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SUMMARY
It is well established in the microbiome field that antibiotic (ATB) use and metabolic disease both impact the
structure and function of the gutmicrobiome. But how host andmicrobial metabolism interacts with ATB sus-
ceptibility to affect the resulting dysbiosis remains poorly understood. In a streptozotocin-induced model of
hyperglycemia (HG), we use a combined metagenomic, metatranscriptomic, and metabolomic approach to
profile changes in microbiome taxonomic composition, transcriptional activity, and metabolite abundance
both pre- and post-ATB challenge. We find that HG impacts both microbiome structure and metabolism, ul-
timately increasing susceptibility to amoxicillin. HG exacerbates drug-induced dysbiosis and increases both
phosphotransferase system activity and energy catabolism compared to controls. Finally, HG and ATB co-
treatment increases pathogen susceptibility and reduces survival in a Salmonella enterica infection model.
Our data demonstrate that induced HG is sufficient to modify the cecal metabolite pool, worsen the severity
of ATB dysbiosis, and decrease colonization resistance.
INTRODUCTION

Exposure to antibiotics (ATB) is one of the most significant

known microbiome perturbations. Drug-induced dysbiosis oc-

curs within hours of treatment, and is characterized by loss of

total bacterial load, taxonomic diversity, and significant tran-

scriptional changes (Cabral et al., 2019, 2020; Dethlefsen and

Relman, 2011). This alters the intestinal metabolome, placing

the host at higher risk for opportunistic infection (Bäumler and

Sperandio, 2016; Buffie et al., 2012; Chang et al., 2008; Croswell

et al., 2009; Kaiko and Stappenbeck, 2014; Rivera-Chávez et al.,

2016; Theriot et al., 2016; Theriot and Young, 2015). Given the

severity of ATBs on the microbiome and the near ubiquitous

use of these drugs, it is critical to mechanistically understand

ATB activity within the gut and the external factors that dictate

susceptibility.

Microbial metabolism is a key determinant of ATB susceptibil-

ity (Stokes et al., 2019). Microbes performing ATP-generating

processes like aerobic respiration have increased bactericidal

drug sensitivity and experience a lethal respiratory burst during

in vitro exposure (Adolfsen and Brynildsen, 2015; Belenky

et al., 2015; Dwyer et al., 2014; Kohanski et al., 2007; Lam
C
This is an open access article under the CC BY-N
et al., 2020; Lobritz et al., 2015). Meanwhile, fermentation, diver-

sion away from the tricarboxylic acid (TCA) cycle, or overall

reduction in metabolism can confer drug tolerance in some spe-

cies (Ahn et al., 2016; Conlon et al., 2016; Lobritz et al., 2015;

Meylan et al., 2017; Thomas et al., 2013). We demonstrated

that this trend holds true within the context of the microbiome,

where ATB exposure dramatically reduces community meta-

bolic capacity (Cabral et al., 2019). Surviving taxa like Bacter-

oides thetaiotaomicron (B. theta) can endure amoxicillin (AMX)

exposure by transcriptional adaptation that prioritizes fiber

fermentation over the utilization of simple sugars (Cabral et al.,

2019). When considering mechanisms of in vivo susceptibility,

it is important to consider the role of local nutrients on microbial

metabolism. Host diet is likely one of the largest factors shaping

the cecal nutrient pool; dietary changes can perturb microbiome

diversity and activity, and thus may impact ATB susceptibility

(Albenberg and Wu, 2014; Bisanz et al., 2019; Collins et al.,

2018; David et al., 2014; Ley, 2014; Smits et al., 2017; Tanes

et al., 2021). Congruently, we showed that added dietary glucose

potentiates AMX toxicity within the cecum, reducing total bacte-

rial load and B. theta‘s drug tolerance (Cabral et al., 2019). This

also occurs with the bactericidal drug ciprofloxacin, where
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consumption of a high fat/sugar diet increases mucus and sim-

ple sugar breakdown, increases gut glycolysis, and enhances

microbiome drug susceptibility (Cabral et al., 2020). This sug-

gests that the local nutrient pool can drive the severity of ATB ac-

tivity in the microbiome by altering the metabolic rate of resident

taxa.

Diet composition is not the sole determinant of nutrient avail-

ability within the gut. Normally, a small fraction of digestedmate-

rial reaches the dense communities of the lower gastrointestinal

tract (GI). The composition of dietary molecules presented to the

lower GI is impacted by multiple small intestinal (SI) digestive

gradients and pancreaticobiliary secretions (Reese and Car-

mody, 2019; Shin et al., 2019). For example, the host controls

colonic sugar concentrations via a combination of SI transporter

expression, gastric emptying rate, and enteroendocrine function

(Chen et al., 2016; Holst et al., 2016; Koepsell, 2020; Ussar et al.,

2017). Disruptions of host metabolism, like digestive and meta-

bolic disorders, are correlated with microbial dysbiosis, high-

lighting the connection between host and microbial systems in

the GI (Brestoff and Artis, 2013; Westfall et al., 2015; Qin et al.,

2012; Sabatino et al., 2017). For example, dysglycemic patients

demonstrate bacterial infiltration of the intestinal epithelial mu-

cosa, suggesting that dysglycemia triggers an inflammatory in-

testinal phenotype by prompting microbial breakdown of mucus

glycoproteins (Chassaing et al., 2017).

Host hyperglycemia (HG) may cause potent modulation of the

lower GI metabolic environment. Currently, the relationship be-

tween dysregulated host metabolism, the local metabolite envi-

ronment of the GI, and the severity of ATB-induced dysbiosis

remains relatively understudied. We hypothesize that changes

in host metabolism associated with induced HG will alter the

microbiota-accessible cecal metabolite pool and place the com-

munity in a metabolically permissive state that increases sus-

ceptibility to bactericidal ATBs. To test this, we used the sin-

gle-dose streptozotocin (STZ) model rather than a diet- or

genetically based model of glucose disruption (Deeds et al.,

2011; Kobayashi et al., 2000; Wang and Liao, 2011). STZ is a

glucosamine nitrosourea compound that induces HG via the se-

lective and irreversible destruction of insulin-producing pancre-

atic b cells (Eleazu et al., 2013;Wu and Yan, 2015). STZ is quickly

metabolized by the host, with a serum clearance time of about

15 minutes (Lee et al., 2010; Eleazu et al., 2013). Thus, STZ pro-

vides the benefit of rapidly-induced and irreversible HG without

potentially microbiome-confounding factors like diet and host

genetics (Deeds et al., 2011; Xiao et al., 2017; Yang et al.,

2019). Existing research on glucose dysregulation and themicro-

biome is impacted by the use of dietary metabolic animal models

like the high-fat diet-induced diabetes mouse (Fujisaka et al.,

2016). In this study we used a multi-omic approach that profiled

the taxonomic composition, transcriptional activity, and small

molecule repertoire of the cecum to characterize the impact of

STZ-induced HG on microbiome disruption during AMX treat-

ment. We then profiled the effects of HG on AMX-induced path-

ogen susceptibility by challengingmicewithSalmonella enterica.

Our data show that HG is sufficient to modulate the cecal metab-

olite pool, and that these changes both potentiate ATB-induced

dysbiosis and worsen the dysbiosis-related complication of

opportunistic infection.
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RESULTS

To examine the combined effect of HG and ATBs onmicrobiome

structure and function, male C57BL/6J mice were given an intra-

peritoneal injection of either STZ or a sham (control). Mice were

checked for HG 48 hours post injection and were then random-

ized. The next day, animals were given AMX or a sham (vehicle)

for 24 hours ad libitum, which is sufficient to profile acute micro-

biome ATB responses without encountering significant extinc-

tion events (Cabral et al., 2020; 2019). After AMX delivery, mice

were sacrificed and cecal contents were harvested for multi-

omic profiling (Figure 1A).

STZ caused significant and sustainedHG (Figures 1B andS1A).

Because STZ’s mechanism of action involves organ cytotoxicity,

wequantifiedplasmacytokines toevaluatesystemic inflammation

(Eleazu et al., 2013). We found no statistical difference in cytokine

levels prior to ATB administration (Figures S1B and S1C), but did

observe an increase in IFN-g 24 hours later (Figure S1D) that is

likely correlated with the early stages of disease progression in

this model (Hanafusa and Imagawa, 2008). We then assessed GI

histopathology and quantifiedGI lipocalin-2 to profile for localized

inflammation. STZ-treated mice had minimal to no edema or

inflammationcompared tocontrols (FigureS1E), andnodifference

in lipocalin-2 levels (Figure S1F). Together, these data showmini-

mal differences in inflammatory phenotypesbetweenSTZ-treated

and control mice during the time frame used in this study.

We profiled the effect of HG and AMX onmicrobiome structure

using 16S rRNA sequencing. STZ treatment did not reduce di-

versity (Figure S1G) but did alter community composition when

combined with AMX (Figures 1C, S1H, and S1I). Because 16S

sequencing has limited phylogenetic resolution, we conducted

the remaining analyses with whole metagenomic sequencing

(WMGS) (Cabral et al., 2020; 2019; Clooney et al., 2016; Poretsky

et al., 2014; Ranjan et al., 2016). WMGS showed that STZ alone

did not impact a-diversity but bolstered the reduction in diversity

and taxonomic shifts caused by AMX (Figures 1D and 1E).

Since STZ ablates insulin synthesis, and insulin helps regulate

intestinal glucose absorption (Ussar et al., 2017), we asked if GI-

localized glucose levels were altered by HG. However, we found

that STZ-treated mice and controls had no significant difference

in cecal glucose levels (Figure 1F). Therefore, glucose availability

cannot explain the changes in community composition between

experimental groups. Thus, we profiled the metabolome using

quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and

liquid chromatography tandem mass spectrometry (LC-MS/

MS) (Tables S1 and S2). By assessing cecal metabolite diversity

using Principal Coordinates Analysis, we found that both STZ

andAMX significantly impacted the cecalmetabolome’s compo-

sition (Figure 2A). We hypothesized that STZ-induced HG estab-

lishes a transcriptional andmetabolic environment that alters the

microbiome’s response to ATB exposure. To confirm this, we as-

sessed the impact of HG on microbiome function both pre- and

post-AMX treatment.

HG significantly modifies the cecal metabolome and
metatranscriptome
Unlike dietary models, STZ was associated with a single signifi-

cant phylum-level change: the expansion of Verrucomicrobia



Figure 1. STZ modifies glucose levels and impacts microbiome composition after AMX

(A) Experimental design of this study. Figure was created with BioRender.com (BioRender, Toronto, Canada).

(B) Murine fasting blood glucose pre-STZ injection (Day 0), 2, and 5 days postinjection. Data represent mean ± SEM.

(C) Bray-Curtis Dissimilarity between 16S rRNA amplicons.

(D) a-diversity of WMGS experimental groups. Data represent mean ± SEM.

(E) Relative abundance of the five most-prominent bacterial phyla. Data represent mean ± SEM.

(F) Quantification of cecal glucose concentrations from experimental groups. Data represent mean ± SEM.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. For (B): n = 44 control and 44 STZ-treated samples per time point; for (C): n = 8 to 11 per group; permutational

ANOVA; for (D–F): N = 5 to 8 per group; Welch’s ANOVA with Dunnet T3 test for multiple hypothesis testing.
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(Figures 1E and S1I) (Xiao et al., 2017; Yang et al., 2019). We

confirmed that this expansion was driven by Akkermansia muci-

niphila using differential abundance testing (Figure 2B) (Love

et al., 2014). A. muciniphila forages carbon from epithelial mu-

cins and has been proposed to breakdown gut lining integrity,

which may contribute to cecal metabolome divergence via im-

balances in the local carbon pool that impact microbial cross-

feeding networks (Belzer et al., 2017; Cabral et al., 2020; Desai

et al., 2016; Zhang et al., 2019). For example, we observed a

reduction in the abundance of Blautia sp. YL58 after STZ (Fig-

ure 2B). Members of this genus are short-chain fatty acid

(SCFA) producers that use mucin as a carbon substrate (Bui

et al., 2019; Oliphant and Allen-Vercoe, 2019; Rey et al., 2010;

Vacca et al., 2020). A. muciniphila may outcompete Blautia for

mucins in the HG host, which would disrupt any syntropic reac-

tions Blautia participates in. Because the pre-AMX community

structure was similar between hosts, we felt that the disparity

in ATB susceptibility was due to modified metabolic and tran-

scriptional activity, rather than baseline taxonomic differences.

We paired differential abundance testing (Love et al., 2014) and

pathway-level projection (Aggio et al., 2010) of our Q-TOF-MS
data with random forest classification of LC-MS/MS features to

identify distinctive metabolites between HG mice and controls

(Figures S2A–S2C; Tables S1, S2, and S3). We then paired these

findings with community- and species-level transcriptomics to

better profile the microbiome’s functional capacity prior to ATB

exposure. Despite consuming identical diets, HG and normogly-

cemic (NG) mice had varied levels of metabolites related to poly-

saccharide processing. We saw STZ-specific enrichment of the

flavones apigenin, schaftoside, and daidzein; and significant

reduction of major metabolites from apigenin breakdown such

as 3-3-hydroxyphenyl propanoate (Figure 2C; Table S1). These

metabolites can generate either hydroxyphenylacetic acids or

phenolic intermediates that areconverted toSCFAsbyFirmicutes

(Braune and Blaut, 2016), and their accumulation may indicate

diminishedSCFAgeneration. To thatend,STZ-treatment reduced

valerate levels (Figure 2C). HG also lowered phytate degradation

and multiple polysaccharide-targeted carbohydrate-active en-

zymes (CAZymes; Figures 2C, 2D, and S2D; Tables S1, S4, and

S6). Polysaccharide-fermenting taxa like B. theta (Martens et al.,

2008; Sonnenburg et al., 2005) had reduced expression of tar-

geted fiber import loci (Figure S2E: BT3086, BT3087, BT3090,
Cell Reports 37, 110113, December 14, 2021 3
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and BT4581; Table S5). These data suggest that STZ may impair

microbial fiber fermentation and alter the level of polysaccharide-

derived carbon sources.

Amino acids (aa) are another significant bacterial carbon

source (Wang et al., 2019a) that was impacted by STZ treatment.

Multiple metabolites related to aromatic amino acid (AAA) gener-

ation, like 3-(3-hydroxyphenyl)propanoic acid and phenylethyl

alcohol, were reduced by STZ (Figure 2C; Table S1). We saw

enrichment of metabolites involved in aa catabolism like 6-meth-

ylnicotinamide, 2-ketoisocaproate and a-ketovaline, as well as

pathway enrichment of AAA degradation and protein digestion,

suggesting a shift toward aa catabolism rather than de novo syn-

thesis (Figures S2A and S2B; Tables S1 and S3). Shikimate

pathway intermediates like 3-dehydroquinate, 3-dehydroshiki-

mate, and shikimate were enriched after STZ treatment, and

likely caused by a block in a terminal component of the pathway,

as transcription of both AAA and chorismate synthesis were

reduced (Figures 2C and 2D; Tables S1 and S6). The shikimate

pathway feeds directly into AAA generation via chorismate;

thus, reduced transcription and accumulation of metabolic inter-

mediates suggests a shift from anabolic to catabolic aa

metabolism.

The shikimate pathway is also involved in B-vitamin generation

and impacts the availability of energy carriers like coenzyme A

(CoA) (Tzin and Galili, 2010). We observed enrichment of metab-

olites involved in pantothenate and CoA biosynthesis coupled

with reduced pathway transcription (Figures 2D and S2B; Tables

S3 and S6). STZ increased expression of thiazole biosynthesis,

which is critical for generating vitamin B1 and thus keymetabolic

enzymes like pyruvate dehydrogenase, pyruvate decarboxylase,

and a-ketoglutarate dehydrogenase (Andersen et al., 2015; All-

away et al., 2020; Yoshii et al., 2019) (Figure 2D; Table S6). We

observed increased pyruvate, glycolysis, and gluconeogen-

esis-related metabolites, including glutamine and glycerol-3-

phosphate (Figures S2A and S2B). This enrichment was coupled

with elevated ATPase, phosphoenolpyruvate hydratase, and

succinate dehydrogenase transcription (Figure 2E; Table S8),

that, when considered in tandem with increased inosine and

tRNA processing (Figure 2D; Tables S1 and S6), suggests that

STZ bolsters respiration within the microbiome.

These data describe community-level changes to microbiome

function. To identify species-specific contributors to metabo-

lome variation, we taxon stratified our Q-TOF-MS data using

MIMOSA (Figure 2F) (Noecker et al., 2016). A. muciniphila had

the largest contribution to community metabolism, followed by

B. theta (Figure 2F; Table S9). A. muciniphila significantly

contributed to acetate variation between hosts, speaking to

STZ-related difference in SCFAs. Metabolic signatures of

increased metabolism, including glutamine, inosine, and glyc-
Figure 2. STZ modifies the cecal metabolome and metatranscriptome

(A) Bray-Curtis Dissimilarity of Q-TOF-MS extracts from experimental groups.

(B) Differentially abundant bacterial species following STZ treatment. Data repre

(C) Differentially abundant Q-TOF-MS metabolites following STZ treatment. Data

(D) Linear discriminant analysis of MetaCyc pathways following STZ treatment. S

(E) Volcano plot of the cecal metatranscriptome following STZ treatment. Purple p

(F) Taxon Stratified Community Metabolic Potential as calculated by MIMOSA. S

*p < 0.05; **p < 0.01; ***p < 0.001. For (A and C): n = 6 per group, 2 replicates pe
erol-3-phosphate accumulation, could be explained by synthe-

sis and degradation from A. muciniphila (glutamate and inosone)

and synthesis from B. theta (inosine and glycerol-3-phosphate).

Finally, variation in phosphatidylethanolamine, a major compo-

nent of microbial cell walls, could be somewhat explained by

A. muciniphila (Figure 2F), suggesting increased cell wall synthe-

sis by this taxon. These data highlight that these two taxa are key

in HG-specific changes to microbiome function. STZ has robust

impacts on cecal microbiome function. While A. muciniphila and

B. theta are involved in this phenotype, it is important to consider

that there is redundancy in species function and in substrate uti-

lization across biochemical pathways (Tian et al., 2020). Thus, it

is likely that the cumulative effect of multiple metabolic disrup-

tions incurred from STZ increases metabolic demand on the

community and leads to increased AMX susceptibility.

HG modifies the composition of Bacteroidetes and
Firmicutes after AMX exposure
Given the connection between microbial metabolism and ATB

susceptibility (Belenky et al., 2015; Cabral et al., 2019; Lobritz

et al., 2015; Stokes et al., 2019), we hypothesized that STZ-

induced metabolic disruption bolstered AMX susceptibility. HG

mice had a highly divergent microbial composition after ATB

exposure compared to controls (Figures 3A and S3). Specifically,

HG exacerbated the AMX-related reduction in a-diversity (Fig-

ure 1D). Only HG mice had a reduction in Verrucomicrobia,

although this may be due to the pre-AMX expansion of

A. muciniphila (Figures 1E and 3B). Interestingly, the loss of Ac-

tinobacteria, Firmicutes, and Proteobacteria, and the bloom in

Bacteroidetes that was expected after AMX were greater in HG

mice (Figures 3C–3F) (Cabral et al., 2019). Consistent with our

previous work (Cabral et al., 2019), the Bacteroidetes bloom

was driven by expansion of B. theta in both hosts (Figure 3G).

We calculated the interaction of HG and AMX to examine host-

specific changes in species abundance (Love et al., 2014). In

addition to B. theta, many members of the Bacteroides genus

increased after AMX, with significantly elevated abundance in

HG mice (Figures 3H and S3A). Meanwhile, the species with

reduced abundance in HG mice after AMX treatment were pri-

marily within the order Clostridiales (Figures 3H, S3B, S3C,

S3D, S3E, S3F, S3G, S3H, and S3I). These taxa are key starch

degraders and SCFA producers, and their reduction suggests

an increased dysbiotic state in STZ and AMX co-treated mice

(Bui et al., 2016; Iino et al., 2007; Kazemian et al., 2020; Newman

et al., 2018). Overall, these data show that STZ-induced meta-

bolic shifts can exacerbates the post-AMX bloom of Bacteroides

and significantly worsen the loss of key SCFA-producing Firmi-

cutes. This likely impacts the local metabolome and metatran-

scriptome, and thus AMX susceptibility, given the syntrophic
sent log2 fold change ± SEM versus NG controls.

represent log2 fold change ± SEM. See Table S1 for full results.

ee Table S6 for full results.

oints represent differentially abundant transcripts. See Table S8 for full results.

ee Table S9 for full results.

r sample; for (B): n = 5 to 8 per group; for (D–F): n = 4 per group.
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Figure 3. STZ and AMX treatment modify the composition of the cecal microbiome

(A) Relative abundance of the 25 most-abundant species in our dataset. Data are represented as mean ± SEM for each species.

(B) Relative abundance of Bacteroidetes.

(C) Relative abundance of Actinobacteria.

(D) Relative abundance of Firmicutes.

(E) Relative abundance of Proteobacteria.

(F) Relative abundance of Verrucomicrobia.

(G) Relative abundance of B. theta.

(H) Differentially abundant bacterial species following AMX treatment in control and STZ mice, with interaction value. Data represent log2 fold change ± SEM

versus vehicle-treated controls.

For all panels: n = 5 to 8 per group; for (B–G): *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Welch’s ANOVAwith Dunnet T3 test for multiple hypothesis testing.

Data represent mean ± SEM.
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nature of Bacteroides and Firmicutes metabolism (Fischbach

and Sonnenburg, 2011).

HG exacerbates ATB dysbiosis and shifts microbial
metabolism
As with taxonomic changes, the majority of detected functional

AMX responses were highly host dependent. We used the

same interaction calculation to profile host-specific changes in
6 Cell Reports 37, 110113, December 14, 2021
CAZyme and SEED subsystem transcript abundances (Figures

4A and 4B). Interestingly, HG animals lack the reduction in glyco-

side hydrolase (GH) 43 seen in controls, suggesting modified

processing of hemicelluloses, pectins, xylans, and arabinose

(Figure 4A; Table S4; Mewis et al., 2016). Given the reduced

polysaccharide foraging in the STZ baseline, it is likely that the

HG microbiota is unable to adapt its CAZyme expression in

response to AMX. HG communities had overall fewer GH



Figure 4. AMX differentially alters the cecal metatranscriptome

(A) Differentially abundant CAZyme transcripts in control and STZ mice after AMX, with interaction values. See Table S4 for full results.

(B) Differentially abundant level 3 SEED Subsystem transcripts in control and STZ mice after AMX, with interaction values. See Table S7 for full results.

(C) Linear discriminant analysis of MetaCyc pathways following AMX treatment in STZ mice. See Table S6 for full results.

(D) Linear discriminant analysis of MetaCyc pathways following AMX treatment in control mice. See Table S6 for full results.

For all panels: n = 4 per group; for (A and B): Data represent log2 fold change ± SEM versus vehicle-treated controls. Blank panels are non-significant.
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transcripts at the SEED subsystem level, and a greater loss of

GH abundance relative to controls (Figures S4A and S4B; Tables

S4 and S7). We saw STZ-specific accumulation of polyphenols

and polysaccharides, providing further support for host-depen-

dent modifications in polysaccharide metabolism (Figure 5A;

Table S1). HG mice had accumulations of multiple phenylpropa-

noids, phenylacetic acids, polyphenols, alkaloids, flavonoids,

and isoprenoids (Figure 5A; Table S1) and pathway-level enrich-

ment of metabolites related to flavonoid/isoflavonoid synthesis

after AMX treatment (Table S3). Because fiber metabolism can

confer a protective phenotype to select gut microbes (Cabral

et al., 2019), we anticipated that reduced fiber and polyphenol

metabolism may directly contribute to the severity of AMX-

induced dysbiosis in HG mice.

Mucus foraging by the microbiota after AMX was also per-

turbed. In our CAZyme dataset, HG mice had a loss of GHs that

target thechitobiosecoreofmucins (GH115), anddidnot upregu-

lateGH84,GH129, andGH89which targetN-acetylglucosamine,

class-III mucins, and mucus glycoproteins, respectively (Fig-

ure 4A, Table S4). Simultaneously, STZ and AMX co-treatment
downregulated expression of multiple pathways involved in

mucin-derived carbon metabolism, including the Leloir pathway

(foraging of mucus galactose residues), 4-deoxy-L-theo-hex-4-

enopyranuronate degradation (breakdown of heparin and hya-

luron into pyruvate), and D-galacturonate degradation (Figures

4C and 4D; Table S6; Tang et al., 2016). The sialic acid residue

N-acetylneuraminic acid (NANA) was enriched in NG but not

HG animals after AMX (Table S1). Because NANA is liberated

bymucus breakdown (Crost et al., 2016), this suggested reduced

muciniphilic activity by STZ and AMX co-treated communities.

Ultimately, HG-related modifications in glycan foraging occur

both before and after AMX, indicating that STZ-induced HG im-

pacts the composition of the cecal carbon pool.

Further evidence of perturbed carbon foraging in the HGAMX-

treated microbiome arose from examination of host and ATB

interaction for SEED subsystem transcript abundances (Fig-

ure 4B; Table S7). We found an STZ-specific increase in phos-

photransferase system (PTS) transcripts (Figure 4B, Table S7)

as well as enrichment of PTS metabolites like mannitol 1-phos-

phate (Figure 5A; Table S1). PTS systems function to rapidly
Cell Reports 37, 110113, December 14, 2021 7
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import target saccharides into bacterial cells, and increased PTS

activity may be the result of higher environmental sugar concen-

trations (McCoy et al., 2015). Although AMX reduced cecal

glucose concentrations in both hosts, HG mice had significantly

higher glucose levels than controls (Figure 1F) and we observed

STZ-specific enrichment of sugars like acetylated maltose (Fig-

ure 5A; Table S1).

Elevated sugars and PTS likely also increased catabolism. To

that end, we observed significant HG-specific increases in

glycolysis and gluconeogenesis (Figure 4B; Table S7) and pyru-

vate fermentation transcripts compared to controls (Figures S4A

and S4B; Table S7). The metabolome of HG AMX-treated mice

was specifically enriched in catabolism and catabolism-support-

ing pathways like 2-oxocarboxylic acid metabolism, glycolysis,

starch/sucrose utilization, nicotinate/nicotinamide, and propa-

noate generation (Figure 5B; Table S3). The abundance of

vitamin cofactors was also impacted; in our LC-MS/MS dataset,

we sawHG-specific enrichment in riboflavin (Figure S4C: Cluster

699, Figure S4D; Table S2) (Steinert et al., 2020). The enrichment

of nicotinate/nicotinamide, propanoate generation, and

cofactor-related metabolites may impact the abundance of en-

ergy carriers (Belenky et al., 2007). Together these data suggest

that carbon metabolism is disturbed in the HG AMX-treated mi-

crobiome, in part due to higher environmental concentrations of

readily-metabolized sugars.

We stratified our metabolomics and transcriptional data with

MIMOSA to identify taxonomic drivers of community behavior

during AMX treatment (Figures 5C and 5D; Table S9). Regardless

of host, B. theta was the major metabolome-contributing taxa,

which is congruent with its dominance of the microbiome during

AMX perturbation (Figures 3A, 3G, 5C, and 5D; Table S9). Of the

metabolites correlated with differential community activity in HG

mice, B. theta was responsible for enrichment of B-vitamins like

riboflavin (via synthesis) and pantothenate (via synthesis and

degradation). Additionally, sucrose and glycerol-3-phosphate

levels could be partially explained by synthetic reactions from

B. theta (Figure 5D; Table S9).

The fact that B. theta significantly shapes the metabolic func-

tion of the microbiome after AMX in both hosts prompted us to

compare the post-ATB transcriptome and metabolome (Fig-

ure 6). We found that HGAMX-treatedmetabolomes were signif-

icantly enriched for metabolites involved in multiple aa genera-

tion pathways, nucleotide biosynthesis, and linoleic acids

(Figure 6A; Table S3). Additionally, we saw significant enrich-

ment of metabolites related to carbon processing (fructose/

mannose metabolism, ABC transporters, PTS) and metabolic

homeostasis (pyruvate metabolism, ubiquinone/terpenoid-

quinone biosynthesis, and glutathione metabolism) (Figure 6A).

At the MetaCyc pathway level, we observed HG-related in-
Figure 5. AMX differentially alters the cecal metabolome

(A) Differentially abundant Q-TOF-MS metabolite features in control and STZ mic

SEM versus vehicle controls. See Table S1 for full results.

(B) KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites

AMX-treated mice. Blank panels represent a lack of statistical significance. See

(C) Taxon Stratified Community Metabolic Potential of control mice after AMX tr

(D) Taxon Stratified Community Metabolic Potential of STZ-treated mice after AM

For (A and B): n = 6 per group, 2 replicates per sample; for (C and D): n = 4 per g
creases in pyruvate fermentation and nucleotide biosynthesis

(Figure 6B; Table S6). Unsurprisingly, B. theta was the major

contributing taxon to this variation (Figure 6C; Table S9). Thus,

we performed single-species transcriptomics on B. theta during

AMX challenge in HG and NGmice. Interestingly, B. theta down-

regulated the expression of multiple polysaccharide utilization

loci (BT4293-BT4299, BT4296–4298, BT3025, BT1761, and

BT1762) and sugar import systems for fructose (BT1759–1763,

and BT1759), ribose (BT2804), and fucose (BT3665) (Figure 6D;

Table S5) only in HG mice (Figure 6D; Table S5; Lynch and Son-

nenburg, 2012;Mardo et al., 2017;Mimee et al., 2015; Townsend

et al., 2020). The combination of STZ and AMX treatment also

coincided with significant upregulation of the NADH dehydroge-

nase complex (BT4058–4067) which is a primary redox balance

locus (Fischbach and Sonnenburg, 2011). We also saw elevation

of another NADH ubiquinone reductase operon (BT0616)

(Goodman et al., 2009), and ATPase (BT1746) (Figure 6D; Table

S5). Our community-level metabolomics indicated HG-specific

loss of phosphoenolpyruvate (Table S1), which may be related

to the differential regulation of respiration-related complexes in

B. theta. Together these data show that HG, and the resultant

changes in environmental metabolites, are sufficient to dramati-

cally modify the transcriptional and metabolic behavior of

B. theta during AMX treatment. This change ultimately impacts

the AMX susceptibility of other taxa within the community and

greatly perturbs the functional response of the larger community

to ATB pressure.

STZ and AMX co-treatment increases susceptibility to
Salmonella enterica infection
We noticed that fatty acid metabolism was differentially

impacted by STZ and AMX treatment. Specifically, co-treated

communities were enriched for multiple N-acylethanolamines

(Figure 5A; Table S1) and the precursor phosphatidylethanol-

amine (Table S1). Higher ethanolamine concentrations may sug-

gest more fatty acid epoxidation and dysbiosis-associated

inflammation within the GI (Ormsby et al., 2019; Thiennimitr

et al., 2011). Ethanolamines are naturally generated by phospha-

tidylethanolamine breakdown during cell turnover, however,

most of the microbiota is unable to ferment ethanolamines,

and these compounds can increase the colonization and viru-

lence of multiple enteric pathogens (Anderson et al., 2015,

2018; Nawrocki et al., 2018; Rowley et al., 2018; Garsin, 2010).

Specifically, some Enterobacteriaceae are enriched for the ge-

netic machinery required to use ethanolamines, and can funnel

their breakdown products into both nitrogen metabolism and

respiration (Anderson et al., 2015; Garsin, 2010; Srikumar and

Fuchs, 2011; Thiennimitr et al., 2011). In Salmonella, exogenous

ethanolamine signals a cascade of metabolic and virulence
e after AMX treatment with interaction value. Data represent log2 fold change ±

in STZ mice after AMX treatment versus the enrichment score in control and

Table S3 for full results.

eatment as calculated by MIMOSA. See Table S9 for full results.

X treatment as calculated by MIMOSA. See Table S9 for full results.

roup; for (B): Significant = p < 0.05.
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Figure 6. STZ treatment modifies transcriptomic and metabolomic responses of the microbiome to AMX

(A) KEGG pathway enrichment of differentially abundant Q-TOF-MS features in STZ AMX (+) mice compared to control AMX (+) mice. See Table S3 for full results.

(B) Linear discriminant analysis score of MetaCyc pathways in STZ AMX (+) mice compared to control AMX (+) mice. See Table S6 for full results.

(C) Taxon Stratified Community Metabolic Potential of STZ AMX (+) mice compared to control AMX (+) mice as calculated by MIMOSA. See Table S9 for full

results.

(D) Differentially abundant B. theta transcripts after AMX treatment in STZ mice. Data represent log2 fold change ± SEM of STZ AMX (+) mice versus vehicle

controls. See Table S5 for full results.

For (A): n = 6 per group with 2 technical replicates per sample; Significant = p < 0.05; for (B–D): n = 4 per group.
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genes that promote intestinal colonization (Anderson and Ken-

dall, 2016). ATB-induced dysbiosis is also associated with

increased S. enterica colonization, likely through the induction

of a respiratory-favorable environment and disruption of the

endogenous microbiota (Yoon and Yoon, 2018; Zeng et al.,

2017). The transcriptional changes we observed in B. theta are

highly indicative of a respiratory-favorable environment in the

HG AMX-treated GI (Figure 6D). Thus, we asked if the micro-

biome modifications in HG AMX-treated mice would increase

infection susceptibility to S. enterica (Figure 7A).
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We found that co-treatment with STZ and AMX lowered the

infective dose required to establish S. enterica colonization

and significantly increased intestinal, hepatic, and splenic path-

ogen burden (Figures 7B and S5A). Host HG increased lethality

by day 7 of infection (Figures 7C and 7D). In the control group,

all vehicle-treated mice survived, and AMX-treated mice in the

high dosage groups (1 3 104 and 1 3 105) experienced 75 and

50 percent survival respectively (Figure 7C). In the STZ group,

vehicle-treated mice in the highest dosage groups (1 3 105

and 1 3 106) had 75 and 40 percent survival, while the



Figure 7. STZ and AMX increase susceptibility to Salmonella enterica infection

(A) Experimental design of pathogen challenge study. Figure was created with BioRender.com (BioRender, Toronto, Canada).

(B) S. enterica colony forming units (CFU) per gram of feces in control AMX(+/�), and STZ AMX(+/�) mice after infection with 1x103 cells. Data represent mean

CFU ± SEM.

(C) Kaplan Meier survival curve of NG mice.

(D) Kaplan Meier survival curve of STZ mice.

(E) Bray-Curtis Dissimilarity between 16S rRNA amplicons from experimental groups.

(F) Taxonomic composition of the fecal microbiome based of genus-level 16S rRNA identity between 1 and 4 days post-infection with 1x103 cells. Data rep-

resented mean ± SEM.

(G) Contribution of Salmonella assigned reads in STZ AMX(+) and control AMX(+) mice 4 days post-infection. Data represent mean ± SEM.

*p < 0.05; **p < 0.01; ***p < 0.001; for (B): n = 8 to 10 per group, Mann-Whitney U test of STZ AMX(+) versus Control AMX(+); for (C and D): n = 4 to 5 per group; for

(E–G): n = 8 to 10 per group; for (E): permutational ANOVA.

Article
ll

OPEN ACCESS
AMX-treated mice experienced between 25 to 80 percent sur-

vival with lethality events starting as early as 24 hours (Figure 7D).

To check for any significant differences in GI physiology or

immunocompetence, we assessed GI edema and inflammation

between HG and control mice (Figure S5B). We saw no differ-

ences in GI physiology, but noticed slight differences in some

serum cytokines (Figures S5C–S5I). For IL-1a, IL-6, and IL-

12p70, variation was between vehicle-treated mice and may

represent progression of the STZ model rather than responses

to infection. For GM-CSF, IFN-b, IL-10, and IL-17A, plasma con-

centrations were only elevated in HG AMX-treated mice after
infection and thus may be the result of differential susceptibility

(Figure S5C–S5I).

Infection with S. enterica represents another form of micro-

biome dysbiosis in conjunction with ATBs. Thus, we profiled

the fecal microbiome during the first 4 days of infection to assess

if HG worsened infection-related dysbiosis (Figures 7E, 7F, 7G,

S5J, S5K, and S5L). The initial infection significantly impacted

microbiome b-diversity (Figure S5). However, diversity remained

divergent in accordance with preinfection experimental treat-

ment (Figure 7E). This indicates that regardless of infective

dose, the microbiome changes induced by STZ or AMX remain
Cell Reports 37, 110113, December 14, 2021 11
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the drivers of b-diversity. Interestingly, we noticed that only HG

mice experienced significant reduction in a-diversity (Fig-

ure S5K). During the 4-day period following infection, Salmonella

expansionwas only detected in AMX-treated animals (Figure 7F).

We then quantified the difference in Salmonella reads between

control and HG mice after AMX, and found that HG mice had

notably higher levels of Salmonella (Figure 7G). Together, these

data suggest that the combination of STZ and AMX severely re-

duces the probability of survival after S. enterica challenge and

increases pathogen burden and microbiome dysbiosis relative

to NG controls. It is possible that the enrichment of favorableme-

tabolites or change in respiratory potential in HG AMX-treated

communities promotes the expansion and virulence of

S. enterica, although more work is required to confirm this

hypothesis.

DISCUSSION

Recent estimates of HG global prevalence suggest that meta-

bolic disruption occurs in approximately 10 percent of all peo-

ple, with incidence increasing annually (Saeedi et al., 2019).

Thus, understanding how host metabolism impacts ATB-

induced dysbiosis is key to the development of microbiome-

protective therapeutic strategies. To address this knowledge

gap, we used an integrated multi-omic strategy to examine

how HG modifies the microbiome’s response to AMX. Specif-

ically, we combined WMGS, metatranscriptomics, and untar-

geted metabolomics to examine differences in microbiome

composition and function, both pre- and post-ATB treatment,

and to characterize the severity of dysbiosis-related complica-

tions like enteric infection.

A key goal of this study was to profile the impact of altered

host metabolism and the microbiota-accessible metabolite

pool on microbiome function during ATB treatment. Since die-

tary modulation has inherent limitations involved in restructuring

microbiome composition, we opted for a rapid-chemothera-

peutic method to perturb the GI metabolite pool. We chose

STZ, in part, due to its widespread use and quick onset of

changes. However, it is critical to address limitations of the

model, as it does not perfectly replicate the pathology of clinical

HG. STZ has been used to replicate both type-1 and type-2 dia-

betic phenotypes in animals since the mid-1960s (Deeds et al.,

2011; Eleazu et al., 2013). Models of STZ administration vary

widely in their dosage concentration, injection frequency, and

inclusion or exclusion of high-fat feed typically due to differ-

ences in research goals (Deeds et al., 2011; Furman, 2021).

Because STZ does not perfectly mimic type-2 diabetes, the in-

clusion of a high-fat feeding period before injection was recently

proposed as a method to induce hyperinsulinemia and insulin

resistance in STZ-treated animals (Furman, 2021; Chao et al.,

2018). Regardless, STZ consistently induces the characteristic

symptoms of HG, insulin deficiency, polydipsia, and polyurea

(Furman, 2021; Kolb, 1987). Although there is conservation of

immunological responses to b cell ablation (Eleazu et al.,

2013), one must consider that microbiome-related phenotypes

derived from STZ-induced HG are likely specific to the sub-

model and may not readily translate across studies. For

example, the only taxonomic changes we found after STZ treat-
12 Cell Reports 37, 110113, December 14, 2021
ment were the expansion of A. muciniphila and collapse of

Blautia sp YL58. This contrasts with the many taxonomic shifts

seen in existing work examining STZ-treated rats, but this may

be due to inherent differences between mice and rats, use of

multiple STZ doses, sample collection, sequencing depth, use

of a diet in combination with STZ, or the time frame of weeks

rather than days (Liu et al., 2019a; Ma et al., 2020; Patterson

et al., 2015; Yin et al., 2020).

Interestingly, serum metabolomics in multiple low-dose STZ

treated mice found enrichment of AAAs, bile acids, dipeptides,

fatty acids, nucleotides, sphingolipids, and vitamins (Ugarte

et al., 2012). These results are congruent with our pre-AMX me-

tabolomics data and may represent true HG-related changes.

Metabolomic studies focused on prediabetic patients have

found shifts in aa catabolism as a potential biomarker of progres-

sion to type-1 diabetes, and spikes in both aromatic and

branched-chain aa as predictive of type-2 diabetes (Wang

et al., 2011; Neis et al., 2015), supporting our observed aa

changes as a true HG phenotype. A potential explanation for

this enrichment is that fiber usewithin theGI impacts the produc-

tion of several aa-based metabolites by members of the Firmi-

cutes phylum (Neis et al., 2015; Tanes et al., 2021), suggesting

an intrinsic link between metabolic dysregulation and shifts in

gut aa metabolism.

We found that STZ initiated a cascade of changes related to

fiber and SCFA generation. Specifically, the loss of SCFA-pro-

ducing Firmicutes may perturb syntropic reactions involved in fi-

ber-fermentation (Bui et al., 2016; Oliphant and Allen-Vercoe,

2019; Rey et al., 2010; Vacca et al., 2020). Because the micro-

biome is responsible for this fermentation (Holscher, 2017), we

anticipate that disturbances in polysaccharide processing are

microbially-driven rather than host-derived. In the case of poly-

phenol substrates and metabolites, bacteria can coopt and

liberate sugars from these compounds for use in their ownmeta-

bolism (Fraser and Chapple, 2011; Braune and Blaut, 2016;

Moore et al., 2002; Wang et al., 2019b; Lundgren and Thaiss,

2020; Vollmer et al., 2018) For example, some taxa can directly

utilize flavones as a carbon source, fueling them into their respi-

ratory cycle (Burlingame and Chapman, 1983). Thus, shifts in the

abundance of dietary-derived polyphenols could modify micro-

bial metabolism in the GI.

Reduced fiber use by the microbiota may be partially ex-

plained by a side-effect of STZ treatment. Rodents receiving a

multiple low-dose regime (i.e., 50 mg/kg/day for 5 days) of STZ

exhibit an initial reduction in food consumption (Motyl and

McCabe, 2009). However animals exhibit hyperphagia one

week post-injection (Motyl and McCabe, 2009; Zhang et al.,

2008). It is possible that our experimental time point for AMX

administration and sample collection (3 and 4 days-post injec-

tion, respectively) is associated with reduced food intake, which

would lower the availability of fiber. Regardless, reduced fiber

and polyphenol intake has been recognized as a form of dysbio-

sis, increasing susceptibility to bactericidal ATBs via modifica-

tion of microbial metabolism (Cabral et al., 2020; 2019; Makki

et al., 2018; Ng et al., 2019), and we propose that a similar

disruption of the microbiome occurs here.

We observed that the HG microbiome was enriched for tran-

scripts and metabolites involved in pyruvate metabolism and
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glycolysis. It is likely that the overall enrichment of aa catabolism

directly contributes to increased community respiration because

many of the altered amino acids are glucogenic (Berg et al.,

2002). A key consideration of any ecological network is its

taxonomic composition (Coyte and Rakoff-Nahoum, 2019). Pol-

ymicrobial interactions are a significant component of the micro-

biome’s ecology and changes to taxonomic structure or function

will directly impact the overall activity (Coyte and Rakoff-Na-

houm, 2019; Layeghifard et al., 2017; Boon et al., 2014). Because

Firmicutes have been characterized to perform a bulk of aa, ni-

trogen, and sulfur metabolism reactions within the GI, it is

possible that these taxa are driving the increased metabolic

rate. This may prime the microbiome as a whole for increased

AMX susceptibility, but more work is needed to confirm this hy-

pothesis (Bernal et al., 2007; Böttcher et al., 2014; Gao et al.,

2018; Meadows and Wargo, 2015). Overall, these data make a

strong argument for the degree of control that changes in the

baseline function of the microbiome has on compositional re-

structuring after ATB perturbation.

When comparing HG and NG communities during and after

AMX treatment, the increased dysbiosis in HG mice was ex-

pected given both the increased basal metabolic rate and the

elevation of simple sugars and PTS activity during AMX.

Increased sugar availability and decreased polysaccharide utili-

zation have been demonstrated to potentiate ATB toxicity

within the GI (Cabral et al., 2019; 2020). The most striking

finding to us was how divergent the transcriptional behavior

of B. theta was between hosts. We previously identified that

polysaccharide fermentation by B. theta functions as an amox-

icillin tolerance response in NG animals (Cabral et al., 2019).

However, this study complicates that understanding, as STZ-

specific reductions in B. theta’s polysaccharide and mucus

foraging suggests that these may not be universal amoxicillin

tolerance responses. There may be non-mucosal or non-poly-

saccharide metabolite species that induce a protective pheno-

type to members of the Bacteroides genus. Alternatively, mem-

bers of this genus possess b-lactamases, and differences in the

expression of these resistance genes may be involved in the

observed enrichment of Bacteroides in HG AMX-treated mice

(Edwards, 1997). Regardless, reduction in fiber fermentation

by Bacteroides disrupts the balance of nutrients available for

syntrophic metabolism with Firmicutes and Actinobacteria

(Fischbach and Sonnenburg, 2011). These changes may induce

a proinflammatory state and contribute to the increased dysbio-

sis experienced by HG mice during ATB exposure. Given the to-

tal ecological complexity of the gut microbiome, a more robust

understanding of cross-feeding networks will be integral to the

full characterization of a given perturbation’s impact on the

microbiome.

Lastly, we examined if the increased severity of AMX toxicity

in HG mice would increase susceptibility to enteric infection.

Overall, HG AMX-treated animals had both increased suscep-

tibility to S. enterica and reduced overall survival after one-

week of infection (Figure 7). Recent work by Thaiss et al. has

shown that decreased barrier function caused by STZ in-

creases S. enterica susceptibility (Thaiss et al., 2018). Howev-

er, this study used a multiple-dose STZ model and did not

infect mice until a few weeks after STZ treatment, thus these
results may not translate to our study. For example, we found

that, at low infection doses, STZ treatment had no impact on

susceptibility in the absence of ATBs. Thus, it is possible that

the HG ATB-treated microbiome is structurally, functionally,

and metabolically perturbed in a way that promotes the path-

ogen colonization and expansion. For example, we found

enrichment of multiple ethanolamines, which are a carbon

source that cannot be used by the microbiota but can be uti-

lized by Salmonella (Anderson et al., 2015; Srikumar and

Fuchs, 2011; Thiennimitr et al., 2011). S. enterica has flexible

metabolism compared to the bulk of the microbiota (Taylor

and Winter, 2020), and can use inaccessible carbon sources

like ethanolamines to promote colonization and niche adapta-

tion in mammals (Anderson et al., 2015). Other metabolites that

may have impacted S. enterica infection severity include

acetyl-maltose, as Salmonella are equipped with tightly

controlled maltose import systems and readily fuel this carbon

source into their respiratory cycle (Erhardt and Dersch, 2015;

Jain et al., 2020; Miller et al., 2013). Another metabolite of inter-

est was pantetheine, which Salmonella can shunt into its CoA

synthesis, potentially providing a fitness advantage through

competitor exclusion (Ernst and Downs, 2015) (Table S1). An

alternate explanation for the increased expansion of Salmo-

nella is an overall increase in ATB-induced intestinal oxygena-

tion. Salmonella are facultative anaerobes and can readily

switch to aerobic respiration when needed (Rhen, 2019). Addi-

tionally, Salmonella can use inflammation-related metabolites

like tetrathionate as terminal electron acceptors, and can coopt

the oxygenated and inflamed gut for growth (Winter et al.,

2010). Although more work is required to parse what compo-

nents of the HG microbiome provide a competitive advantage

to Salmonella after AMX treatment, our data provides strong

preliminary evidence that STZ-induced HG can directly impact

the acute consequences of ATB dysbiosis. Ultimately, our

study shows that host-related physiology and metabolic state

must be a key consideration of any current and future thera-

peutic strategy aimed at mitigating ATB-induced microbiome

damage.

Limitations of the study
While our multi-omic approach robustly characterizes the cecal

microbiome during dysglycemia and ATB perturbation, there

are limitations in the study design and methodology that compli-

cate the interpretation of the results. First, our study exclusively

uses male mice. Female mice are partially resistant to STZ-

induced HG and require significantly higher doses and (or) repet-

itive dosing regimens compared to males to induce a metabolic

phenotype (Deeds et al., 2011; Goyal et al., 2016). An additional

consideration is that STZ’s mechanism of action involves organ

cytotoxicity (Deeds et al., 2011). Although STZ is rapidly elimi-

nated from the host, it is nearly impossible to guarantee that

off-target effects of pancreatic toxicity are not contributing to

some microbiome phenotypes.

A key considerations of our metagenomic and metatranscrip-

tomic-reliant analyses is the dependence on existing databases

that possess annotation-based limitations and the need for

imperfect alignment algorithms (HMP (Human Microbiome Proj-

ect Consortium), 2012). While WMGS provides increased
Cell Reports 37, 110113, December 14, 2021 13
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resolution over 16S rRNA sequencing, the taxonomic classifica-

tion of sequencing reads is still subject to currently available

reference genomes, which are biased toward some taxa over

others (HMP (Human Microbiome Project Consortium), 2012;

McLaren et al., 2019). Further, WMGS data is complicated by

the fact that taxonomic levels are reported as relative abun-

dances. Even metabolomic-focused pipelines like MIMOSA are

limited by their reference databases. Specifically, full reaction

annotations within the KEGG database are required for this pipe-

line (Noecker et al., 2016).

For untargeted metabolomics, ion annotation is still consid-

ered the primary bottleneck of analysis (Gertsman and Barshop,

2018; Schrimpe-Rutledge et al., 2016). The diversity in chemical

modification, polarity, solubility, and ionization of chemical struc-

tures from complex biological samples often requires multiple

analytical modes (i.e., positive versus negative ion mode) to be

run in order to characterize all structures, and that can subse-

quently complicate ion identification (Gertsman and Barshop,

2018; Lei et al., 2011; Luan et al., 2019). While metabolomics of-

fers a powerful examination of the small molecule repertoire of

the cecum, it does not distinguish between bacterially-derived,

fungal-derived and host-derived metabolites (Gertsman and

Barshop, 2018). While pairing these data with metatranscriptom-

ics and using networking models like MIMOSA helps improve

inference of metabolite origin it does not eliminate the possibility

of host-derived metabolites being mistaken for bacterially

derived compounds and vice versa. Additionally, our metabolo-

mics preparation is unable to separate intracellular- and extra-

cellular-derived metabolites, potentially complicating biological

interpretation. Ultimately, further work will be required to corre-

late STZ and AMX-inducedmetabolomic changeswith individual

taxa, and greater annotation of metabolic syntrophy in the gut

will aid in the biological interpretation of subsequent metabolo-

mic analyses.
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(2017). A highly active endo-levanase BT1760 of a dominant mammalian gut

commensal Bacteroides thetaiotaomicron cleaves not only various bacterial

levans, but also levan of timothy grass. PLoS ONE 12, e0169989. https://

doi.org/10.1371/journal.pone.0169989.

Martens, E.C., Chiang, H.C., and Gordon, J.I. (2008). Mucosal glycan foraging

enhances fitness and transmission of a saccharolytic human gut bacterial

symbiont. Cell Host Microbe 4, 447–457. https://doi.org/10.1016/j.chom.

2008.09.007.

McCoy, J.G., Levin, E.J., and Zhou, M. (2015). Structural insight into the PTS

sugar transporter EIIC. Biochim. Biophys. Acta 1850, 577–585. https://doi.

org/10.1016/j.bbagen.2014.03.013.

McIver, L.J., Abu-Ali, G., Franzosa, E.A., Schwager, R., Morgan, X.C., Wal-

dron, L., Segata, N., and Huttenhower, C. (2018). bioBakery: A meta’omic

analysis environment. Bioinformatics 34, 1235–1237. https://doi.org/10.

1093/bioinformatics/btx754.

McLaren, M.R., Willis, A.D., and Callahan, B.J. (2019). Consistent and correct-

able bias in metagenomic sequencing experiments. eLife 8, 46923. https://doi.

org/10.7554/eLife.46923.

McMurdie, P.J., and Holmes, S. (2013). phyloseq: An R package for reproduc-

ible interactive analysis and graphics of microbiome census data. PLoS ONE

8, e61217. https://doi.org/10.1371/journal.pone.0061217.

Meadows, J.A., and Wargo, M.J. (2015). Carnitine in bacterial physiology and

metabolism.Microbiology (Reading) 161, 1161–1174. https://doi.org/10.1099/

mic.0.000080.

Mewis, K., Lenfant, N., Lombard, V., and Henrissat, B. (2016). Dividing the

large glycoside hydrolase family 43 into subfamilies: A motivation for detailed

enzyme characterization. Appl. Environ. Microbiol. 82, 1686–1692. https://doi.

org/10.1128/AEM.03453-15.

Meylan, S., Porter, C.B.M., Yang, J.H., Belenky, P., Gutierrez, A., Lobritz, M.A.,

Park, J., Kim, S.H., Moskowitz, S.M., and Collins, J.J. (2017). Carbon sources

tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid

cycle control. Cell Chem. Biol. 24, 195–206. https://doi.org/10.1016/j.chem-

biol.2016.12.015.
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Rivera-Chávez, F., Zhang, L.F., Faber, F., Lopez, C.A., Byndloss, M.X., Olsan,

E.E., Xu, G., Velazquez, E.M., Lebrilla, C.B., Winter, S.E., and Bäumler, A.J.
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Reagent or resouce Source Identifier

Bacterial and virus strains

Salmonella enterica Typhimurium SL1344 Vanessa Sperandio, PhD (Univerisity

of Texas, Southwestern)

N/A

Chemicals, peptides, and recombinant proteins

Acetone, LCMS-grade Fisher Scientific K50738120840

Acetonitrile, LCMS-grade Fisher Scientific PI86188

Agar Fisher Scientific BP1423-2

Agarose Fisher Scientific 14-223-040

Agencourt AMPure XP Beads Beckman Coulter A63880

Ammonium Fluoride Sigma Aldrich 338869

Amoxicillin Sigma Aldrich A8523-5G

Deoxynucleotide (dNTP) Solution Mix New England BioLabs N0447S

Ethanol, 200 proof, molecular biology grade Fisher Scientific 07-678-003

Formic acid Fisher Scientific RMB11202101

Hematoxylin & Eosin Stain Solution AbCam Ab245880

Heparin Sigma Aldrich H3393-25KU

Hydrochloric Acid Fisher Scientific A144-500

Industrial Grade Nitrogen, Liquid AirGas NI240LT22

Isopropanol, LCMS-grade Fisher Scientific A461-1

Luria Bertani (LB) Broth Fisher Scientific BP1426-2

Methacarn Fisher Scientific NC0547175

Methanol, LCMS-grade Fisher Scientific A456-500

Paraffin Wax Fisher Scientific 22-90-700

Phosphate Buffered Saline, 10X Fisher Scientific BP399

Sodium Citrate Dihydrate Fisher Scientific 5279-500

Streptozotocin Alfa Aesar J61601-03

Sucrose Fisher Scientific BP220-212

TE Buffer, 1X Solution, pH 8.0, low EDTA Fisher Scientific AAJ75793AE

Tween20 Fisher Scientific BP337-100

Water, LCMS-grade Fisher Scientific PI51140

Water, Molecular Biology Grade Fisher Scientific BP2891-1

Critical commercial assays

10KD Spin Column AbCam Ab93349

API-TOF Reference Mass Solution Kit Agilent AGG1969-85001

DNA/RNA Shield Collection and Lysis Tube Zymo Research R1102

DuoSet ELISA Ancillary Reagent Kit 2 R&D Systems DY008

Glucose Assay Kit - Reducing Agent Compatible AbCam Ab102517

HiSeq X Ten Reagent Kit v2.5 Illumina FC-501-2501

Legendplex Mouse Inflammation

Panel 13-plex with Filter Plate

BioLegend 740150

MICROBExpress Bacterial mRNA Enrichment Kit Thermo Fisher Scientific AM1905

MiSeq Reagent Kit v2 (500 cycles) Illumina MS-102-2003

Mouse Lipocalin-2/NGAL DuoSet ELISA Kit R&D Systems DY1857-05
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Continued

Reagent or resouce Source Identifier

NEBNEXT� rRNA Depletion Kit (Human/

Mouse/Rat) (Includes Purification Beads)

New England BioLabs E6350

NEBNEXT� Ultra II Directional RNA Seq Library

Prep Kit for Illumina (Includes Purification Beads)

New England BioLabs E7765

NEBNEXT� Ultra II FS DNA Library Prep Kit

for Illumina (Includes Purification Beads)

New England BioLabs E6177

NucleoSpin� Gel and PCR Clean-up Kit Machery-Nagel

GmbH & Co

740609

Phusion High-Fidelity PCR Kit Thermo Fisher Scientific F553L

Qubit dsDNA Broad Range Assay Kit Thermo Fisher Scientific Q32850

Qubit dsDNA High Sensitivity Assay Kit Thermo Fisher Scientific Q32851

Qubit RNA High Sensitivity Assay Kit Thermo Fisher Scientific Q32852

Sin-X UF 500 10k MWCO PES Spin Filter Corning 431478

Spin-X Centrifuge Tube Flter, 0.22 mM Costar 8160

ZymoBiomics Collection Tubes Zymo Research S6012-50

ZymoBiomics DNA Miniprep Kit Zymo Research D4300

ZymoBiomics DNA/RNA Miniprep Kit Zymo Research R2002

Deposited data

16S rRNA Reads NCBI BioProject ID PRJNA720755

Metagenomic / Metatranscriptomic Reads NCBI BioProject ID PRJNA72012

Q-TOF-MS Raw Data This Study Table S1

GNPS Molecular Networking Data GNPS.UCSD.edu https://gnps.ucsd.edu/ProteoSAFe/

status.jsp?task=e4efce0c33fb4ada96e

373d53460f2d5

LC-MS/MS Files Massive.UCSD.edu MSV000087093

LC-MS/MS Data and Analysis Scripts This Study https://github.com/guziordo/Belenky-

Brown-Diabetes-Antibiotics

Experimental models: Mouse Strains

C57BL/6 Jackson Laboratories Cat.# 000664

Oligonucleotides

Earth Microbiome Project: 806R Caporaso et al., 2012 https://earthmicrobiome.ucsd.edu/

protocols-and-standards/primer-

ordering-and-resuspension

Earth Microbiome Project: 515F with Barcode Caporaso et al., 2012 https://earthmicrobiome.ucsd.edu/

protocols-and-standards/primer-

ordering-and-resuspension

Software and algorithms

BBMap (version 37.96) Bushnell, 2014 https://sourceforge.net/projects/bbmap

Bowtie2 (version 2.2.0) Langmead and Salzberg,

2012

http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

Bracken (version 2.0.0) Lu et al., 2017 http://ccb.jhu.edu/software/

bracken/index.shtml?t=manual

BWA-Mem (version 0.7.15) Li and Durbin, 2010 http://bio-bwa.sourceforge.net/bwa.shtml

DIAMOND (version 0.9.11) Buchfink et al., 2014 https://github.com/bbuchfink/diamond

Global Natural Products Social

Molecular Networking (GNPS)

Wang et al., 2016 https://gnps.ucsd.edu

HUMAnN2 (version 0.11.1) Franzosa et al., 2018 https://bitbucket.org/biobakery/

humann2/wiki/home

Kneaddata (version 0.6.1) McIver et al., 2018 https://bitbucket.org/biobakery/

kneaddata/wiki/home

(Continued on next page)
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Kraken (version 2.0.7-beta) Wood et al., 2019 https://ccb.jhu.edu/software/kraken2

LDA Effect Size (LEfSe, version) Segata et al., 2011 https://huttenhower.sph.harvard.edu/galaxy

MetaPhlan2 (version) Segata et al., 2012 https://bitbucket.org/biobakery/metaphlan2

MATLAB MathWorks https://www.mathworks.com/

products/matlab.html

MATLAB Toolbox: Bioinformatics MathWorks https://www.mathworks.com/

products/bioinfo.html

MZmine (version 2.52) Pluskal et al., 2010 http://mzmine.github.io/

Paired-End Read Merger (PEAR; version 0.9.12) Zhang et al., 2014 https://cme.h-its.org/exelixis/web/software/pear

Prism (version 9.0.2) GraphPad https://www.graphpad.com/

scientific-software/prism

R (version 4.0.3) The R Project for

Statistical Computing

https://www.r-project.org

R package: DADA2 (version 1.8.0) Callahan et al., 2016 https://bioconductor.org/packages/

release/bioc/html/dada2.html

R package: DESeq2 (version 1.26.1) Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

R package: phyloseq (version 1.28.0) McMurdie and Holmes,

2013

https://bioconductor.org/packages/

release/bioc/html/phyloseq.html

R package: randomForest (version 4.6-16) Breiman, 2001 https://cran.r-project.org/web/

packages/randomForest/index.html

R package: vegan (version 2.5-7) https://cran.r-project.org/web/

packages/vegan/index.html

R package: PAPi Aggio et al., 2010 https://www.bioconductor.org/

packages//2.12/bioc/html/PAPi.html

R package: Mimosa (version 2.0) Noecker et al., 2016 https://borenstein-lab.github.io/MIMOSA2shiny

Rstudio (version) Rstudio https://www.rstudio.com/

SAMSA2 (version 1.0) Westreich et al., 2018 https://github.com/transcript/samsa2

Subread (featureCounts) (version 1.6.2) Liao et al., 2014 https://bioinf.wehi.edu/au/featureCounts

Trimmomatic (version 0.36) Bolger et al., 2014 https://www.usadellab.org/cms?

page=trimmomatic

Other

6550 iFunnel Q-TOF LC/MS Agilent G6550BA

Accuspin Micro17 Microcentrifuge Fisher Scientific 13-100-675

Acquity UPLC columns,

BEH C18, 1.7 mM (2.1x100mm)

Waters 186002352

Attune NxT Flow Cytometer Invitrogen N/A

ChemiDoc MP Imaging System BioRad 12003154

Class II Type A2 Biological Safety Cabinet Labguard NU-540

CleanPrep PCR Workstation MyStaire MY-DB24

ContourNext� EZ Glucose Meter Contour N/A

ContourNext� EZ Glucose Meter Strips Contour N/A

Electrospray Ionization Source Agilent G1948B

GyroMax 737 Incubator Amerex N/A

Insulin Syringe, 0.5mL, 28G BD 329461

Insulin Syringe, 1mL, 26G BD 329652

Laboratory Rodent Diet 5001 LabDiet 0001319

Lo-Bind 96-well plate, skirted Eppendorf 30129512

Lo-Bind Microcentrifuge Tubes, nuclease-free Eppendorf 22431021

Polypropylene Feeding Tubes, 20 ga x 30mm Instech FTP-20-38

(Continued on next page)
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QE Basic, Exactive Hybrid

Quadrupole-Orbitrap MS

Thermo Fisher Scientific IQLAAEGAAPFALGMBDK

Qubit 3.0 Fluorometer Thermo Fisher Scientific Q33216

SpectraMax M3 Multi-Mode Microplate Reader Molecular Devices 89429-536

T100 Thermal Cycler BioRad 1861096

Vanquish Autosampler Thermo Fisher Scientific 8308123
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter

Belenky (peter_belenky@brown.edu).

Materials availability
This study did not generate new, unique reagents.

Data and code availability

d Illumina sequencing read data have been deposited at the NCBI Short Read Archive (SRA) and are publicly available as of the

date of publication. Accession numbers are listed in the key resources table. LC-MS/MS and GNPS data have been deposited

toMassIVE: https://massive.ucsd.edu andGNPS: https://gnps.ucsd.edu, respectively, and are publicly available as of the date

of publication. DOIs are listed in the key sources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal housing
Experimental procedures involvingmicewere conducted in accordance with protocols approved by the Institutional Animal Care and

Use Committee (IACUC) of Brown University. Five-week-old male C57BL/6J mice were purchased from the Jackson Laboratories

(Bar Harbor, ME, USA) and given a two-week habituation period immediately following their arrival at Brown University. All animals

were cohoused together in specific-pathogen-free (SPF), temperature controlled (21 ± 1.1�C), and 12-hour light/dark cycling condi-

tions within BrownUniversity’s animal care facility, while being fed a standard chow (Laboratory Rodent Diet 5001, LabDiet, St. Louis,

MO, USA). After habituation, mice were randomized into new cages to reduce potential cage effects.

Bacterial strains
S. enterica Typhimurium SL1344 (GFP+, AmpR) was generously donated by Dr. Venessa Sperandio (University of Texas, South-

western). Cells were grown at 37�C under shaking aerobic conditions in Luria-Bertani (LB) broth containing ampicillin (100 mg/

mL). Colony forming units (CFU) were quantified on LB agar plates containing ampicillin (100 mg/mL). Because S. enterica Typhimu-

rium SL1344 constitutively expresses green-fluorescent protein, CFU counts were confirmed by UV-imaging using the ChemiDoc

Imaging System (Bio-Rad, Hercules, CA, USA).

METHOD DETAILS

Animal experiments
All animal work was conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC)

of Brown University. To induce HG, 7-week-old male C57BL/6Jmice were fasted for 4-6 hours, then given an intraperitoneal injection

of either Na-Citrate buffered streptozotocin (STZ) (150 mg/kg, pH 4.5) or a Na-Citrate sham (pH 4.5). All mice were given overnight

supplementation of 10% sucrose water to avoid post-procedural hypoglycemia. Sucrose water was then replaced with standard

filter-sterilized water the following morning. Two days post-injection, fasting blood glucose was assessed in all mice using the

CONTOUR�NEXT blood glucose monitoring system (Bayer AG, Whippany, NJ, USA). Mice with HG (fasting blood glucose R

250 mg/dL) were selected for subsequent ATB treatment along with NG controls. 24-hours after glycemic assessment, all mice

were randomized again to reduced potential cage effects and given either amoxicillin (25 mg/kg/day) or a pH-adjusted vehicle via
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filter-sterilized drinking water ad libitum for 24 hours (Cabral et al., 2019). Mice were subsequently sacrificed and dissected to collect

blood, tissues, and cecal contents. Cecal contents were weighed then divided to be processed according to their downstream appli-

cation (nucleic acid extraction, Q-TOF-MS, or LC-MS/MS). Exact processing methods are described in each application section

below.

The 16S ribosomal RNA sequencing, whole metagenome sequencing, metatranscriptomic sequencing, metabolomics, and infec-

tion studies are the result of independent biological replicates conducted several months apart from one another. The 16S rRNA

sequencing results were derived from two independent animal experiments performed in 2017 and 2018. Whole metagenomic

sequencing results were derived from two independent animal experiments performed in 2018 and 2019. Metatranscriptomic results

were paired from respective metagenomic samples. Metabolomics data were acquired from a separate animal experiment per-

formed in 2020. Finally, infection data were acquired from two independent animal experiments performed in 2020 and 2021.

Multi-omic analysis: Pipelines/purpose/scope
Our multi-omic approach to microbiome analysis features the combinatory usage of the Kraken2 and Bracken annotation pipelines

for wholemetagenomic sequencing (Lu et al., 2017;Wood et al., 2019), and theHMPUnifiedMetabolic Analysis Network (HUMAnN2)

(Franzosa et al., 2018) and Simple Annotation of Metatranscriptomes by Sequencing Analysis (SAMSA2) pipelines for metatranscrip-

tomics (Westreich et al., 2018). Combined utilization of these pipelines facilitates examination of species-level taxonomic shifts

(Kraken2/Bracken), community-level changes in transcript abundances (SAMSA2) and community-level gene expression that is

normalized to the abundance of each taxon (HUMAnN2). We also used the pipeline developed by Deng et al. (Deng et al., 2018)

to examine species-level transcriptional responses to STZ and amoxicillin challenge for high-abundance and transcriptionally active

members of the microbiota.

Sequencing pipelines were used in conjunction with both quadrupole flow injection electrospray time-of-flight mass spectrometry

(Q-TOF-MS) (Fuhrer et al., 2011) and liquid chromatography tandemmass spectrometry (LC-MS/MS) paired with spectral annotation

and networking analysis via theGlobal Natural Products Social Metabolic Network (GNPS; http://gnps.ucsd.edu) (Wang et al., 2016).

While recent advances in mass spectrometry methods have vastly increased the range and accuracy of metabolite detection, no sin-

gle analytical method is currently capable of capturing the entirety of small molecules in a complex biological sample (Luan et al.,

2019). Thus, we opted to increase our metabolite coverage through the combinatory use of a tandem (LC-MS/MS) and a high-res-

olution (Q-TOF-MS) method (Chen et al., 2019). The Q-TOF-MS data is presented at themetabolite level where unknown features are

ignored. For pathway-level comparisons, available Kyoto Encyclopedia of Genes and Genomes compound identifiers were used to

perform Pathway Activity Profiling (Aggio et al., 2010) of known features (Table S3). A deeper metabolome analysis including un-

knownmolecules or relatedmetabolites to known compounds is presentedwith the and data originating from our LC-MS/MSdataset

using GNPS cluster identification.

Finally, integration of transcriptomic (HUMAnN2) andmetabolomic (Q-TOF-MS) data was performed using the R implementation of

Model-based Integration of Metabolite Observations and Species Abundances (Noecker et al., 2016). This software calculates the

potential metabolic capacity of a microbiome by examining which enzymatic reactions are present in a community (i.e., the sum

of all synthetic and degradation machinery present). This output is then compared against observed metabolite variations from

KEGG-annotated metabolomics data.

Nucleic acid extraction and purification
For nucleic acid extraction, cecal contents were transferred to ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo Research, Irvine, CA,

USA) Collection Tubes containing DNA/RNA Shield. These tubes were then processed via vortex at maximum speed for 5 minutes to

homogenize cecal contents, which were subsequently placed on ice until permanent storage at �80�C. Using the parallel extraction

protocol as per the manufacturer’s instructions, the ZymoBIOMICS DNA/RNA Miniprep Kit was used to isolate total nucleic acids

(DNA and RNA) from cecal slurry. Total DNA/RNA were eluted in nuclease-free water and quantified using the dsDNA-HS and

RNA-HS kits on the Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

16S rRNA amplicon generation and sequencing
The V4 hypervariable region of the 16S ribosomal RNA was amplified from extracted total DNA using the 806R and 515F barcoded

primers published under the Earth Microbiome Project (Caporaso et al., 2012; Thompson et al., 2017). Amplicons were generated

using Phusion high-fidelity polymerase and the following cycling protocol: 98�C for 30 s initial denaturation, then 25 cycles of

98�C for 10 s (denaturation), 57�C for 30 s (annealing), and 72�C for 30 s (extension). This was followed by a final extension of

72�C for 5 minutes. Amplicon libraries were submitted to the Rhode Island Genomics and Sequencing Center at the University of

Rhode Island (Kingston, RI, USA) for pair-end sequencing (2x250 bp) on the IlluminaMiSeq platform using the 500-cycle kit with stan-

dard protocols. We obtained an average of 11,511 ± 10,632 reads per sample for sequences related to Figures 1 and S1, and an

average of 6,167 ± 3,498 reads per sample for sequences related to Figures 7 and S5.

16S rRNA read processing and analysis
Raw reads underwent quality filtering, trimming, de-noising and merging using the R (version 3.5.0) package implementation of

DADA2 (version 1.8.0) (Cabral et al., 2020; 2019; Callahan et al., 2016). The resulting ribosomal sequence variants underwent
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taxonomic assignment by using the assignTaxonomy function in DADA2 with the RDP Classifier algorithm with RDP training set 18

(Wang et al., 2007). Both a (Shannon) and b (Bray-Curtis Dissimilarity) diversity were calculated using the R package phyloseq

(version 1.24.2) (McMurdie and Holmes, 2013).

Metagenomic/transcriptomic library preparation
Libraries for metagenomics and metatranscriptomics were prepared as described in our recent work (Cabral et al., 2020). We pre-

paredmetagenomic libraries fromDNA (100 ng) using theNEBNext�Ultra II FSDNA Library Prep Kit (NewEngland BioLabs, Ipswich,

MA, USA) and the > 100 ng input protocol as per the manufacturer’s instructions, which generated a pool of fragments whose

average size was between 250 and 500 bp. Meanwhile, we prepared metatranscriptomic libraries from total RNA (%1 ug) using a

combination of the MICROBExpress kit (Invitrogen, Carlsbad, CA, USA), NEBNext� rRNA Depletion Kit for Human/Mouse/Rat

(New England BioLabs, Ipswich, MA, USA), and the NEBNext�Ultra II Direction RNA Sequencing Prep Kit as per the manufacturers’

instructions. This generated a pool of fragments with an average size between 200 and 450 bp. Both metagenomic and metatran-

scriptomic libraries were pair-end sequenced (2x150 bp) on the Illumina HiSeq X Ten platform, yielding an average of 1,464,061 ±

728,330 reads per metagenomic sample and 35,884,874 ± 27,059,402 reads per metatranscriptomic sample.

Metagenomic/transcriptomic read processing
Rawmetagenomic andmetatranscriptomic reads underwent trimming and decontamination using KneadData (version 0.6.1) as pre-

viously described (Cabral et al., 2020; 2019; McIver et al., 2018). Illumina adaptor sequences were removed using Trimmomatic

(version 0.36), then depleted of reads that mapped to C57BL/6J, murine mammary tumor virus (MMTV, accession NC_001503)

and murine osteosarcoma virus (MOV, accession NC_001506.1) using Bowtie2 (version 2.2) (Bolger et al., 2014; Cabral et al.,

2020; Langmead and Salzberg, 2012). Metatranscriptomic reads were additionally depleted of sequences that aligned to the SILVA

128 LSU and SSU Parc ribosomal RNA databases as previously described (Cabral et al., 2020; 2019; Pruesse et al., 2007).

Taxonomic classification of reads
We taxonomically classified trimmed and decontaminated metagenomic reads against a database of all completed bacterial,

archaeal, and viral genomes contained within NCBI RefSeq using Kraken2 (version 2.0.7-beta, ‘‘Kraken2 Standard Database’’)

with a k-mer length of 35 (Wood et al., 2019). Bracken (version 2.0.0) was then used to calculate phylum- and species-level abun-

dances from Kraken2 reports, and the R package phyloseq (version 1.28.0) was used to calculate a- and b-diversity metrics (Lu

et al., 2017; McMurdie and Holmes, 2013).

We then performed differential abundance testing on species-level taxonomic assignments (Cabral et al., 2020; 2019). First, low-

abundance taxa (< 1,000 reads inR 20% of samples) were removed, then differential abundance testing of filtered counts was per-

formedwith the DESeq2 package (version 1.24.0) using default parameters (Love et al., 2014). All p values were corrected formultiple

hypothesis testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted p value of less

than 0.05 were considered statistically significant.

Metatranscriptomic analysis: SAMSA2
Weused amodified version of the Simple Annotation ofMetatranscriptomes by Sequences Analysis 2 (SAMSA2) pipeline to annotate

trimmed and decontaminated metatranscriptomics reads as previously described (Cabral et al., 2020; 2019; Westreich et al., 2018).

This modified pipeline involves implementation of the Paired-End Read Merger (PEAR) utility to generate merged reads and DIA-

MOND (version 0.9.12) aligner algorithm (Buchfink et al., 2014; Zhang et al., 2014) to generate alignments against RefSeq, SEEDSub-

system, and CAZyme databases (Cantarel et al., 2009; Overbeek et al., 2013). The resulting alignments were subjected to differential

abundance testing using DESeq2 (version 1.24.0) with standard parameters and Benjamini-Hochberg multiple hypothesis testing

correction (Benjamini and Hochberg, 1995; Love et al., 2014). Features with an adjusted p value of less than 0.05 were considered

statistically significant.

Metatranscriptomic analysis: HUMAnN2
We used the HMP Unified Metabolic Analysis Network 2 (HUMAnN2, version 0.11.1) pipeline to assess the impact of STZ-based HG

and amoxicillin treatment on gene expression within the gut microbiome (Franzosa et al., 2018). We supplied the taxonomic profiles

generated for each sample into the HUMAnN2 algorithm in order to assure consistent taxonomic assignment between paired sam-

ples (Segata et al., 2012; Cabral et al., 2020; 2019). Then, using HUMAnN2, we generated MetaCyc pathway abundances and used

these to estimate community-level gene expression and normalized this to metagenomic abundance using the Witten-Bell method

(Witten and Bell, 1991). Unstratified smoothed RPKM values were converted to relative abundances then analyzed using linear

discriminant analysis as described (Cabral et al., 2020; 2019). This was performed with the LEfSe (version 1) toolkit hosted on the

Huttenhower Galaxy server (Segata et al., 2011).

Single-species transcriptomics
We performed transcriptional analysis at the individual species level using a modified version of the pipeline developed by Deng et al.

(Deng et al., 2018). First, species whose metagenomic abundance was subjected to an interaction between host glycemia and ATB
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usage were selected. We then calculated to total RNA read abundance for each of these species and performed transcriptional anal-

ysis only on those with 500,000 or greater reads per sample (Table S5). First, reads that mapped to candidate taxa were extracted

from our metatranscriptomes using the BBSplit utility within BBMap (version 37.96) (Bushnell, 2014). Reads from B. theta,

O. valericigenes, andO. spp. PEA192 were aligned to their corresponding reference genomes using BWA-MEM (version 0.7.15) (Ca-

bral et al., 2020; Li and Durbin, 2010). Then, we used subread program (version 1.6.2) command featureCountswas used to generate

a count table from alignments, and this count table was assessed for differential abundance using DESeq2 (Liao et al., 2014; Love

et al., 2014). All p values were corrected for multiple hypothesis testing using the Benjamini-Hochberg method (Benjamini and Hoch-

berg, 1995). Features with an adjusted p value of less than 0.05 were considered statistically significant.

Metabolite extraction and annotation: Q-TOF-MS
For untargeted Q-TOF-MS metabolomics, cecal samples were flash frozen upon collection and stored at �80�C until extraction. To

extract metabolites, flash-frozen samples were removed from �80�C and placed on ice. A 10-20 mg sample was taken and sub-

merged in 300 ml of fresh-made LC/MS-grade acetone:isopropanol (2:1) extraction solvent, then homogenized via vortex two times

for 15 s each at 4�C. Supernatant extraction solvent was transferred to a new tube and was placed at�80�C temporarily. The 300 ml

wash and homogenization was repeated, and this supernatant was then added to the original aliquot. Combined samples underwent

centrifugation at 4�C for 10 minutes at 13,500 x G. After centrifugation, supernatant was moved to a fresh microcentrifuge tube,

sealed with parafilm, and placed on dry ice before immediate delivery to General Metabolics Inc. (Boston, MA, USA) where samples

were stored at �80�C.
Extracted metabolites were quantified as described in Fuhrer et al. (Fuhrer et al., 2011) using flow injection Time-of-Flight mass

spectrometry on the Agilent G6550A iFunnel Quadrupole Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA, USA) equip-

ped with a dual AJS electrospray ionization source operated in negative ion mode. Samples were injected at a flowrate of 0.15 mL/

minute in a mobile phase containing isopropanol and water (60%:40% ratio) buffered in 1mM Ammonium Fluoride, 15nM HP-0921,

and 5mM homotaurine. Mass spectra data was recorded in 4 GHz high-resolution Ms mode at a rate of 1.4 spectra/second. We de-

tected 714.3 ms/spectra and 9652 transients/spectra between 50 and 1000 m/z. Source operating parameters included a temper-

ature of 225�C, drying gas rate of 11 L/min, nebulizer pressure of 20 psi, sheath gas temperature of 350�C and flow of 10 L/min. The

source Vcap and Nozzle voltage were 3500V and 2000V. The ms TOF operating parameters include fragmentor, collision, RF peak-

to-peak voltages of 350V, 0V, and 750V, respectively and the Skimmer was disabled.

Data processing and analysis was performed as described by Fuhrer et al. in MATLAB (The Mathworks, Natick, MA, USA) using

functions from the following toolkits: Bioinformatics, Statistics, Database, and Parallel Computing (Fuhrer et al., 2011). Ions were

additionally referenced against the Human Metabolome Database in addition to KEGG. Data analyses were run on an automated

embedded platform by General Metabolics Inc. then delivered upon run completion. Finally, Principal Coordinate Analysis was per-

formed on ion intensities by using Bray-Curtis dissimilarity paired with PERMANOVA analysis using the phyloseq (version 1.26.1) R

package and subsequently visualized in Prism GraphPad (version 9.0.2) (McMurdie and Holmes, 2013).

Metabolite extraction and annotation: LC-MS/MS
For untargeted LC-MS/MSmetabolomics, cecal samples were placed into 300 ml of LMCS-grade methanol then supplemented with

600 ml of 70% cold LC-MS-grademethanol. Samples were homogenized via vortex for 5 minutes, then placed at 4�C for an overnight

incubation. Following incubation, samples were subjected to centrifugation at 1000 x G for 3 minutes. 500 ml of the supernatant was

moved to a sterile microcentrifuge tube and stored at �80�C for long-term preservation.

Samples were thawed and diluted 1:1 (v/v) in 50% methanol prior to LC-MS/MS. Liquid chromatography was performed using a

Vanquish Autosampler (Thermo Scientific, Waltham,MA, USA) and an Acquity UPLC column (Waters, Milford, MA, USA). Mass spec-

trometry was performed using a Q Exactive� Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific, Waltham, MA,

USA) in positive ion mode. All analysis used a 5 mL injection volume. Samples were eluted via water-acetonitrile gradient (98:2 to

2:98) containing 0.1% formic acid at a 0.4 mL min-1 flow rate. RAW files were converted via GNPS Vendor Conversion and mined

with MZmine (ver. 2.52) prior to submission for feature based molecular networking (Pluskal et al., 2010; Nothias et al., 2020). Briefly,

MS1 and MS2 feature extraction was performed for a centroid mass detector with a signal threshold of 5.0 3 105 and 5.0 3 104

respectively. Chromatogram builder was run with an m/z tolerance of 0.02 Da or 7 ppm and a minimum height of 1.0 3 105. Then,

chromatograms were deconvoluted utilizing a baseline cut-off algorithm of 1.03 105 and a peak duration range of 0 to 1.00 minutes.

Following this, isotopic peaks were then grouped with anm/z tolerance of 0.02 Da or 7 ppm and a retention time percentage of 0.1.

The Join Aligner Module was then utilized with a 0.02 Da or 7 ppm m/z tolerance and a retention time tolerance of 0.1 minutes.

Feature-basedmolecular networking onGNPSwas performedwith the following parameters: precursor and fragment ionmass toler-

ance 0.02 Da; minimum cosine of 0.7 and minimum matched peaks of 4, all others were defaults. Library searching was performed

with the same parameters as described above.

Analysis of Q-TOF-MS metabolite data
Differentially abundant metabolites were identified using the DESeq2 package (version 1.22.2) with standard parameters (Love et al.,

2014). All p values were corrected for multiple hypothesis testing using the Benjamini-Hochberg method (Benjamini and Hochberg,

1995). Features with an adjusted p value of less than 0.05 were considered statistically significant. KEGG compound identifiers that
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were feature-matched by the Bioinformatics MATLAB toolkit were used to create a list of all KEGG IDs associated with differentially

abundant metabolites. This list (and associated ion intensities) were used to perform KEGG pathway enrichment analysis using the

PAPi R package (version 1.22.1) with standard parameters (Aggio et al., 2010). Pathways with an adjusted p value of less than 0.05

were considered statistically significant.

To link our transcriptional data and metabolomics data, we used the R package implementation of Mimosa (version 2.0.0) and the

publicly availably KEGG reaction database (circa 2010) (Noecker et al., 2016). The configuration table settings were as follows: File1)

taxon-stratified output from HUMAnN2 based of KEGGOrthology annotation. File2) per-sample ion counts of differentially abundant

Q-TOF-MSmetabolites. File1_type) ‘‘taxon stratified KO abundance (HUMAnN2 or PICRUSt/PICRUSt2.’’ Ref_choices) PICRUSt KO

genomes and KEGG metabolic model. metType) KEGG compound ID. data_prefix) complete file path to the KEGG reaction data-

base. Vsearch_path) complete file path to the vsearch executable (https://github.com/torognes/vsearch). The run_mimosa2 function

was used with standard parameters to calculate the community metabolic potential within each sample, score this against the input

metabolite table, and calculate the level of metabolic variation attributable to individual taxa using a linear rank regression as

described (Noecker et al., 2016). All data tables produced by the run_mimosa2 function were then exported and data visualization

was performed in Prism GraphPad (version 9.0.2). ‘‘Positive’’ metabolites have observed abundances that match the predictive

model. ‘‘Negative’’ metabolites are those whose observed abundance diverges from the predictive model.

Analysis of LC-MS/MS metabolite data
First, principal coordinate analysis was performed on ion intensities by using Bray-Curtis dissimilarity paired with PERMANOVA anal-

ysis. These analyses were performed using the phyloseq (version 1.26.1) R package and subsequently visualized in Prism GraphPad

(version 9.0.2) (McMurdie and Holmes, 2013). Random forest classification models on treatment mouse treatment group were then

generated using the randomForest (version 4.6-16) R package (Breiman, 2001). Variable importance plots from themodels were used

to identify metabolites that best contributed to group classification. Each metabolite feature of interest was then checked for anno-

tation in GNPS, if not directly annotated from MS/MS library searching, the node of interest was identified in the molecular network

and assessed for spectral similarity to other annotated nodes. This provided a molecular family annotation of each unknown cluster.

Models classifying HG mice treated with amoxicillin and not treated with amoxicillin resulted in out-of-bag prediction error of 2.7%.

Classification of nonHG treated with amoxicillin and not treated with amoxicillin resulted in out-of-bag prediction error of 6.25%.

Classification of HG mice and nonHG mice, both treated with ATBs, resulted in out-of-bag prediction error of 7.96%. Classification

of HG mice and nonHG mice, neither treated with ATBs, resulted in out-of-bag prediction error of 16.67%.

Cecal glucose assessment
Cecal glucose levels were assessed using the Abcam Glucose Detection Kit (Abcam, Cambridge, United Kingdom). First, cecal ma-

terial was weighed out and resuspended in glucose assay buffer at a concentration of 100 mg/mL, then homogenized via vortex until

no visible clumps were present. Samples were spun at maximum speed for 1 minute to pellet any residual debris, and 500 ml of su-

pernatant was transferred to a Corning Costar Spin-X 0.22 mM centrifuge tube filter (Corning Brand, Corning, New York, USA). The

costar tubes containing supernatant were spun via centrifugation at 15,000 x G for 10 minutes, after which up to 500 ml of flow-

through was transferred to an abcam 10kD spin column to deproteinize the samples. Samples were again spun at 15,000 x G for

10 minutes and flow-through was quantified using the Abcam Glucose Assay kit as per the manufacturer’s instructions.

Plasma cytokine profiling
Upon animal sacrifice, whole blood was collected via cardiac puncture and placed in a microcentrifuge tube containing up to 15ml of

1X heparin. Collection tubes were then spun via centrifugation at 13,000 x G for 10 minutes to isolate plasma. The plasma-containing

supernatant was transferred to a new microcentrifuge tube and frozen at �80�C until ready to process. Once ready, samples were

thawed on ice, split into a working aliquot and a re-frozen stock aliquot. The working aliquot was assessed for signatures of inflam-

mation in mice using the LEGENDplex Mouse Inflammation Panel (13-plex) (BioLegend, San Diego, CA) flow cytometry kit as per the

manufacturer’s instructions. Samples were processed on the Attune NxT Flow Cytometer (ThermoFisher, Waltham, MA) and subse-

quently analyzed using the LegendPlex cloud software cool (BioLegened, San Diego, CA). This panel allows for simultaneous

profiling of IL-1a, IL-1b, IL-6, IL-10, IL-12p70, IL-17A, IL-23, MCP-1, IFN-b, IFN-g, TNF-a, and GM-CSF. Cytokine concentrations

were compared across samples using Welch’s ANOVA with Dunnet T3 test for multiple hypothesis testing. Only cytokines with a

p value < 0.05 were included in the manuscript discussion.

Lipocalin-2 quantification
Cecal lipocalin-2 levels were assessed using the Mouse Lipocalin-2/NGAL DuoSet ELISA kit (R&D Systems, Minneapolis, MN). First,

flash-frozen cecal contents were weighed and reconstituted into a freshly made working solution of 1X phosphate buffered saline

(PBS) and 0.1% Tween 20 at a concentration of 100 mg/mL. This working solution was vigorously pipetted to aid in resuspension.

Samples were mixed by vortex at max speed for at 5 minutes until fully homogenized, then spun via centrifugation at 12,000 rpm for

10 minutes. The supernatant was transferred to sterile microcentrifuge tubes and used as input for the DuoSet kit. Lipocalin-2 was

quantified from these samples as per themanufacturer’s instructions. Concentrationswere compared across samples usingWelch’s

ANOVA with Dunnet T3 test for multiple hypothesis testing.
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GI histopathology assessment
During animal necropsy an approximate 1-inch section of the distal colon was collected and fixed in methacarn. Fixed tissues were

incubated at room temperature for 24 hours, then washed twice with a 70% ethanol solution. Samples were placed in 70% ethanol

and stored in a light-safe box at 4�C until ready to process. To process, tissues were transferred to histology cassettes, submerged in

70% ethanol, and submitted to the Molecular Pathology Core at Brown University. Core staff embedded the sample cassettes in

paraffin, then sectioned the blocks at 4-5 mM thickness. Tissues sections were mounted on microscopy slides and stained with he-

matoxylin and eosin. Stained slides were dried for 24 hours before being shipped to the University of Texas MD Anderson Cancer

Center for pathology scoring.

Enteric pathogen challenge
Salmonella enterica serovar Typhimurium SL1344 was grown overnight in 5 mL Luria-Bertani (LB) broth supplemented with fresh-

made ampicillin (100 mg/mL) and grown at 37�C. This culture was diluted 1:1000 into fresh LB+ampicillin (100 mg/mL) the morning

of infections and grown until cells were approximately at mid-log phase (OD600 = 0.3-0.4).

Rather than sacrificing animals after the 24-hours of amoxicillin treatment as outlined above (See Animal Procedures), animals

were given an additional 48 hours of ad libitum amoxicillin within their drinking water followed by ATB-free filter-sterilized water

for 24 hours. Subsequently, animals were moved to clean cages and placed under a 4-hour fast, at which point they were infected

with an inoculum between 102 and 106 cells/dose via oral gavage (volume % 200 ml). Animals were transferred to clean cages and

weighed daily throughout the course of pathogen challenge. Fecal samples were collected daily then resuspended in 1mL of 1X PBS

and homogenized via vortex at maximum speed for at least 5 minutes. Fecal slurry was then serially diluted and plated onto ampi-

cillin-supplemented (100 mg/mL) LB agar plates and grown at 37�C for 24 hours. After growth, colonies were counted and the total

colony forming units (CFU) were quantified per gram of feces to assess pathogen burden. To quantify non-intestinal S. enterica

burden, fresh liver and spleen were collected during post-sacrifice necropsy, weighed, then placed into 1mL of 1X PBS, mixed

via vortex for 5 minutes, serially diluted, and plated onto LB agar plates supplemented with ampicillin (100mg/mL). CFUs were quan-

tified 24 hours later.

During the course of infection, any animal that experienced a loss of R 20 percent of total body weight was sacrificed as per our

IACUC protocol. These qualified as ‘‘lethality events’’ and were logged accordingly.

QUANTIFICATION AND STATISTICAL ANALYSIS

Specific details of the statistical analyses for all experiments are outlined in the figure legends and Results section. Sample numbers

represent biological replicates, and instances of technical replicates are specifically stated in corresponding figure legends. LEfSe

(version 1.0) was used to analyzeMetaCyc pathway abundance data generated byHUMAnN2 on theGalaxy web server using default

settings (http://huttenhower.sph.harvard.edu/galaxy). Metatranscriptomic outputs generated by SAMSA2 and single-species

sequencing, along with Q-TOF-MS abundances were subjected to differential abundance testing using the DESeq2 package

(1.24.0) in R (version 3.5.2) under default parameters and included contrast:interaction comparisons (Love et al., 2014). All DESeq2

results were corrected using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to account for multiple hypothesis

testing and significance was considered when the adjusted p value was below 0.05. LC-MS/MS Random Forest testing was con-

ducted using the R package implementation (Breiman, 2001). Permutational ANOVA calculations weremade using the vegan R pack-

age (version 2.5.2). ANOVA, unpaired t tests, and Mann-Whitney U tests were performed in Prism Graphpad (version 9.0) without

sample size estimation.
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Figure S1. The impact of streptozotocin treatment on host physiology and microbiome composition without 
additional. Related to Figure 1. 

A. Fasting blood glucose of individual mice before STZ injection (Day 0) and on 2 days intervals for up to 14 
days post-injection. The Day 14 time-point is representative of the final day of experiments described in 
Figure 7.  

B. Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. Data represent 
averaged concentrations + SEM for cytokines whose concentration falls between 0 and 23 pg/mL. 

C. Plasma cytokine concentrations in STZ-treated and control mice 3 days post-injection. Data represent 
averaged concentrations + SEM for cytokines whose concentration falls between 12 and 160 pg/mL. 

D. Plasma concentration of IFN-γ in STZ-treated and control mice +/- AMX 4 days after STZ injection.  
E. Pathological assessment of fixed, H&E-stained colon sections 3 days after STZ injection.  
F. Cecal lipocalin-2 concentrations. Data represent average concentrations + SEM. 
G. Alpha diversity as measured by the Shannon diversity index for STZ-treated and control animals 3 days 

post-injection. Data represent average + SEM.  
H. Phylum-level taxonomic composition of the cecal microbiome 3 days post STZ-injection. Data represent 

average abundance + SEM. 
I. Phylum-level taxonomic composition of the cecal microbiome in STZ and control mice +/- AMX 

treatment. Data represent average abundance + SEM. 
For A: N = 5 or 6 per group 
For B & C: N = 4 per group; *, P < 0.05; unpaired T-test with Welch’s correction 
For D & F: N = 4 or 5 per group; *, P < 0.05; Welch’s ANOVA with Dunnet T3 test for multiple hypothesis testing 
For E: N = 4 to 6 per group. Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3: 
moderate affecting mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 75%).  
For G -I: N = 3 to 5 per group; ; *, P < 0.05; unpaired T-test with Welch’s correction 





Figure S2. STZ-induced hyperglycemia modifies both the cecal metabolome and metatranscriptome. Related 
to Figure 2. 

A. Volcano plot of the cecal metabolome in STZ-treated mice relative to normoglycemic controls. Purple 
points represent differentially abundant metabolite features. Metabolites of interest are labeled. See Table 
S1 for full results (N = 6 per group, 2 technical replicates per mouse) 

B. KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ-treated mice 
compared to controls. Colors indicate whether the metabolites contributing to pathway scoring were 
enriched (red) or depleted (blue) in STZ-treated animals compared to controls. See Table S3 for full results.  

C. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster. 
Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is 
between STZ-treated mice and controls. See Table S2 for full results. 

D. Differentially abundant CAZyme transcripts in STZ-treated mice. Data represent log2 fold change relative 
to controls + SEM. See Table S4 for full results.  

E. Differentially abundant B. thetaiotaomicron transcripts after STZ treatment. Data represent log2 fold 
change versus controls + SEM See Table S5 for full results. 

For A – C: N = 6 per group, 2 technical replicates per sample 
For D & E : N = 4 per group 
For A, D, & E: Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 
For B: Significance = unpaired T-test p value < 0.05 
For C: *, P < 0.05; **, P < 0.01; ***, P < 0.001, **** P < 0.0001; unpaired T-test with Welch’s correction 



 



Figure S3. Streptozotocin impacts taxonomic composition after Amoxicillin treatment. Related to Figure 3.  
A. Average relative abundance of species from A after the removal of reads assigned to B. thetaiotaomicron. 

Data are represented as mean + SEM for each species 

B. Average relative abundance of reads assigned to Clostridiales bacterium CCNA10. 

C. Average relative abundance of reads assigned to Muribaculum intestinale. 

D. Average relative abundance of reads assigned to Acutalibacter muris. 

E. Average relative abundance of reads assigned to Flavonifractor plautii. 
F. Average relative abundance of reads assigned to Hungateiclostrideaceae bacterium KB18. 

G. Average relative abundance of reads assigned to Intestinimonas butyriciproducens. 

H. Average relative abundance of reads assigned to Oscillibacter species PEA192. 

I. Average relative abundance of reads assigned to Oscillibacter valericigenes 

J. Average relative abundance of reads assigned to Akkermansia muciniphila. 

For all panels: N = 5 to 8 per group 

For panels B-J, (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001, Welch’s ANOVA with Dunnet T3 test 

for multiple hypothesis testing). 





Figure S4: Streptozotocin modifies the metatranscriptomic and metabolomic responses of the gut microbiome 
to amoxicillin. Related to Figures 4 & 5. 

A. Differentially abundant level 2 SEED Subsystem transcripts in normoglycemic control mice after AMX 
treatment. Data represent log2 fold change relative to vehicle controls + SEM. See Table S7 for full results. 

B.  Differentially abundant level 2 SEED Subsystem transcripts in STZ-treated mice after AMX treatment. 
Data represent log2 fold change relative to vehicle controls + SEM. See Table S7 for full results. 

C. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster. 
Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is 
between AMX-treated mice and vehicle-treated mice for normoglycemic controls. See Table S2 for full 
results. 

D. Differentially abundant GNPS-annotated clusters that contain known metabolites within the cluster. 
Clusters were selected from the top-50 most relevant features via Random Forest Testing. Comparison is 
between AMX-treated mice and vehicle-treated mice for STZ-treated mice. See Table S2 for full results. 

For A & B: N = 4 per group; Differentially abundant = Benjamini-Hochberg adjusted p value < 0.05 
For C & D: N = 6 per group, 2 technical replicates per sample; (*, P < 0.05; **, P < 0.01; ***, P < 0.001, **** 
P < 0.0001); unpaired T-test with Welch’s correction 





Figure S5: STZ and amoxicillin dual treatment worsens outcomes during Salmonella enterica infection. 
Related to Figure 7.  

A. Salmonella enterica Typhimurium colony forming units (CFU) per gram of hepatic and splenic tissue in 
control AMX(+/-), and hyperglycemic AMX(+/-) mice over the course of infection with an inoculum of 
1x103 cells. Data represent mean CFU + SEM. 

B. Pathological assessment of fixed, H&E-stained colon sections 4 days after infection with an inoculum of 
1x103 cells.  

C. Plasma concentration of IL-1α in STZ-treated and control mice +/- AMX 
D. Plasma concentration of IL-6 in STZ-treated and control mice +/- AMX 
E. Plasma concentration of GM-CSF in STZ-treated and control mice +/- AMX 
F. Plasma concentration of IL-12p70 in STZ-treated and control mice +/- AMX 
G. Plasma concentration of IFN-β in STZ-treated and control mice +/- AMX  
H. Plasma concentration of IL-10in STZ-treated and control mice +/- AMX 
I. Plasma concentration of IL-17A in STZ-treated and control mice +/- AMX  
J. Principal Coordinates Analysis of Bray-Curtis Dissimilarity between uninfected controls and mice infected 

with an inoculum of 1x103 cells 24 hours post-infection. 
K. Alpha diversity as measured by the Shannon diversity index of fecal 16S rRNA reads. Data represent 

average score + SEM during infection time course after dosage with an inoculum of 1x103 cells. 
L. Phylum-level taxonomic composition of the fecal microbiome during infection time course after dosage 

with an inoculum of 1x103 cells. Data represent average abundance + SEM.  
For A - I: N = 4 to 7 per group 
For J: N = 3 to 10 per group 
For B: Inflammation (0: absent, 1: minimal, 2: mild affecting mucosa and sub-mucosa, 3: moderate affecting 
mucosa, 4: severe). Edema (0: < 10%, 1: 10-25%, 2: 25%-50%, 3: 50%-75%, 4: over 75%). 
For C – I: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch’s ANOVA with Dunnet T3 test for 
multiple hypothesis testing). 
For J: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; permutational ANOVA) 
For K: (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Welch’s ANOVA with Dunnet T3 test for 
multiple hypothesis testing) 
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