeline (version 3.7) was used to call 
germline variants according to the GATK Best Practices. The following steps and commands were 
followed: 
 
FIRST COMPUTATIONAL RUN (ORIGINAL COHORT ONLY): 

1. HaplotypeCaller (HC): this command is run on each sample individually:  
java -Xmx12G  -jar ~/GenomeAnalysisTK.jar \ 
-nct 8 \ 
-T HaplotypeCaller \ 
-R  ~/Homo_sapiens_assembly19.fasta \ 
-I  [single.sample.bam] \ 
--dbsnp ~/dbsnp_138.hg19.vcf.gz \ 
--genotyping_mode DISCOVERY \ 
-variant_index_type LINEAR \ 
-variant_index_parameter 128000 \ 
--emitRefConfidence GVCF \ 
--max_alternate_alleles 6 \ 
--minPruning 2 \ 
-stand_call_conf 30.0 \ 
-A DepthPerSampleHC \ 
-A StrandBiasBySample \ 
-A Coverage \ 
-A StrandBiasBySample \ 
-o ~/[single.sample].gvcf.gz 
 

2. Joint genotyping (GenotypeGVCFs): this step combines all the gVCFs that were 
generated by the previous step to do cohort-wide genotyping: 
java -jar -Xmx32G ~/GenomeAnalysisTK.jar \ 
-R ~/Homo_sapiens_assembly19.fasta -T GenotypeGVCFs \ 
--variant ~/[list_of_original_cohort_gVCFs].list  \ 
-L  ~/[capture_region].interval_list \ 
-o  ~/[original_cohort].gvcf.gz 
 

3. VariantRecalibration (SNPs): 
java -Xmx24G  -jar ~/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[original_cohort].gvcf.gz \ 
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 
~/hapmap_3.3.b37.vcf \ 
-resource:omni,known=false,training=true,truth=true,prior=12.0 
~/1000G_omni2.5.b37.vcf \ 
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-resource:1000G,known=false,training=true,truth=false,prior=10.0 
~/1000G_phase1.snps.high_confidence.b37.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
~/dbsnp_138.b37.vcf \ 
-an QD -an MQRankSum -an ReadPosRankSum -an FS -an MQ -an 
InbreedingCoeff \ 
-mode SNP \ 
-tranche 100.0 \ 
-tranche 99.9 -tranche 99.9 -tranche 99.8 -tranche 99.7 -tranche 
99.6 -tranche 99.5 \ 
-tranche 99.4 -tranche 99.3 -tranche 99.2 -tranche 99.1 -tranche 
99.0 \ 
-tranche 98.9 -tranche 98.8 -tranche 98.6 -tranche 98.5 -tranche 
98.3 \ 
-tranche 98.2 -tranche 98.1 -tranche 98.0 -tranche 97.9 -tranche 
97.8 \ 
-tranche 97.5 -tranche 97.0 -tranche 95.0 -tranche 90.0 \ 
-recalFile ~/[original_cohort].SNP.recal \ 
-tranchesFile ~/[original_cohort].SNP.tranches \ 
-rscriptFile ~/[original_cohort].SNP.R \ 
-nt 4 
 

4. Apply recalibration (SNP): 
java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T ApplyRecalibration \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[original_cohort].gvcf.gz \ 
--ts_filter_level 99.5 \ 
-tranchesFile ~/[original_cohort].SNP.tranches \ 
-recalFile ~/[original_cohort].SNP.recal \ 
-mode SNP \ 
-o ~/[original_cohort].snp.recalibrated.vcf.gz 

 
5. VariantRecalibration (INDELs): 

java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[original_cohort].gvcf.gz \ 
-tranche 100.0 \ 
-tranche 99.9 -tranche 99.9 -tranche 99.8 -tranche 99.7 -tranche 
99.6 -tranche 99.5 \ 
-tranche 99.4 -tranche 99.3 -tranche 99.2 -tranche 99.1 -tranche 
99.0 \ 
-tranche 98.9 -tranche 98.8 -tranche 98.6 -tranche 98.5 -tranche 
98.3 \ 
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-tranche 98.2 -tranche 98.1 -tranche 98.0 -tranche 97.9 -tranche 
97.8 \ 
-tranche 97.5 -tranche 97.0 -tranche 95.0 -tranche 90.0 \ 
-resource:mills,known=false,training=true,truth=true,prior=12.0 
~/Mills_and_1000G_gold_standard.indels.b37.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
~/dbsnp_138.b37.vcf \ 
-an FS -an QD -an ReadPosRankSum -an InbreedingCoeff \ 
-mode INDEL \ 
-recalFile ~/[original_cohort].INDEL.recal \ 
-tranchesFile ~/[original_cohort].INDEL.tranches \ 
-rscriptFile ~/[original_cohort].INDEL.R \ 
-nt 4 
 

6. Apply recalibration (INDELS): 
java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T ApplyRecalibration \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~[original_cohort].snp.recalibrated.vcf.gz \ 
--ts_filter_level 95.0 \ 
-tranchesFile ~/[cancer_cohort].INDEL.tranches \ 
-recalFile ~/[cancer_cohort].INDEL.recal \ 
-mode INDEL \ 
-o ~/[original_cohort].snp.recalibrated.indel.recalibrated.vcf.gz 

 
 
SECOND COMPUTATIONAL RUN (ORIGINAL COHORT AND THE ADDITIONAL COHORT): 
differences are highlighted in red. 

1. HaplotypeCaller (HC): this command is run on each sample individually:  
java -Xmx12G  -jar ~/GenomeAnalysisTK.jar \ 
-nct 8 \ 
-T HaplotypeCaller \ 
-R  ~/Homo_sapiens_assembly19.fasta \ 
-I  [single.sample.bam] \ 
--dbsnp ~/dbsnp_138.hg19.vcf.gz \ 
--genotyping_mode DISCOVERY \ 
-variant_index_type LINEAR \ 
-variant_index_parameter 128000 \ 
--emitRefConfidence GVCF \ 
--max_alternate_alleles 6 \ 
--minPruning 2 \ 
-stand_call_conf 30.0 \ 
-A DepthPerSampleHC \ 
-A StrandBiasBySample \ 
-A Coverage \ 
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-A StrandBiasBySample \ 
-o ~/[single.sample].gvcf.gz 
 

2. Joint genotyping (GenotypeGVCFs): this step combines all the gVCFs that were 
generated by the previous step to do cohort-wide genotyping: 
java -jar -Xmx32G ~/GenomeAnalysisTK.jar \ 
-R ~/Homo_sapiens_assembly19.fasta -T GenotypeGVCFs \ 
--variant ~/[list_of_cancer_patients_gVCFs].list  \ 
--variant ~/[original_and_add’l_cohorts].list  \ 
-L  ~/[capture_region].interval_list \ 
-o  ~/[original_and_add’l_cohorts].gvcf.gz 
 

3. VariantRecalibration (SNPs): 
java -Xmx24G  -jar ~/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[original_and_add’l_cohorts].gvcf.gz \ 
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 
~/hapmap_3.3.b37.vcf \ 
-resource:omni,known=false,training=true,truth=true,prior=12.0 
~/1000G_omni2.5.b37.vcf \ 
-resource:1000G,known=false,training=true,truth=false,prior=10.0 
~/1000G_phase1.snps.high_confidence.b37.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
~/dbsnp_138.b37.vcf \ 
-an QD -an MQRankSum -an ReadPosRankSum -an FS -an MQ -an 
InbreedingCoeff \ 
-mode SNP \ 
-tranche 100.0 \ 
-tranche 99.9 -tranche 99.9 -tranche 99.8 -tranche 99.7 -tranche 
99.6 -tranche 99.5 \ 
-tranche 99.4 -tranche 99.3 -tranche 99.2 -tranche 99.1 -tranche 
99.0 \ 
-tranche 98.9 -tranche 98.8 -tranche 98.6 -tranche 98.5 -tranche 
98.3 \ 
-tranche 98.2 -tranche 98.1 -tranche 98.0 -tranche 97.9 -tranche 
97.8 \ 
-tranche 97.5 -tranche 97.0 -tranche 95.0 -tranche 90.0 \ 
-recalFile ~/[original_and_add’l_cohorts].SNP.recal \ 
-tranchesFile ~/[original_and_add’l_cohorts].SNP.tranches \ 
-rscriptFile ~/[original_and_add’l_cohorts].SNP.R \ 
-nt 4 
 

4. Apply recalibration (SNP): 
java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
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-T ApplyRecalibration \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[cancer_cohort].gvcf.gz \ 
--ts_filter_level 99.5 \ 
-tranchesFile ~/[original_and_add’l_cohorts].SNP.tranches \ 
-recalFile ~/[original_and_add’l_cohorts].SNP.recal \ 
-mode SNP \ 
-o ~/[original_and_add’l_cohorts].snp.recalibrated.vcf.gz 

 
5. VariantRecalibration (INDELs): 

java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T VariantRecalibrator \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~/[original_and_add’l_cohorts].gvcf.gz \ 
-tranche 100.0 \ 
-tranche 99.9 -tranche 99.9 -tranche 99.8 -tranche 99.7 -tranche 
99.6 -tranche 99.5 \ 
-tranche 99.4 -tranche 99.3 -tranche 99.2 -tranche 99.1 -tranche 
99.0 \ 
-tranche 98.9 -tranche 98.8 -tranche 98.6 -tranche 98.5 -tranche 
98.3 \ 
-tranche 98.2 -tranche 98.1 -tranche 98.0 -tranche 97.9 -tranche 
97.8 \ 
-tranche 97.5 -tranche 97.0 -tranche 95.0 -tranche 90.0 \ 
-resource:mills,known=false,training=true,truth=true,prior=12.0 
~/Mills_and_1000G_gold_standard.indels.b37.vcf \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
~/dbsnp_138.b37.vcf \ 
-an FS -an QD -an ReadPosRankSum -an InbreedingCoeff \ 
-mode INDEL \ 
-recalFile ~/[original_and_add’l_cohorts].INDEL.recal \ 
-tranchesFile ~/[original_and_add’l_cohorts].INDEL.tranches \ 
-rscriptFile ~/[original_and_add’l_cohorts].INDEL.R \ 
-nt 4 
 

6. Apply recalibration (INDELS): 
java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T ApplyRecalibration \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-input ~[original_and_add’l_cohorts].snp.recalibrated.vcf.gz \ 
--ts_filter_level 95.0 \ 
-tranchesFile ~/[original_and_add’l_cohorts].INDEL.tranches \ 
-recalFile ~/[original_and_add’l_cohorts].INDEL.recal \ 
-mode INDEL \ 
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-o 
~/[original_and_add’l_cohorts].snp.recalibrated.indel.recalibrated.vcf
.gz 

 
7. Filtering out all germline variants discovered in the cancer-free cohort (ESP): 

java -jar -Xmx24G ~/GenomeAnalysisTK.jar \ 
-T SelectVariants \ 
-R ~/Homo_sapiens_assembly19.fasta \ 
-V 
~/[original_and_add’l_cohorts].snp.recalibrated.indel.recalibrate
d.vcf.gz 
-o /[original_cohort].snp.recalibrated.indel.recalibrated.vcf.gz 
\ 
-xl_sf ~/[list_of_add’l_gVCFs].list \ 
--excludeNonVariants \ 
--removeUnusedAlternates  
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