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Figure S1. The impact of streptozotocin treatment on host physiology and microbiome composition without
additional. Related to Figure 1.
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Fasting blood glucose of individual mice before STZ injection (Day 0) and on 2 days intervals for up to 14
days post-injection. The Day 14 time-point is representative of the final day of experiments described in
Figure 7.

Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. Data represent
averaged concentrations + SEM for cytokines whose concentration falls between 0 and 23 pg/mL.
Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. Data represent
averaged concentrations + SEM for cytokines whose concentration falls between 12 and 160 pg/mL.
Plasma concentration of IFN-y in STZ-treated and control mice +/- AMX 4 days after STZ injection.
Pathological assessment of fixed, H&E-stained colon sections 3 days after STZ injection.

Cecal lipocalin-2 concentrations. Data represent average concentrations + SEM.

Alpha diversity as measured by the Shannon diversity index for STZ-treated and control animals 3 days
post-injection. Data represent average + SEM.

Phylum-level taxonomic composition of the cecal microbiome 3 days post STZ-injection. Data represent
average abundance + SEM.

Phylum-level taxonomic composition of the cecal microbiome in STZ and control mice +/- AMX
treatment. Data represent average abundance + SEM.

For A: N =5 or 6 per group

For B & C: N =4 per group; *, P <0.05; unpaired T-test with Welch’s correction

For D & F: N =4 or 5 per group; *, P <0.05; Welch’s ANOVA with Dunnet T3 test for multiple hypothesis testing
For E: N =4 to 6 per group. Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3:
moderate affecting mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 75%).

For G -I: N =3 to 5 per group; ; *, P <0.05; unpaired T-test with Welch’s correction
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Figure S2. STZ-induced hyperglycemia modifies both the cecal metabolome and metatranscriptome. Related
to Figure 2.

A. Volcano plot of the cecal metabolome in STZ-treated mice relative to normoglycemic controls. Purple
points represent differentially abundant metabolite features. Metabolites of interest are labeled. See Table
S1 for full results (N = 6 per group, 2 technical replicates per mouse)

B. KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ-treated mice
compared to controls. Colors indicate whether the metabolites contributing to pathway scoring were
enriched (red) or depleted (blue) in STZ-treated animals compared to controls. See Table S3 for full results.

C. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster.
Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is
between STZ-treated mice and controls. See Table S2 for full results.

D. Differentially abundant CAZyme transcripts in STZ-treated mice. Data represent logz fold change relative
to controls + SEM. See Table S4 for full results.

E. Differentially abundant B. thetaiotaomicron transcripts after STZ treatment. Data represent logz fold
change versus controls + SEM See Table S5 for full results.

For A — C: N = 6 per group, 2 technical replicates per sample

For D & E : N =4 per group

For A, D, & E: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05

For B: Significance = unpaired T-test p value < 0.05

For C: *, P <0.05; ** P <0.01; *** P <0.001, **** P <(0.0001; unpaired T-test with Welch’s correction
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Figure S3. Streptozotocin impacts taxonomic composition after Amoxicillin treatment. Related to Figure 3.

A.

FEOTHOOW

J.
For all p

Average relative abundance of species from A after the removal of reads assigned to B. thetaiotaomicron.
Data are represented as mean + SEM for each species

Average relative abundance of reads assigned to Clostridiales bacterium CCNA10.
Average relative abundance of reads assigned to Muribaculum intestinale.

Average relative abundance of reads assigned to Acutalibacter muris.

Average relative abundance of reads assigned to Flavonifractor plautii.

Average relative abundance of reads assigned to Hungateiclostrideaceae bacterium KB18.
Average relative abundance of reads assigned to Intestinimonas butyriciproducens.
Average relative abundance of reads assigned to Oscillibacter species PEA192.

Average relative abundance of reads assigned to Oscillibacter valericigenes

Average relative abundance of reads assigned to Akkermansia muciniphila.

anels: N =5 to 8 per group

For panels B-J, (*, P <0.05; **, P <0.01; *** P <0.001; **** P <0.0001, Welch’s ANOVA with Dunnet T3 test
for multiple hypothesis testing).



A SEED Transcript Abundance after Amoxicillin (Control)

Transposable elements
Fatty acid metabolic cluster
Methylamine utilization
Protein secretion system, Type Ill
Phages, Pr T P Plasmids
Protein tr ion across cy i
Hypothetical in Lysine biosynthetic cluster
Protein folding
Organic sulfur assimilation
Capsular and extracellular polysacchrides
Coenzyme A
Transcription
Inorganic sulfur assimilation
Protein biosynthesis
Aminosugars
Regulation and Cell signaling
Arginine; urea cycle, polyamines
Bacteriocins, rib. lly sy i i ial i
Dormancy and Sporulation
CO2 fixation
Bacteriophage structural proteins
Spore DNA protection

6 5 -4

B SEED Transcript Abundance after Amoxicillin (STZ)

n
VI

d
s
F
y
TS

Fatty acid metabolic cluster

hylamine utilization

Transposable elements

thi\jqes,_Propha es, Transposable elements, Plasmids
rotein translocation across cytoplasmic membrane
Hypothetical in Lysine biosynthetic cluster

Protein secretion system, Type

TidD Cluster

Monosaccharides

Quinone cofactors

Sulfatases and sulfatase modlklln factor 1

DN etabolism

Periplasmic Stress

minosugars

Plant-Prokaryote DOE pro*ect

Transcription

Fatty acids

Coenzyme A

DNA recombination

Glycoside hydrolases

ONA replication

Protein biosynthesis

. Detoxification

Regulation and Cell signaling

Phosphorus Metabolism

Alanine, serine, and glycine

L i 'DNA uptake, competence
Bacteriocins, ribosomally synthesized antibacterial peptides
.. . Stress Response

Cell Division and Cell Cycle

X . Tetrapyrroles

Programmed Cell Death and Toxin-antitoxin System:
ron acquisition and metabolism

D-tyrosyl-tRNA(Tyr) deacylase (EC 3.1.-.-) cluster
Quorum sensing and biofilm formation
Proline and 4—hydroxYproI|ne
Triacylglycerols

ranslation

Cell Division

Dormancy and Sporulation

proth_etlcal .associated with Rec|

Fatty Acids, Lipids, and Isoprenoids

. . Cold shock

. Metabolism of Aromatic Compounds
Anaerobic degradation of aromatic compounds
o O2 fixation

Recombination related cluster

.. Selenoproteins

. Flagellar moitility in Prokaryota
Bacteriophage integration/excision/lysogen
Nucleotidyl-phosphate metabolic cluster
Sugar Phosphotransferase Systems, P]
Bacter[ophasge structural proteins

pore DNA protection

32101 2 3 45

Log, Fold Change

-5-4-3-2-101234567
Log, Fold Change

Total Feature Abundance

C

3.5x10°
3.0x108
2.5x108
2.0%108

1.5x108
1.2x108
1.0x108
8.0x107
6.0%107
4.0x107
2.0%107

0.0

D

LCMS/MS Annotated Features from Top50 Random Forest Hits

Bile Acids Carnitines Peptides AMX
e} | il 4 b==—={ [] Control AMX (-)
w 1 Control AMX (+)

|

kK|
Kk

COD DO PO I O DDA PN DO D P DD D
AR AFFIHE TN S P GG VP

GNPS Cluster ID

LCMS/MS Annotated Features from Top50 Random Forest Hits

Peptides
Bile Acids Carnitines

8x10 [ it 4 dkkk [ STZAMX (-)

i":g * * I Bl STZAMX (+)
° x — —
% 2x108 L &
2 1.6x108 iy
3
2 *ok
e
2 1.0x108
5 sk okokok
& i —— e—
"_3 AMX Riboflavin
L2 5.0x107 *

— Akdkdk  dkdkk

376 380 916 378 909 883 886 622 640 38

1020 699

GNPS Cluster ID



Figure S4: Streptozotocin modifies the metatranscriptomic and metabolomic responses of the gut microbiome
to amoxicillin. Related to Figures 4 & 5.

A. Differentially abundant level 2 SEED Subsystem transcripts in normoglycemic control mice after AMX
treatment. Data represent logz fold change relative to vehicle controls + SEM. See Table S7 for full results.

B. Differentially abundant level 2 SEED Subsystem transcripts in STZ-treated mice after AMX treatment.
Data represent logz fold change relative to vehicle controls + SEM. See Table S7 for full results.

C. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster.
Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is
between AMX-treated mice and vehicle-treated mice for normoglycemic controls. See Table S2 for full
results.

D. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster.
Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is
between AMX-treated mice and vehicle-treated mice for STZ-treated mice. See Table S2 for full results.

For A & B: N =4 per group; Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05

For C & D: N = 6 per group, 2 technical replicates per sample; (*, P < 0.05; ** P <0.01; *** P <0.001, ****

P <0.0001); unpaired T-test with Welch’s correction
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Figure S5: STZ and amoxicillin dual treatment worsens outcomes during Salmonella enterica infection.
Related to Figure 7.
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Salmonella enterica Typhimurium colony forming units (CFU) per gram of hepatic and splenic tissue in
control AMX(+/-), and hyperglycemic AMX(+/-) mice over the course of infection with an inoculum of
1x10° cells. Data represent mean CFU + SEM.

Pathological assessment of fixed, H&E-stained colon sections 4 days after infection with an inoculum of
1x10°3 cells.

Plasma concentration of IL-1a in STZ-treated and control mice +/- AMX

Plasma concentration of IL-6 in STZ-treated and control mice +/- AMX

Plasma concentration of GM-CSF in STZ-treated and control mice +/- AMX

Plasma concentration of IL-12p70 in STZ-treated and control mice +/- AMX

Plasma concentration of IFN-f§ in STZ-treated and control mice +/- AMX

Plasma concentration of IL-10in STZ-treated and control mice +/- AMX

Plasma concentration of IL-17A in STZ-treated and control mice +/- AMX

Principal Coordinates Analysis of Bray-Curtis Dissimilarity between uninfected controls and mice infected
with an inoculum of 1x10? cells 24 hours post-infection.

Alpha diversity as measured by the Shannon diversity index of fecal 16S rRNA reads. Data represent
average score + SEM during infection time course after dosage with an inoculum of 1x10° cells.
Phylum-level taxonomic composition of the fecal microbiome during infection time course after dosage
with an inoculum of 1x103 cells. Data represent average abundance + SEM.

For A - I: N=4 to 7 per group

For J: N =3 to 10 per group

For B: Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3: moderate affecting
mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 75%).

For C—1I: (*, P <0.05; ** P <0.01; *** P <0.001; **** P <0.0001; Welch’s ANOVA with Dunnet T3 test for
multiple hypothesis testing).

For J: (*, P <0.05; **, P <0.01; *** P <0.001; permutational ANOVA)

For K: (*, P <0.05; **, P <0.01; ¥** P <0.001; **** P <0.0001; Welch’s ANOVA with Dunnet T3 test for
multiple hypothesis testing)



