Cell Reports, Volume 37

Supplemental information

Streptozotocin-induced hyperglycemia alters

the cecal metabolome and exacerbates

antibiotic-induced dysbiosis

Jenna I. Wurster, Rachel L. Peterson, Claire E. Brown, Swathi Penumutchu, Douglas V. Guzior, Kerri Neugebauer, William H. Sano, Manu M. Sebastian, Robert A. Quinn, and Peter Belenky

Figure S1. The impact of streptozotocin treatment on host physiology and microbiome composition without additional. Related to Figure 1.

- A. Fasting blood glucose of individual mice before STZ injection (Day 0) and on 2 days intervals for up to 14 days post-injection. The Day 14 time-point is representative of the final day of experiments described in Figure 7.
- B. Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. Data represent averaged concentrations <u>+</u> SEM for cytokines whose concentration falls between 0 and 23 pg/mL.
- C. Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. Data represent averaged concentrations + SEM for cytokines whose concentration falls between 12 and 160 pg/mL.
- D. Plasma concentration of IFN- γ in STZ-treated and control mice +/- AMX 4 days after STZ injection.
- E. Pathological assessment of fixed, H&E-stained colon sections 3 days after STZ injection.
- F. Cecal lipocalin-2 concentrations. Data represent average concentrations \pm SEM.
- G. Alpha diversity as measured by the Shannon diversity index for STZ-treated and control animals 3 days post-injection. Data represent average <u>+</u> SEM.
- H. Phylum-level taxonomic composition of the cecal microbiome 3 days post STZ-injection. Data represent average abundance + SEM.
- I. Phylum-level taxonomic composition of the cecal microbiome in STZ and control mice +/- AMX treatment. Data represent average abundance + SEM.

For A: N = 5 or 6 per group

For B & C: N = 4 per group; *, P < 0.05; unpaired T-test with Welch's correction

For D & F: N = 4 or 5 per group; *, P < 0.05; Welch's ANOVA with Dunnet T3 test for multiple hypothesis testing For E: N = 4 to 6 per group. Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3: moderate affecting mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 75%). For G -I: N = 3 to 5 per group; ; *, P < 0.05; unpaired T-test with Welch's correction

Figure S2. STZ-induced hyperglycemia modifies both the cecal metabolome and metatranscriptome. Related to Figure 2.

- A. Volcano plot of the cecal metabolome in STZ-treated mice relative to normoglycemic controls. Purple points represent differentially abundant metabolite features. Metabolites of interest are labeled. See Table S1 for full results (N = 6 per group, 2 technical replicates per mouse)
- B. KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ-treated mice compared to controls. Colors indicate whether the metabolites contributing to pathway scoring were enriched (red) or depleted (blue) in STZ-treated animals compared to controls. See Table S3 for full results.
- C. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster. Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is between STZ-treated mice and controls. See Table S2 for full results.
- D. Differentially abundant CAZyme transcripts in STZ-treated mice. Data represent log_2 fold change relative to controls \pm SEM. See Table S4 for full results.
- E. Differentially abundant *B. thetaiotaomicron* transcripts after STZ treatment. Data represent log_2 fold change versus controls <u>+</u> SEM See Table S5 for full results.
- For A C: N = 6 per group, 2 technical replicates per sample
- For D & E : N = 4 per group

For A, D, & E: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05

For B: Significance = unpaired T-test p value < 0.05

For C: *, P < 0.05; **, P < 0.01; ***, P < 0.001, **** P < 0.0001; unpaired T-test with Welch's correction

Figure S3. Streptozotocin impacts taxonomic composition after Amoxicillin treatment. Related to Figure 3.

- A. Average relative abundance of species from A after the removal of reads assigned to *B. thetaiotaomicron*. Data are represented as mean \pm SEM for each species
- B. Average relative abundance of reads assigned to *Clostridiales* bacterium CCNA10.
- C. Average relative abundance of reads assigned to Muribaculum intestinale.
- D. Average relative abundance of reads assigned to Acutalibacter muris.
- E. Average relative abundance of reads assigned to *Flavonifractor plautii*.
- F. Average relative abundance of reads assigned to *Hungateiclostrideaceae* bacterium KB18.
- G. Average relative abundance of reads assigned to Intestinimonas butyriciproducens.
- H. Average relative abundance of reads assigned to Oscillibacter species PEA192.
- I. Average relative abundance of reads assigned to Oscillibacter valericigenes
- J. Average relative abundance of reads assigned to Akkermansia muciniphila.

For all panels: N = 5 to 8 per group

For panels B-J, (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.001; Welch's ANOVA with Dunnet T3 test for multiple hypothesis testing).

С

A SEED Transcript Abundance after Amoxicillin (Control)

Figure S4: Streptozotocin modifies the metatranscriptomic and metabolomic responses of the gut microbiome to amoxicillin. Related to Figures 4 & 5.

- A. Differentially abundant level 2 SEED Subsystem transcripts in normoglycemic control mice after AMX treatment. Data represent log₂ fold change relative to vehicle controls <u>+</u> SEM. See Table S7 for full results.
- B. Differentially abundant level 2 SEED Subsystem transcripts in STZ-treated mice after AMX treatment. Data represent log₂ fold change relative to vehicle controls <u>+</u> SEM. See Table S7 for full results.
- C. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster. Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is between AMX-treated mice and vehicle-treated mice for normoglycemic controls. See Table S2 for full results.
- D. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster. Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is between AMX-treated mice and vehicle-treated mice for STZ-treated mice. See Table S2 for full results.

For A & B: N = 4 per group; Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 For C & D: N = 6 per group, 2 technical replicates per sample; (*, P < 0.05; **, P < 0.01; ***, P < 0.001, ****

P < 0.0001); unpaired T-test with Welch's correction

Figure S5: STZ and amoxicillin dual treatment worsens outcomes during *Salmonella enterica* infection. Related to Figure 7.

- A. Salmonella enterica Typhimurium colony forming units (CFU) per gram of hepatic and splenic tissue in control AMX(+/-), and hyperglycemic AMX(+/-) mice over the course of infection with an inoculum of 1x10³ cells. Data represent mean CFU <u>+</u> SEM.
- B. Pathological assessment of fixed, H&E-stained colon sections 4 days after infection with an inoculum of 1x10³ cells.
- C. Plasma concentration of IL-1a in STZ-treated and control mice +/- AMX
- D. Plasma concentration of IL-6 in STZ-treated and control mice +/- AMX
- E. Plasma concentration of GM-CSF in STZ-treated and control mice +/- AMX
- F. Plasma concentration of IL-12p70 in STZ-treated and control mice +/- AMX
- G. Plasma concentration of IFN- β in STZ-treated and control mice +/- AMX
- H. Plasma concentration of IL-10in STZ-treated and control mice +/- AMX
- I. Plasma concentration of IL-17A in STZ-treated and control mice +/- AMX
- J. Principal Coordinates Analysis of Bray-Curtis Dissimilarity between uninfected controls and mice infected with an inoculum of 1x10³ cells 24 hours post-infection.
- K. Alpha diversity as measured by the Shannon diversity index of fecal 16S rRNA reads. Data represent average score \pm SEM during infection time course after dosage with an inoculum of 1x10³ cells.
- L. Phylum-level taxonomic composition of the fecal microbiome during infection time course after dosage with an inoculum of 1×10^3 cells. Data represent average abundance \pm SEM.
- For A I: N = 4 to 7 per group
- For J: N = 3 to 10 per group

For B: Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3: moderate affecting mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 75%).

For C – I: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch's ANOVA with Dunnet T3 test for multiple hypothesis testing).

For J: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; permutational ANOVA)

For K: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch's ANOVA with Dunnet T3 test for multiple hypothesis testing)