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Table Supplementary 1. Summary of induced pluripotent stem cell models for inborn errors of metabolism 

Disease 
OMIM 

number 

Gene  

(Mutation) 

Differentiated  

cell type 
Disease phenotype described Reference 

 

1.    Disorders of amino acid and peptide 
metabolism 

     

1.1. Urea cycle disorders and inherited 

hyperammonaemias 

     

1.1.1. Ornithine transcarbamylase deficiency 311250 OTC 
c.663+2T>G 

c.386G>A, 

r.299_386del and 

r.386_387ins386+1_384

+4 

 

Hepatic organoids Deregulated urea cycle activity. 

Ureagenesis is decreased. 

[1, 2] 

1.1.2. Citrullinaemia type1 215700 ASS1  

Exon 6, c.364-2 A>G, p. 

G259*; Exon 13, c.910 

C>T, p.R304W; 

c.1168G>A 

Hepatocyte, hepatic 

organoids 

Ureagenesis is decreased. 

Tricarboxylic acid (TCA) cycle 

metabolites are accumulated. 

Response to arginine treatment 

[3, 4] 

  

1.1.3. Argininosuccinic aciduria 207900 ASL  

c.557 G>A, p.R186Q; 

c.857 A>G, p. Q286R; 

c.655+1 G>A; c.857 

A>G, p.Q286R 

Endothelial cells Decreased nitric oxide (NO) 

signalling. Increased oxidative 

stress. Impaired angiogenesis in 
vitro and in vivo 

[5] 

  

1.1.4. Citrullinemia Type 2 

 

603859 SLC25A13 
851del4, p.R284fs 

(286X); IVS1ins3kb, 

p.A84fsc (585X) 

Hepatocyte Lack of urea production. Increased 

triglyceride levels. Peroxisome 

proliferator-activated receptors-α 

downregulated. Aberrant 

mitochondrial β-oxidation and 

abnormal mitochondrial structure 

[6] 
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1.2. Organic acidurias  

 

 

 

 

 

 

 

 

  

    

1.2.1. Propionic aciduria 

 

232000 PCCA 

c.1899+4_1899+7delAG

TA; p.C616_V633del; 

p.G477Efs*9 

 

Cardiomyocytes Reduced oxygen consumption. 

Accumulation of lipid droplets. 

Endoplasmic reticulum stress. 

Calcium perturbations 

[7, 8] 

  PCCB 

c.1218_1231del14ins12 

(p.G407 fs) 

Not performed Not performed [9, 10] 

1.2.2. Methylglutaconic aciduria 

 

1.2.2.1.  Methylglutaconic aciduria type II, 

Barth syndrome 

 

 

 

302060 

 
 
TAZ 
c.517delG; c.328 T>C, 

c.590 G>T; p.G197V, 

c.110-1; c.AG>AC; 

p.r.spl Ex2del?; c.170 

G>T; p.R57L 

 

 

Cardiomyocytes 

 

 

Abnormal cardiolipids biogenesis 

and mitochondrial function. 

Metabolic alterations and energy 

production. Rearrangements of 

respiratory chain complexes. 

Increased ROS production. 

Abnormal sarcomerogenesis. 

Severe defect in contractility 

 

 

[11-16] 

1.2.2.2.  Methylglutaconic aciduria type V 

 

610198 

 

DNAJC19 
IVS3-1G>C 

Cardiomyocytes Abnormal mitochondrial 

morphology. Mitochondrial 

dynamics imbalance 

[17] 

1.2.3. Aminoacylase deficiency 

 

     

1.2.3.1.  Aminoacylase 2 deficiency (Canavan 

disease) 

 

271900 ASPA Neural precursor cells 

(NPCs) 

Phenotype rescued after 

corrected NPCs transplantation 

into mouse model 

[18] 
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1.3. Disorders of the metabolism of branched-chain 

amino acids not classified as organic acidurias 

     

1.3.1. Maple syrup urine disease 

 

     

1.3.1.1.  BCKD E1 alpha subunit of deficiency 

 

248600 BCKDHA  
c.1280_1282 delTGG 

and c.632C>T) 

Not performed Not performed [19] 

1.3.1.2.  BCKD E1 beta subunit of deficiency 

 

248600 BCKDHB 
c.502C>T/p.R168C, 

c.965C>T/p.T322I 

Not performed Not performed [20] 

1.4. Disorders of phenylalanine or tyrosine 

metabolism 

     

1.4.1. Phenylalanine hydroxylase deficiency 

 

261600 PAH 
c.331 C>T; c.975 C>G 

Not performed Not performed [21] 

1.5. Disorders of ornithine or proline metabolism      

1.5.1. Ornithine aminotransferase deficiency 258870 OAT 
c.677 C>T; p.A226V 

Retinal pigment 

epithelium 

Very low OAT activity [22, 23] 

1.6. Disorders of serine, glycine or glycerate 

metabolism 

     

1.6.1. P protein deficiency 238300 GLDC 
c.1742C > G 

(p.Pro581Arg) and 

c.2368C > T 

(p.Arg790Trp) 

Not performed Not performed [24] 

1.7. Disorders of amino acid transport      

1.7.1. Lowe syndrome 309000 OCRL 
c.2582-1 G>T, c.2470-2 

A>G; 2179delC, 

c.2626dupA 

Neurons, kidney cells, 

neural progenitor cells 

F-actin and WAVE-1 expression 

altered. Cytoskeletal 

disorganization 

[25-28] 
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2. Disorders of carbohydrate metabolism 

     

2.1. Disorders of glyoxylate metabolism      

2.1.1. Primary hyperoxaluria type I 

 

260000 AGXT  

c.731 T>C; p.I244T 

c.508G>A (G170R) and 

c.364C>T (R122*) 

Hepatocytes Not performed [29-32] 

2.2. Glycogen storage disorders      

2.2.1. Glycogen storage disease type 1a, von 

Gierke 

 

232200 G6PC 
c.648G > T; p.Leu216  

Hepatocyte 
 

Intracellular glycogen 

accumulation, lipid accumulation 

and excessive production of lactic 

acid 

[33, 34] 

2.2.2. Glycogen storage disease type 1b, von 

Gierke 

 

232220 G6PT Hepatocytes and 

neutrophils 

Glycogen, lactate, pyruvate and 

lipid accumulation. Superoxide 

anion production. Increased 

annexin V binding. Activation of 

caspases 3 and 9 

[35]  

2.2.3. Glycogen storage disease type II, Pompe 

 

232300 GAA 
del ex18/del ex18; 

c.1935 C>A; 

c.1935 C>A/c.2040 +1 

G>T; 

p.D645E/c.1935 C>A; 

del Ex18/del525T; 

c.1062 C>G; 

p.Y354X/c.1935 C>A; 

IVS1-13 T>G/ del Ex18; 

1441delT/2237 G>A; 

c.796 C>T/c.1316 T>A; 

IVS1-13 T>G/ del525T; 

IVS1-13 T>G/ c.923 

A>T c.2560C > T 

(p.R854X); c.1822C>T, 

p.R608X; c.2662G>T, 

p.E888X 

Cardiomyocytes, skeletal 

muscle cells, neural 

progenitors cells, 

neurons, hepatocytes 

Increased lysosomal glycogen 

accumulation, mitochondrial 

dysfunction, multiple ultrastructure 

aberrances, large glycogen-

containing vacuoles, glycan 

processing abnormality, increased 

oxidative stress, suppressed 

mTORC1 activation 

[36-51] 
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2.2.4. Glycogen storage disease type V, McArdle 232600 PYGM 

c.148 C>T; p.R50Ter 

Not performed Not performed [52] 

2.2.5.    Glycogen storage disease type IX 

 

     

2.2.5.1.   Cardiac muscle phosphorylase kinase 

deficiency 

261740 PRKAG2 

c.905 G>A; p.R302Q; 

p.R531Q; p.N488I 

Cardiomyocytes Cellular enlargement. 

Electrophysiological irregularities. 

Glycogen accumulation. AMPK 

activity increased. Arrhythmic 

calcium handling. Increased twitch 

force 

[53-55] 

3. Disorders of fatty acid and ketone body 
metabolism 

 

     

3.1. Disorders of carnitine transport and the 

carnitine cycle 

     

3.1.1. Carnitine palmitoyltransferase II (CPTII) 

deficiency 

255110 CPT2 

1223delCT/c.1891 C>T; 

p.R631C 

Myocytes Palmitoylcarnitine accumulation [56] 

3.2. Disorders of mitochondrial fatty acid oxidation      

3.2.1. Very long-chain acyl-CoA dehydrogenase 

deficiency 

 

201475 ACADVL 
c. 848T >C 

(p.Val283Ala) 

c.1141_1143delGAG 

(p.Glu381del); 

c.104delC 

(p.Pro35Leufs*26) 

Cardiomyocytes Electrophysiological alterations [57, 58] 

3.2.2. Mitochondrial trifunctional protein deficiency 

 

143450 HADHA 
c.1528 G>C; p.E510Q 

Retinal pigment 

epithelium, 

cardiomyocytes 

Lipid accumulation. Inefficient 

pigmentation. Defect in tight 

junctions. Defective calcium 

dynamics and repolarization 

kinetics. Mitochondrial alterations 

[59, 60] 

4. Disorders of energy metabolism 
 

     

4.1. Disorders of pyruvate metabolism      
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4.1.1. Pyruvate kinase deficiency 266200 PKLR c.359 C>T/1168 

G>A; IVS9(+1) G>C 

Erythrocytes Energetic imbalance (ATP 

production impaired) 

[61] 

4.2. Mitochondrial respiratory chain disorders      

4.2.1. Respiratory chain disorders caused by 

mutations of mtDNA 

     

4.2.1.1.   Large-scale single deletion of mtDNA      

4.2.1.1.1. Pearson Syndrome 557000  Hematopoietic 

progenitors 

Iron granule deposition. 

Differences in growth, 

mitochondrial function vs control 

[62] 

4.2.1.1.2. Kearns Sayre Syndrome 530000  Neural progenitor cells, 

cardiomyocytes 

Not phenotype [62-65] 

      
4.2.1.2.   Point mutations of mtDNA      

4.2.1.2.1. Mitochondrial 

encephalomyopathy lactic acidosis and 

stroke-like episodes, MELAS 

540000 MT-TL1  

m.3243 A>G 

MT-TW  

m.5541 C>T 

mtDNA  

m.13513 G>A 

Neurons, myoblasts, 

myocytes, 

cardiomyocytes, neural 

progenitor cells, spinal 

cord organoids, retinal 

pigment epithelium 

Oxidative stress. Enhanced 

autophagy flux. Low mitophagy. 

ROS and intracellular calcium 

increased. Depolarization of 

mitochondrial membrane potential 

and reduction of mitochondrial 

ATP production. Small fragmented 

mitochondria. Neuronal maturation 

impaired. Lower synaptic density. 

Neuronal network activity and 

synchronicity impaired 

[66-76] 
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4.2.1.2.2. Myoclonic epilepsy associated 

with ragged red fibres, MERRF 

545000 MT-TK 
m.8344 A>G 

Inner ear hair cells 

(HCs), cardiomyocytes, 

neural progenitor cells 

Elevated ROS production. 

Fragmented mitochondria and 

impaired functionality. Altered 

antioxidant gene expression. 

Failed to acquire mature 

stereociliary bundles, more single 

cilia with a shorter length and 

fewer stereociliary bundle-like 

protrusions 

[77-81] 

4.2.1.2.3. Leber Hereditary Optic 

Neuropathy, LHON 

535000 MT-ND4  

m.11778 G>A, 

m.11778 G>C, m.14484 

T>C; m.4160 T>C; 

m.3460G > A/MT-ND1 

Retinal ganglion cells Defective neurite growth. 

Oxidative stress. Increased level 

of apoptosis. Mitochondrial 

dysfunction 

[82-87] 

4.2.1.2.4. Maternally inherited 

Mitochondrial Cardiomyopathy 

n/a MT-RNR2 
m.2336 T>C 

Cardiomyocytes Mitochondrial dysfunction and 

ultrastructure defects. ATP/ADP 

ratio and mitochondrial membrane 

potential reduced. Abnormal Ca
2+

 

homeostasis 

[88] 

4.2.2. Respiratory chain disorders caused by 

mutations of nuclear DNA 

     

4.2.2.1.   Mitochondrial DNA Depletion 

Syndromes 

     

4.2.2.1.1. Alpers-Huttenlocher Syndrome 203700 POLG 
c.1251-2 A>T 

Hepatocyte 

 

Valproic acid (VPA) hepatotoxicity 

increased, higher VPA sensitivity. 

Abnormal mitochondrial 

ultrastructure. Mitochondrial 

dysfunction 

[89] 
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4.2.2.1.2.    Hepatocerebral (DGUOK, 

MPV17, PEO1) 

251880 DGOUK 

DGUOK
D14/D5

: 

p.W166Ter; 

H167L fsTer213 

Hepatocyte 

 

Reduction in mtDNA copy number. 

Mitochondria with decreased 

matrix density and abnormal 

cristae. Decrease in mitochondrial 

membrane potential and electron 

transport chain deficiencies. 

Attenuated capacity for energy 

production. Increase in ROS and 

lactate levels 

[90] 

4.2.2.1.3. Childhood-onset autosomal 

dominant optic atrophy  

 OPA1 
c.2496+1 G>T 

Retinal ganglion cells 

(RGCs) 

Increased apoptosis. Inefficient 

differentiation into RGCs  

[91-93] 

4.2.2.1.3.1. Behr syndrome 210000 OPA1 
c.610+364 G>A/c.1311 

A>G 

Not performed Not performed [91] 

4.2.2.1.3.2. Optic atrophy ‘plus’ 

phenotype 

 OPA1 
c.1861 C>T; 

p.Q621Ter 

Not performed Not performed [92] 

4.2.2.1.4. Mitochondrial 

Neurogastrointestinal Encephalopathy, 

MNGIE  

603041 TYMP  Cerebral organoids Not performed [94] 

4.2.2.2.   Multiple mtDNA Deletion Syndromes      

4.2.2.2.1. Progressive External 

Ophthalmoplegia Autosomal Dominant 

(PEOA) 
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4.2.2.2.1.1. PEOA1  157640 POLG 
c.2243 G>C; p.W748S 

Not performed Not performed [95] 

4.2.2.3.   Leigh Syndrome (LS) 256000 MT-ATP6 
c.8993 T>G; p.L156R 

MT-ND5 
c.13513 G>A; p.D393N 

SURF1 
c.530T>G p.(V177G) 

c.769G>A p.(G257R) 

Cardiomyocytes, skeletal 

muscle cells and neural 

progenitor cells, neurons, 

brain organoids 

Impaired oxygen consumption and 

ATP production. Mitochondrial 

dysfunction. High cytoplasmic 

calcium concentration. Cardiac 

differentiation impaired. 

Compromised neuronal 

morphogenesis 

[70, 96-101] 

4.2.2.4.   Ubiquinone (CoQ10) deficiency (Non-

LS) 

607426 COQ4 
c.483 G>C; p.E161D 

Skeletal muscle, 

dopaminergic neuron, 

motor neuron 

Impaired mitochondrial function 

and metabolic defects. Impaired 

differentiation into skeletal muscle 

cells 

[102, 103] 

5.     Disorders in the metabolism of purines, 
pyrimidines and nucleotides 

     

5.1. Disorders of purine metabolism      

5.1.1. Adenosine deaminase deficiency 

 

102700 ADA 
GGG>AGGEx7/ 

GAAGAdelEx10 

Not performed Not performed [104] 

5.1.2. Deoxyguanosine kinase deficiency 

 

251880 DGUOK 
p.W166X/H167fs 

Hepatocytes mtDNA depletion, reduced 

oxidative phosphorylation and 

energetic capacity 

[90] 

5.1.3. Lesch-Nyhan syndrome 

 

308000 HPRT1 
Inv/del, ex6-9; IVS7 + 5 

G>A; delEx1; c.151 

C>T; c.508 C>T; 

c.371insTT 

Neurons Impaired neural differentiation. 

Shorter neurites.  

[104-110] 

  

5.1.4. Purine nucleoside phosphorylase 

deficiency 

 

164050 PNP 
 

Neurons Reduced levels of hypoxanthine [111] 
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5.1.5. Mitochondrial ribonucleotide reductase 

subunit 2 deficiency 

 

604712 RRM2B 
10delEx2 

Hepatocytes mtDNA depletion, reduced 

oxidative phosphorylation and 

energetic capacity 

[90] 

5.2. Disorders of pyrimidine metabolism      

5.2.1. Thymidine phosphorylase deficiency 131222 TYMP  Cerebral organoids Not performed [94] 

5.3. Disorders of nucleotide metabolism      

5.3.1. Aicardi-Goutières syndrome (AGS)      

5.3.1.1. AGS1 225750 TREX1 
c.260insAG/S88fs*22 

Not performed Not performed [112, 113] 

5.3.1.2. AGS2 610181 RNASEH2B 
c.529 G>A 

Not performed Not performed [112, 114] 

5.3.1.3. AGS5 612952 SAMHD1 
Ex14-15del 

Not performed Not performed [115] 

5.3.1.4. AGS7 615846 IFIH1 
c.2471 G>A 

Not performed Not performed [112, 116] 
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6.     Disorders of the metabolism of sterols 
 

     

6.1. Disorders of sterol biosynthesis      

6.1.1. Smith-Lemli-Opitz syndrome 

 

270400 DHCR7 
c.964-1 G>C; p.T93M 

Neural progenitors, 

retinal pigmented 

epithelium cells  

7-dehydrocholesterol 

accumulation and decreased 

cholesterol levels. Defective 

phagosome maturation. 

Accumulation of ubiquitinated 

proteins. Aberrant neural 

differentiation 

[117, 118] 

6.1.2 Antley-Bixler syndrome with disordered 

steroidogenesis 

201750 POR 
c.1370G>A 

Not performed Not performed [119] 

6.2. Disorders of bile acid biosynthesis      

6.2.1. Oxysterol 7-alpha-hydroxylase deficiency  613812 CYP7B1 
p.Y275X; p.R486C 

Not performed Not performed [120, 121] 

6.2.2. Cerebrotendinous xanthomatosis 

 

213700 CYP27A1 
c.1183 C>A; p.R395S  

Not performed Not performed [122] 

6.3.    Disorders of bile acid metabolism and transport      

6.3.1.    Bilirubin UDP-glucuronosyltransferase 1 

deficiency 

218800 UGT1A1  
13bp-del Ex2 

Not performed Not performed [33] 

6.3.2.    Progressive familial intrahepatic cholestasis 

type 2 

601847 ABCB11 
c.-24 C>A; c.2417 G>A 

c.2782 C>A (R928X) 

c.3268 C>T (R1090X) 

Hepatocyte Abnormal protein localization, 

defects in bile acids excretion, 

suppression of de novo bile acid 

synthesis 

[123, 124] 
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7. Disorders of porphyrin and haem 
metabolism 

          

7.1.    Congenital erythropoietic porphyria 263700 UROS 
c.217 T>C  

c.683 C>T 

 

Hematopoietic 

progenitors 

Not performed [125] 

7.2. X-linked sideroblastic anaemia (XLSA) 300751 ALAS2 
c.1737 T>C (V562A) 

Erythrocytes Presence of ring sideroblasts, 

abnormal mitochondrial iron 

deposition 

[126] 

8. Disorders of lipid and lipoprotein 
metabolism 

     

8.1.    Inherited hypercholesterolaemias           

8.1.1.    Disorder of low density lipoprotein receptor 143890 LDLR  
c.2108_2114dup 

(A705fsX14); 

c.654_656delTGG 

(G219del); 

c.901 G>T 

c.97 C>T 

 

 

Hepatocytes Impaired transport from 

endoplasmic reticulum, LDL 

uptake deficiency, high ApoB and 

cholesterol secretion 

[33, 127-135] 

 

8.2.    Inherited hypertriglyceridaemias      

8.2.1.1.    Familial lipoprotein lipase deficiency 238600 LPL 
c.928 T>C (C310R) 

Not performed Not performed [136] 

8.3.    Disorders of high density lipoprotein 
metabolism 

          

8.3.1.    Tangier disease 205400 ABCA1 
E1005X; 

S2046R/K531N 

Hepatocytes Impaired cholesterol efflux, loss of 

HDL formation, enhance 

trygliceride secretion and ANGPL3 

expression 

[137] 

 

8.4.    Inherited hypolipidaemias           
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8.4.1.    Familial abetalipoproteinaemia 200100 MTTP  

R46G  

Hepatocytes, 

cardiomyocytes 

Absent ApoB protein, excess 

intracelular cholesterol and 

triglycerides storage, cardiac 

sensitization to stress 

[138] 

8.4.2.    Familial hypobetalipoproteinaemia 144010 APOB 
c.10579 C>T (R3527W) 

Not performed Not performed [139] 

9.     Congenital disorders of glycosylation and 
other disorders of protein modification 

          

9.1.    Disorders of protein N-glycosylation 
          

9.1.1.    Phosphomannomutase 2 deficiency 601785 PMM2 
R141H/F119L 

Hepatocytes Diminished mannose incorporation 

into proteins, protein 

hypoglycosylation. Increased cell 

surface LDLR expression 

[140, 141] 

9.1.2.    Glucosyltransferase 1 deficiency 603147 ALG6 Hepatocytes Increased cell surface LDLR 

expression 

[141] 

9.2.    Disorders of protein O-glycosylation      

9.2.1.    Multiple exostoses type I 133700 EXT1 
c.1883+1G>T 

Not performed Not performed [142] 

9.2.2.    Fukutin-related protein deficiency 606596 FKRP 
c.826 C>A (L276I) 

c.1364 C>A (A455D) 

Cardiomyocytes, cortical 

neurons 

Abnormal action potentials, 

reduced expression of channel 

currents, reduced intracellular 

Ca
2+

 concentrations. Absence of 

glycosylation in neurons 

[143, 144] 

  



 
- 15 of 38- 

10.     Lysosomal disorders 
          

10.1.     Mucopolysaccharidoses 
          

10.1.1.    MPS I, Hurler, Scheie disease 252800 IDUA  

IVS5AS-7 G>A/ 

W402X; Y167X/W402X; 

H358-T364del 

c.266 G>A 

 

Neural progenitor cells, 

hematopoietic 

progenitors 

Accumulation of GAG, enlarged 

lysosomes, dysregulated 

autophagy pathway. Migration 

defects 

[145-148] 

10.1.2.    MPS II, Hunter disease 309900 IDS  

c.182 C>T (S61F); 

c.1181-1 G>A; c.1403  

G>A (R468Q); 

c.85C>T; c.208insC 

 

β3-Tubulin
+
 neurons, 

astrocytes, CNPase
+
 

oligodendrocytes 

Glial and neuronal GAG 

accumulation, decreased neuronal 

self-renewal capacity, structural 

alterations in Golgi and 

endoplasmatic reticulum, vacuoles 

accumulation 

[149-156] 

10.1.3.    MPS IIIA, Sanfilippo A disease 252900 SGSH  

E447K/R245H 

Not performed Not performed [157] 

 

10.1.4.    MPS IIIB, Sanfilippo B disease 252920 NAGLU 
c.531+1G.C; 

R482W; P358L; 

c.457 G>A  

Neural precursors, β3-

Tubulin
+
 neurons  

HS proteoglycans accumulation, 

disorganized Golgi structure, 

increased LAMP1 and GM130 

[158-160] 

10.1.5.    MPS IIIC, Sanfilippo C disease 252930 HGSNAT  

c.633+1 G>A/ c.1334 

T>C (L445P); c.372-2 

A>G 

MAP2
+
 neurons, 

astrocytes 

GAG accumulation, large vacuoles 

with an empty-like appearance, 

impaired neuronal network activity 

and connectivity. Increased in 

lysosomes in heparin sulfate 

[161-163] 

10.1.6.    MPS IVA, Morquio A disease 253000 GALNS  

R61W/WT405del 

 

 

Not performed Not performed [164] 
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10.1.7.    MPS VII, Sly disease 253220 GUSB  

L176F 

Neural progenitor cells, 

β3-Tubulin
+
 neurons   

GAG accumulation, expanded 

endocytic compartments, 

accumulation of lipofuscin 

granules, increased number of 

autophagosomes, reduced 

neuronal activity and altered 

network connectivity  

[165, 166] 

10.2.     Oligosaccharidoses           

10.2.1.    Sialidosis 256550 NEU1 
A544G/c.667_679 del 

c.649 G>A/644 T>C; 

c.1109 A>G; 

c.1195_12000dup/c.67

9 G>A 

G227R and 

V275A/R347Q 

Oligodendrocytes, 

astrocytes and neurons 

Impaired lysosomal and 

autophagic function. Defects in 

neural differentiation. Glycolitic 

impairment. Presynaptic 

dysfunction. Deregulation of Ca
2+

 

dynamics 

[167-170] 

10.3.     Sphingolipidoses           

10.3.1.    GM1-gangliosidosis 230500 GLB1 
R201C 

I51T 

Neural progenitor cells Defective GLB1 activity, increased 

lysosomes, activation of 

inflammasome. Impaired 

neurotransmitter release, 

accumulation of GMS1 

ganglioside 

[171, 172] 

10.3.2.    GM2-gangliosidosis 0-variant, Sandhoff 

disease 

268800 HEXB  

16kb-del/ IVS10- 2A>G 

Cerebral organoids GM2 accumulation mainly in β3-

Tubulin
+
 neurons, alterations in 

neuronal differentiation 

[173] 

10.3.3.    GM2-gangliosidosis B-variant, Tay-Sachs 

disease 

272800 HEXA  

c.1278insTATC; 

c.1278insTATC/W392X 

1278insTATC/IVS12+ 

1G>C 

Neural progenitor cells, 

β3-Tubulin
+
 neurons   

Accumulation of lipids in NPC 

lysosomes, GM2 accumulation. 

Enlarged lysosomes, increased 

oxidative stress, decreased 

exocytotic activity 

[174-176] 
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10.3.4.    Gaucher disease 230800 GBA  

N370S/c.84GG; 

c.1448 T>C (L483P); 

c.667 T>C (W223R); 

L444P; 

N370S; 

L444P/G202R; 

W184R/D409H; 

IVS2+1 G>A/L444P; 

L444P/P415R; 

G325R/C342G 

P213I 

Dopaminergic neurons, 

β3-Tubulin
+
 neurons, 

neural progenitor cells, 

macrophages, 

hematopoietic progenitor 

cells, osteoblasts, 

astrocytes 

Compromised lysosomal protein 

degradation, accumulation of α-

synuclein, aggregation-dependent 

neurotoxicity, abnormal 

electrophysiological properties, 

differentiation defect in neurons, 

accumulation of 

glucosylsphingolipids and 

glucosylceramide in macrophages, 

delay in red blood cells clearance, 

increased levels of inflammatory 

cytokines, elevated levels of 

chitotriosidase, impaired 

chemotaxis, reduced production of 

intracellular ROS. Decreased 

neural TFEB levels, defective 

bone matrix protein and mineral 

deposition, defective Ca
2+

-

dependent exocytosis and 

homeostasis. Astrocyte reactivity. 

mTOR hyperactivity 

[104, 177-197] 

 

 

 

 

 

 

10.3.5.    Krabbe disease 245200 GALC 
c.461 C>A/c.1244 G>A 

Not performed Not performed [198] 

 

10.3.6.    Metachromatic leukodystrophy 250100 ARSA  

c.465+ 1G>A/ 

c.1223_1231del9; 

c.465+ 1G>A; 

P426L; 

c.459+ 1G>A/ c.1049 

A>G 

c.1178 C>G 

Neural progenitor cels, 

β3-Tubulin
+
 neurons, 

astrocytes, 

oligodendrocytes 

Sulfatide accumulation, expansion 

of the endolysosome system, 

intracellular ROS production, 

oligodendroglial loss, disorganized 

neuronal network 

[199-202] 
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10.3.7.    Fabry disease 301500 GLA  

c.485 G>A; 

c.658 C>T; 

G485A; 

C658T; 

IVS4+919 G>A; 

c.708 G>C 

W287S 

 

Cardiomyoctes, vascular 

endothelial-like cells 

Accumulation of 

globotriaosylceramide, cellular 

hypertrophy, up-regulation of IL-

18, increased ROS production, 

decreased energy metabolism, 

arachidonate 12/15-lipoxygenase 

upregulation. Altered 

cardiomyocyte electrophysiology 

and calcium handling. 

Dysfunctional angiogenesis. 

Autophagic flux impairment 

[203-214] 

10.3.8.    Niemann-Pick disease type A or B 257200 SMPD1 
L302P; P330fs 

p.L43-A44delLA 

Neural progenitor cells Enlarged multilamellar lysosomes, 

sphingomyelin accumulation  

 

[215-217] 

 

10.3.9.    Niemann-Pick disease type C1 257220 NPC1 
c.1628 delC /E612D; 

I1061T/P237S; 

I1061T;  

1920 delG/1009 G>A; 

1920 delG; 

c.1180 T>C 

V1023fs/pG992R 

 

 

 

 

Neural progenitor cells, 

β3-Tubulin
+
 neurons, 

hepatocytes, astrocytes 

Lysosomal cholesterol 

accumulation, enlarged 

lysosomes, impaired cholesterol 

trafficking to ER, block in 

autophagic flux, abnormal VEGF 

levels and sphingolipid 

metabolism, increased gene 

expression of genes involved in 

neural calcium signaling, 

disruption of genes involved in 

neural WNT signaling, 

glycosphingolipid GM2 

accumulation in neurons, 

increased number of reactive 

astrocytes, increased activation of 

the necroptotic pathway 

[218-231] 

 

 

 

 

 

 

 

 

 

 

  

10.3.10.    Niemann-Pick disease type C2 607625 NPC2 
c.58 G>T/c.140 G>T 

Neurons and Glia cells Cholesterol and sphingolipids 

accumulation. 

[232, 233] 
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10.4.     Ceroid lipfuscinoses, neuronal (CLN)           

10.4.1.    CLN1, Santavuori-Haltia disease 256730 PPT1 
Y247H/M1I 

 

Neural progenitor cells Enlarged lysosomes, 

accumulation of lipids 

[234] 

10.4.2.    CLN2, Jansky-Bielschowsky disease 204500 TPP1 
R127X/R208X; 

R127Q/IVS5-1 G>C 

Neural progenitor cells Enlarged lysosomes, 

accumulation of lipids, 

accumulation of subunit C of 

mitocondrial ATP synthase 

 

[234, 235] 

 

10.4.3.    CLN3, Batten Spielmeyer-Vogt disease 204200 CLN3 
1.02-kb del Ex 7-8; 

c.1056+3 A>C/ c.1247 

A>G; 

1.02-kb del/ 

L101del3CTC 

 

Neural progenitor cells, 

β3-Tubulin
+
 neurons, 

retinal cells, brain 

microvascular endothelial 

cells 

Cytoplasmic vacuolations, 

accumulation of subunit C of 

mitocondrial ATP synthase, bigger 

autophagic vacuoles, reduced 

multivesicular bodies, defect in 

late-stage autophagosome 

maturation, abnormal calcium 

handling. Mitochondrial 

dysfunction, impaired barrier 

function 

[235-238] 

10.4.4.    CLN5 Finnish variant 256731 CLN5 
c.1175_1176delAT 

(Y392X) 

Neural progenitors cells Enlarged lysosomes, endoplasmic 

reticulum, accumulation of subunit 

C of the mitochondrial ATP 

synthase, disturbed sphingolipid 

transport 

[239] 

10.5.     Lysosomal export disorders      

10.5.1.    Cystinosis 219800 CTNS 
57kb del/L158P 

Kidney organoids Elevated cystine levels, defective 

autophagy, increased apoptosis 

[240] 
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10.6.     Other lysosomal disorders           

10.6.1.    Wolman/cholesterol ester storage disease 278000 LIPA  

c.594dupT(A199Cfs*13

)/ c.796 G>T(p.G266X) 

Neural progenitor cells, 

hepatocyte-like 

organoids 

Accumulation of neutral lipids, 

increased lysosomal content. 

Steatosis after oleic acid 

exposure, increased the fibrosis 

P3NP biomarker, increased 

stiffness and ROS production 

[241, 242] 

10.6.2.    Pompe disease, GSD type II 232300 GAA  

del ex18/del ex18; 

c.1935 C>A; 

c.1935 C>A/c.2040 +1 

G>T; 

p.D645E/c.1935 C>A; 

del Ex18/del525T; 

c.1062 C>G; 

p.Y354X/c.1935 C>A; 

IVS1-13 T>G/ del Ex18; 

1441delT/2237 G>A; 

c.796 C>T/c.1316 T>A; 

IVS1-13 T>G/ del525T; 

IVS1-13 T>G/ c.923 

A>T c.2560C > T 

(p.R854X); c.1822C>T, 

p.R608X; c.2662G>T, 

p.E888X 

Cardiomyocytes, skeletal 

muscle cells, neural 

progenitors cells, 

neurons, hepatocytes 

Increased lysosomal glycogen 

accumulation, mitochondrial 

dysfunction, multiple ultrastructure 

aberrances, large glycogen-

containing vacuoles, glycan 

processing abnormality, increased 

oxidative stress, suppressed 

mTORC1 activation 

[36-51] 

 

10.6.3.    Danon disease 300257 LAMP2 
c.129–130 insAT; IVS-1 

c.64+1 G>A; 

c.183_184insA; 

c.520 C>T; 

IVS6+1_4delGTGA 

c.467 T>G; 

c.247 C>T 

 

 

 

 

Cardiomyocytes, 

Map2
+
 neurons 

Defect in autophagic flux, cellular 

hypertrophy, abnormal calcium 

handling, excessive mitochondrial 

oxidative stress, accumulation of 

LC3
+
 autophagosomes, oxidative 

stress-induced apoptosis, 

impaired autophagy of depolarized 

mitochondria, mitochondrial 

dysfunction, defect in 

autophagosome-lysosome fusion 

[243-250] 
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10.6.4.    Hermansky-Pudlak Syndrome 203300 HPS1 
c.1472_1487dup16 

AP3B1 
R509X/E659X 

 

Melanocytes, alveolar 

type 2 cells 

Reduced melanosomes and 

pigmentation, altered distribution, 

enlargement, and impaired 

secretion of lamellar bodies in 

alveolar cells 

[251-254] 

11.     Peroxisomal disorders           

11.1.     Disorders of peroxisome biogenesis           

11.1.1.    Zellweger spectrum disorder 214100 PEX1 
I700fs/G973fs; G843D 

PEX10 
L113fs; L297P 

PEX12 
S320F 

PEX26 
R98W 

 

Neural progenitor cells, 

Tuj1
+
 neurons, 

oligodendrocyte 

precursor cells, 

hepatocytes 

Poorly branched oligodendrocytes, 

reduced sVLCFA and 

phosphatidylethanolamine 

plasmalogen levels in iPSC, 

peroxisome assembly defect 

[255] 

11.2.     Disorders of peroxisomal alpha-, beta and 
omega-oxidation 

          

11.2.1.    X-linked adrenoleukodystrophy 300100 ABCD1 
c. 253_254insC; 

c.1847 C>T (A616V); 

c.1534 G>A; 

c.1968_1970delCAT; 

c.1661 G>A; 

c.1240-1253del6ins; 

c.2013insA 

Oligodendrocytes, 

neurons, astrocytes, 

brain microvascular 

endothelial cells 

Abnormal VLCFA accumulation, 

increased ELOVL1 expression 

and proinflammatory cytokines, 

CH25H overexpression, 25-

hydroxycholesterol (25-HC)-

dependent NLRP3 inflammasome 

activation, defective barrier 

function  
 

[256-264] 
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11.3.     Other peroxisomal disorders           

11.3.1.    Primary hyperoxaluria type I 259900 AGXT  

I244T 

p.G170R/R122X 

Not performed AGT protein aggregation [29-32] 

12.     Disorders of neurotransmitter metabolism           

12.1.     Disorders in the metabolism of biogenic 
amines 

          

12.1.1.    Tyrosine hydroxylase deficiency 

 

 

12.1.2.   Aromatic L-amino acid decarboxylase 

(AADC) deficiency 

191290 

 

 

608643 

TH  

R129*/R231P 

 

DDC 
c.1039C>G, p.R347G 

c.19C>T, 

p.Aeg7*/c.229G>C, 

p.C100S 

Not performed 

 

 

Dopaminergic neurons 

Not performed 

 

 

Dysregulated dopamine 

metabolism, alterations in synaptic 

maturation and neuronal electrical 

properties 

[265] 

 

 

[266] 

13.     Disorders in the metabolism of vitamins 
and (non-protein) cofactors 

     

13.1.     Disorders of cobalamin absorption, transport 
and metabolism 

          

13.1.1.    Defect in adenosylcobalamin synthesis-cbl 

B 

251110 MMAB  

I96T/S174Cfs*23 

Not performed Not performed [267] 

13.2.     Disorders of pterin metabolism           

13.2.1.    Guanosine 5 triphosphate cyclohydrolase I 

deficiency 

233910 GCH1 
L79_S80del 

Not performed Not performed [268] 

13.2.2.    6-Pyruvoyl-tetrahydropterin synthase 

deficiency 

261640 PTS  

c.243 G>A /c.259 C>T 

Dopaminergic neurons Reduction in BH4 amount, TH 

protein level and extracellular 

dopamine 

[269] 

13.2.3.    Quinoid dihydropteridine reductase 

deficiency 

261630 QDPR  

c.52 G>T/c.176 C>A 

Dopaminergic neurons Reduced TH protein and 

extracellular dopamine level, 

increase of dihydrobiopterin 

[269] 
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13.3.     Other disorders of vitamins and cofactors           

13.3.1.    Pantothenate kinases deficiency 234200 PANK2 
Y190X; 

F419fsX472; 

R481Lfs/G521R; 

IVS4-1 G>T/M437T; 

R278L/L564P; 

c.1259delG 

Glutamatergic neurons, 

cortical neurons 

Defects in membrane excitability, 

premature death, increased ROS 

production, increased 

mitochondrial membrane potential. 

Altered iron content and 

mitochondrial aggregates, altered 

calcium homeostasis 

[270-272] 

14.     Disorders in the metabolism of trace 
elements and metals 

          

14.1.     Disorder of copper metabolism           

14.1.1.    Menkes syndrome 309400 ATP7A  

c4005 + 5G>A; 

c121-930_2626/488del 

M1311V 

Neural progenitor cells, 

mesenchymal stem cells, 

osteoblast, motor 

neurons 

Aberrant switch of E-cadherin to 

N-cadherin, impaired neural 

rosette formation, impaired 

osteogenesis. Protein 

deslocalization in motor neurons, 

copper accumulation, decreased 

dendritic complexity and survival. 

[273-275] 

14.1.2.    Wilson disease 277900 ATP7B  

R778L; 

H1069Q/E1064A; 

M769V; P992L;  

c.180-181del 

Hepatocytes, neural 

progenitor cell, 

osteoblasts 

Abnormal cytoplasmic localization 

of mutated ATP7B, copper-export 

defect. Lower osteogenic activity 

[276-288] 

14.2.     Disorder of zinc metabolism           

14.2.1.     Acrodermatitis enteropathica 201100 ZIP4 
192+19 G>A/P200L 

Enterocytes Impaired zinc uptake [289] 

14.3.     Disorder of magnesium metabolism      

14.3.1.     Hypomagnesaemia type 5, renal with 

ocular involvement 
248190 CLDN19 

G20D 

Retinal progenitor cells Altered retinal neurogenesis and 

maturation in culture 

[290] 

14.3.2.     Gitelman syndrome 263800 SLC12A3 
c.46-47del/c.2963 T>C 

Not performed Not performed [291] 
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15.     Disorders and variants in the metabolism 
of xenobiotics 
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