Peak Filtering, Peak Annotation, and Wildcard Search for Glycoproteomics

Supplemental Information

Marshall Bern*, Abhishek Roushan, Doron Kletter, K. Ilker Sen, Eric Carlson

Protein Metrics Inc., Cupertino, CA 95014

Figure S1. Little LEN and Big LEN glycopeptides from ProSAAS in the Copenhagen data set, ProteomeXchange PXD002431, 20100805_Velos3_AnSe_Batch12faste_hypot_S3.raw.

PMI-Byologic - C.\Lisensbern\Documents\204_PAPER\BYONIC\uesper:ProSAAS.big - Registered (v3.9-7 x64) - Days left: 2094													
Eile Edit Window Help													
🗑 🙀 📙 🕒 🗠 🖉													
/ 🍼 Byos Workflows // 🚡 Jesper 🖸													
Projects table (double click to dock / undock) 🔴 Peptides 📑 🔠 😥											MS2 and mass error plots (double click to dock / undock)		
Project III III II Text filter P-	Row#	Sequence	XIC AUC	XIC Ratio%	Apex Time (Posit)	z	Starl AA	End	Glycans ppm	PEP 2D	₩ Q Q Q Φ ♣ Q Q Q ₩ ▼ Ⅲ		
Name	1	R.SLSAASAPLAEtSTPL.R	3.98e+6	0.056	77.38	2	42	57	HexNAc(1)Hex(1) -2.48	0.00029	3.000e+4 Scan 11861,z=3		
✓ ✓ 20100805_Velos3_AnSe_Batch12faste_hypo	2	R.sLSAASAPLAETSTPL.R	3.98e+6	0.056	77.38	2	42	57	HexNAc(1)Hex(1) 0.57	1.1e-5	2 500e+4		
20100805_Velos3_AnSe_Batch12faste_h	3	R.SLSAASAPLAETStPLRLR	3.32e+6	0.041	87.87	2	42	59	HexNAc(1)Hex(1) 0.96	5e-11	1 2 3 4 5 6 7 8 910 15		
	4	R.SLSAAsAPLAETSTPLRLR	9.26e+6	0.294	87.81	3	42	59	HexNAc(1)Hex(1) 1.43	2e-8	2.000e+4 Pep_2+		
	5	D.DGPtGPDV.E	3.63e+5		192.19	2	173	180	HexNAc(1)Hex(1)NeuAc(2) -0.62	0.00036	NeuAc-18		
	6	D.DGPtGPDVED.A	2.73e+5		190.46	2	173	182	HexNAc(1)Hex(1)NeuAc(2) -0.35	0.00016	Pep+HexNACHex_2+		
	7	D.GPtGPDVED.A	3.21e+6		30.15	2	174	182	HexNAc(1)Hex(1)NeuAc(1) 0.56	0.0048	1 000e+4		
	8	R.LENSsPQAPA.R	4.2e+6	0.420	18.89	2	245	254	HexNAc(1) -1.04	0.0023			
Protein coverage view (double click to dock / 6	9	R.LENSsPQAPA.R	1.22e+7	1.208	23.01	2	245	254	HexNAc(1)Hex(1)NeuAc(1) 0.60	9.8e-5	5.000e+3		
Protein Coverage 📑 😳 🔄	10	R.LENSsPQAPA.R	2.49e+7	2.434	16.96	2	245	254	HexNAc(1)Hex(1) -0.01	0.00026	. HILLE SAURCENSIZE TREPHER HEXPLAN HEADLANEDAC_2+		
Sample Protein Coverad	11	R.LENSSPQAPARRLLP.P	5.48e+6	1.491	72.02	3	245	259	HexNAc(1)Hex(1)NeuAc(2) 0.24	0.011	0.000e+0		
name name summa	12	R.LENSSPQAPAKKLLP.P	9.23e+6	2.485	43.56	3	245	259	HexNAc(1)Hex(1) 1.23	0.00043	1500.2 - 500 100 1500		
Currently checked sp Q9QXU9 PCS 215 of 260	13	RLEINSSPUAPARRELPP	1.538+7	0.415	42.34	3	245	200	HexNAc(1)Hex(1) 0.00	4.00-8	m/z errors, search tol=20.0 ppm		
	2 14	R.LEINSSPUAPARRELPP	3.52e+7	1.152	04.04 40.01	3	245	200	HexNAc(1)Hex(1)NeuAc(1) -0.23; .	1.04e 9 1.04e	N 5 00042		
	1 13	R.LEINSSPUMPARRELPP.	4.290+7	1.155	42.91	5	243	200	HexivAc(1)Hex(1) 0.09,	1.046-0 - 1.046	2 E 0 0000 10 E 0 000 10 000 10 E 0 000 10 000 10 E 0 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 0000 10 000 10 000 10 0000 10 000 10 000 10 0000 10 000		
	1												
	C -5.000-3 +										*		
	XIC pk	IC plots (double click to dock / undock)								e click to dock / undock) 8			
< >		1.400e+5 PID=149,R.LENSSPQAPARRLIP.P,XICRato=1.49%,Area(so_0,z,3)=5.482e+6 at 1.400e+5 Extract mz=866.084, ppm=18, t=72.07											
^	-	1.200e+5							1.200e+5-	3	866.420		
	Q	1.000e+5				11				-	966 750		
		8.000e+4				li –			⊕ \$8.000e+4	3	007,000		
250	<u> </u>	5				11			5	1	866.083		
RVKRLENSSPOAPARRLLPP	Q -	- 0.000077								D0e+4 3 M0=1	806.0835		
		4.000e+4				١.		ι.	4.000e+4		865 873 867 415		
		2.000e+4						11	2.000e+4	1	000.971 007.415		
- .		0.000e+0 3	<u> </u>	<u> </u>		•	1		0.000e+0-	1			
< >	×	55	60	65 M	inutes 70		75		80 *	865.5	866 m/z 866.5 867 867.5		

Figure S2. ProSAAS glycoforms from 20100805_Velos3_AnSe_Batch12faste_hypot_S3.raw. The Little LEN peptide selected above has the worst (highest) PEP 2D of 0.011 or about 1% chance of error. We show this peptide to give a sense of the threshold for acceptance of a spectrum assignment.

XIC Ratio % reports the XIC integral of the peptide in the given modification state to the sum of XIC integrals of all "peptiforms" with the same peptide sequence. All of the glycosylated species are low-abundance. Glycosylated forms account for about 4% of Little LEN, 2.5% of Big LEN, and 4% of "Medium LEN", that is, LENSSPQAPARRLLP. The peptides containing the GPTG glycosylation site, rows 5 - 7 in the table, do not appear without glycosylation, probably because the data acquisition method did not select z=1+ precursors for MS2, so these peptides do not have an XIC Ratio %. Also notice the end-of-chromatography elution times for rows 5 and 6.

Figure S3. Big LEN glycopeptide compared across six Wisconsin data .raw files (all the files in <u>ftp://massive.ucsd.edu/MSV000080106</u> with names starting "041213_HT") from six different rat brains. The glycopeptide was identified by MS2 in only two of the data files but then transferred between runs using "Add Missing Via Existing Peptides" in Byos.

Figure S4. Phospholipase D3 peptide, positions 380 – 393. Figures S4 – S11 show a variety of glycopeptide PSMs from the Copenhagen data set with "PEP 2D" error probabilities below 1%.

Figure S5. Secretogranin-2 isoform X1.

Figure S6. Peptide with an N-linked glycosylation (fucosylated N-glycan core). This short peptide appears in Lysosomal acid phosphatase isoforms with the C-terminal N in an N-glycosylation sequon, and in two other human proteins (furin and epoxide hydrolase 3) without the sequon. Short peptide matches such as those in S6, S7, and S9 must be considered somewhat ambiguous as to protein of origin.

Figure S7. Secretogranin-1 peptide.

Figure S8. Legumain isoform X2.

Figure S9. Aftiphilin peptide.

Figure S10. Vasopressin-neurophysin 2-copeptin peptides with N- and O-linked glycosylation.

Figure S11. 5'-3' exonuclease PLD3 with N-linked glycosylation.

Figure S12. Scan 30140 in JMS133H.raw from PXD009155 matched to the C-terminal peptide from RAB1B_HUMAN (Ras-related protein Rab-1B) with AzRB-captured YnGG. Uniprot KB lists the second cysteine as a geranylgeranylation site. The prenylated peptides in S12 – S15 were not reported in the Supplemental to the Storck et al publication (PMC6544531).

Figure S13. C-terminal peptide from UBP32_HUMAN (Ubiquitin carboxyl-terminal hydrolase 32) with AzRB-captured YnF (JMS133E.raw). Uniprot KB annotates this cysteine farnesylation site from "sequence analysis". As above, the protein of origin may be ambiguous for short peptide matches. Farnesylation, however, occurs near protein C-termini, usually with a Cxxx- motif, where – denotes protein C-terminus, which greatly limits the number of possible proteins.

Figure S14. Peptide (C-terminal after processing) from RAP1B_HUMAN (Ras-related protein Rap-1b) with AzRB-captured YnGG (JMS133H.raw). Uniprot KB annotates this geranylgeranylation site. The unannotated peak at m/z 951.52 corresponds to a singly charged version of the peptide. Perhaps the precursor was a dimer?

Figure S15. Spectra of a peptide with AzRB-captured YnF (JMS133E.raw) with and without C-terminal methylation. Byonic matched these spectra to CAP1_HUMAN, but this is probably not the protein of origin, because the peptide is not very close to the C-terminus of CAP1_HUMAN.

Figure S16. The peptide-spectrum match above is from a search of HUPO HGI data (file B_glycopepnew_HCDEThcDiTCIDpeptide.raw) that used MS2 Filtering Peaks to target a particular peptide in alpha-1-antitrypsin and Glycan Wildcard Search to find glycans not in the glycan database. The database glycan of mass 3955 Da is HexNAc(6)Hex(7)Fuc(3)NeuAc(4). The wildcard of mass 567 Da is probably HexNAc(2)Hex(1) with an off-by-one error in the monoisotopic mass call.

Figure S17. A histogram showing the masses of glycan wildcards on 547 high-scoring glycopeptide PSMs.

Figure S18. A glycan wildcard PSM with wildcard mass 61.916 Da. The database glycan of mass 2205 Da is HexNAc(4)Hex(5)NeuAc(2), one of the most common glycans in human plasma. We speculate that the wildcard represents Cu⁺ replacing a proton, which has mass delta 61.922 Da. The precursor isotope cluster for the MS2 spectrum is the z=4+ group labeled 1363.588. The much larger cluster at 1348.11 is the same glycopeptide without copper, and 1384.374 is the same peptide with HexNAc(4)Hex(5)Fuc(1)NeuAc(2).

1363.588

1365

m/z

1368.551

1370

1361.360

1360

. Illin

1353.355

a dilliha

1355

1350

1378.319

ha IIIII

1380

1376.209

1375

1383.074

1393.861

1395

1400.101

1400

1403.285

1405

NUM

1389.869

1390

1385

50 40

30

20

10

0

1335 593

1335

1331.539

1330

1343.182

بقيدته أرار

1345

1340

Figure S19. A glycan wildcard PSM. The database glycan of mass 3064 Da is HexNAc(6)Hex(6)NeuAc(3), but we do not have an explanation for the extra 70.056 Da.