#### Appendix

#### Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3

Andrew M. Jobbins<sup>†</sup>, Sébastien Campagne<sup>†</sup>, Robert Weinmeister, Christian M. Lucas, Alison R. Gosliga, Antoine Clery, Li Chen, Lucy P. Eperon, Mark J. Hodson, Andrew J. Hudson, Frédéric H.T. Allain<sup>\*</sup> and Ian C. Eperon<sup>\*</sup>

#### **Table of contents**

Appendix Table 1: List of genes with proteins represented in Appendix Fig. S10.

- Appendix Fig. S1 and legend: Characterization of mEGFP-SRSF1 expression and activity.
- Appendix Fig. S2 and legend: Frequency histograms showing the distributions of bleaching steps expected if all complexes contained one or two molecules of SRSF1.
- Appendix Fig. S3 and legend: The level and patterns of binding of mEGFP-SRSF1 in the absence of ATP depend on U1 snRNA binding to 5'SS and on protein phosphatases.
- Appendix Fig. S4 and legend: Splicing and complex assembly by RNA labelled with Cy5-maleimide.
- Appendix Fig. S5 and legend: Frequency histograms showing the levels of two-way co-localization of mEGFP-SRSF1 and mCherry-U1A in a nuclear extract in the absence of exogenous pre-mRNA after treatment with ribonucleases A and T1.
- Appendix Fig. S6 and legend: Addition of a 5'SS to the 3' end of BGSMN2 is as effective as the addition of tandem copies of a strong ESE.
- Appendix Fig. S7 and legend: Effects of a 3'-terminal 5'SS on the recruitment of U2AF35, U2AF65 and U2 snRNP to BGSMN2-U1 pre-mRNA.
- Appendix Fig. S8 and legend: Colocalization of mEGFP-SRSF1∆RS on GloC and BGSMN2 + ESE-Ax4.
- Appendix Fig. S9 and legend: SL3 mutations impair the binding of SRSF1<sup>®</sup>RS but maintain the interactions with FUS RRM and PTBP1 RRM1.
- Appendix Fig. S10 and legend: Protein cross-links to U1 snRNA in vivo.
- Appendix Fig. S11 and legend: Complexes identified by bleaching as containing two molecules of mEGFP-SRSF1 emit approximately twice as many photons as those identified as containing one molecule.

Appendix Table S1. List of genes with proteins represented in Appendix Fig. S1

| 1. AATF     | 37. FKBP4    | 73. NIP7    |
|-------------|--------------|-------------|
| 2. ABCF1    | 38. FMR1     | 74. NIPBL   |
| 3. AGGF1    | 39. FTO      | 75. NKRF    |
| 4. AKAP1    | 40. FUBP3    | 76. NOL12   |
| 5. AKAP8L   | 41. FUS      | 77. NOLC1   |
| 6. AQR      | 42. FXR1     | 78. NONO    |
| 7. BCCIP    | 43. FXR2     | 79. NPM1    |
| 8. BCLAF1   | 44. G3BP1    | 80. NSUN2   |
| 9. BUD13    | 45. GEMIN5   | 81. PABPC4  |
| 10. CDC40   | 46. GNL3     | 82. PABPN1  |
| 11. CPEB4   | 47. GPKOW    | 83. PCBP1   |
| 12. CPSF6   | 48. GRSF1    | 84. PCBP2   |
| 13. CSTF2   | 49. GRWD1    | 85. PHF6    |
| 14. CSTF2T  | 50. GTF2F1   | 86. POLR2G  |
| 15. DDX21   | 51. HLTF     | 87. PPIG    |
| 16. DDX24   | 52. HNRNPA1  | 88. PPIL4   |
| 17. DDX3X   | 53. HNRNPC   | 89. PRPF4   |
| 18. DDX42   | 54. HNRNPK   | 90. PRPF8   |
| 19. DDX51   | 55. HNRNPL   | 91. PTBP1   |
| 20. DDX52   | 56. HNRNPM   | 92. PUM1    |
| 21. DDX55   | 57. HNRNPU   | 93. PUM2    |
| 22. DDX59   | 58. HNRNPUL1 | 94. PUS1    |
| 23. DDX6    | 59. IGF2BP1  | 95. QKI     |
| 24. DGCR8   | 60. IGF2BP2  | 96. RBFOX2  |
| 25. DHX30   | 61. IGF2BP3  | 97. RBM15   |
| 26. DKC1    | 62. ILF3     | 98. RBM22   |
| 27. DROSHA  | 63. KHDRBS1  | 99. RBM5    |
| 28. EFTUD2  | 64. KHSRP    | 100. RPS11  |
| 29. EIF3D   | 65. LARP4    | 101. RPS3   |
| 30. EIF3G   | 66. LARP7    | 102. SAFB2  |
| 31. EIF3H   | 67. LIN28B   | 103. SAFB   |
| 32. EIF4G2  | 68. LSM11    | 104. SBDS   |
| 33. EWSR1   | 69. MATR3    | 105. SDAD1  |
| 34. EXOSC5  | 70. METAP2   | 106. SERBP1 |
| 35. FAM120A | 71. MTPAP    | 107. SF3A3  |
| 36. FASTKD2 | 72. NCBP2    | 108. SF3B1  |

| 109. SF3B4   | 122. TAF15  | 135. WDR3    |
|--------------|-------------|--------------|
| 110. SFPQ    | 123. TARDBP | 136. WDR43   |
| 111. SLBP    | 124. TBRG4  | 137. WRN     |
| 112. SLTM    | 125. TIA1   | 138. XPO5    |
| 113. SMNDC1  | 126. TIAL1  | 139. XRCC6   |
| 114. SND1    | 127. TRA2A  | 140. XRN2    |
| 115. SRSF1   | 128. TROVE2 | 141. YBX3    |
| 116. SRSF7   | 129. U2AF35 | 142. YWHAG   |
| 117. SRSF9   | 130. U2AF65 | 143. ZC3H11A |
| 118. SSB     | 131. UCHL5  | 144. ZC3H8   |
| 119. SUB1    | 132. UPF1   | 145. ZNF622  |
| 120. SUGP2   | 133. UTP18  | 146. ZNF800  |
| 121. SUPV3L1 | 134. UTP3   | 147. ZRANB2  |



**Appendix Fig. S1. Characterization of mEGFP-SRSF1 expression and activity.** (**A**) Effects of transfection of plasmids expressing mEGFP-SRSF1 or mCherry-SRSF1 on the ratio of spliced to unspliced intron 4 of endogenous SRSF1 mRNA in HeLa cells (Sun *et al,* 2010). Empty vector and negative controls are shown also. PCR products were analysed by agarose gel

electrophoresis and stained with ethidium bromide before imaging. Experiments were biological triplicates; the error bars show the standard errors of the mean. (**B**) Western blot of SRSF1 in nuclear extracts NE1 and NE2. Fluorescent antibodies were detected in an Odyssey CLx (LI-COR). Endogenous U1A was detected in parallel with NE1 as a control. (**C**) Quantification of expression in NE1 by western blotting using anti-GFP antibody and known quantities of pure GFP. (**D**) As (C), with NE2. (**E**) Western blot of SRSF1 in the extract (NE3) in which both mEGFP-SRSF1 and mCherry-U1A were expressed. (**F**) Western blot with anti-GFP antibodies on samples from NE1, containing mEGFP-SRSF1: untreated nuclear extract (NE), nuclear extract treated with alkaline phosphatase (P'ase), nuclear extract incubated to deplete ATP (-ATP) and nuclear extract incubated under splicing conditions with ATP (+ATP).



Appendix Fig. S2. Frequency histograms showing the distributions of bleaching steps expected if all complexes contained one or two molecules of SRSF1. The distributions expected are calculated from the relative levels of mEGFP-SRSF1 and endogenous SRSF1 in each extract and the observed levels of dimerization. (Table 1).



Appendix Fig. S3. The level and patterns of binding of mEGFP-SRSF1 in the absence of ATP depend on U1 snRNA binding to 5'SS and on protein phosphatases. (A) Distributions of numbers of molecules of mEGFP-SRSF1 associated with single molecules of GloC pre-mRNA after depletion of ATP by pre-incubation prior to the addition of ATP. (B) Association of mEGFP-SRSF1 on pre-mRNA in which the 5'SS had been inactivated by mutation. (C) Association with GloC pre-mRNA after sequestration of U1 snRNA with a complementary oligonucleotide. (D) Distribution on GloC pre-mRNA when ATP depletion had been done in the presence of protein phosphatase inhibitors.



В





#### Appendix Fig. S4. Splicing and complex assembly by RNA labelled with Cy5-maleimide. (A)

Normal <sup>32</sup>P-labelled GloC pre-mRNA, with a 5' cap, and Cy5-labelled pre-mRNA were mixed and incubated at ~1 nM and either 31 or 62 nM, respectively, in nuclear extract under splicing conditions. Samples were removed at the times indicated and analysed by gel electrophoresis. Gels were imaged to detect both fluorescence and radioactivity. (**B**) Splicing efficiency was taken as [mRNA]/([pre-mRNA]+[mRNA]+[5' exon intermediate]) at each time point. (**C**) Analysis by native gel electrophoresis of the formation of heparin-resistant complexes in reactions done as above with transcripts labelled with <sup>32</sup>P or Cy5 (62 nM).



Appendix Fig. S5. Frequency histograms showing the levels of two-way co-localization of mEGFP-SRSF1 and mCherry-U1A in a nuclear extract in the absence of exogenous pre-mRNA after treatment with ribonucleases A and T1. (A) Association of mEGFP-SRSF1 with mCherry-U1A. Of 574 mCherry-U1A spots, 84 were colocalised with mEGFP-SRSF1, and in 67 of the 84 cases there was only a single molecule of mEGFP-SRSF1. (B) Association of mCherry-U1A with mEGFP-SRSF1. Of 472 mEGFP-SRSF1 spots, 93 were colocalised with mCherry-U1A, and in 74 of the 93 cases there was only a single molecule of mCherry-U1A.



Appendix Fig. S6. Addition of a 5'SS to the 3' end of BGSMN2 is as effective as the addition of tandem copies of a strong ESE. The pre-mRNA substrates indicated were incubated in nuclear extract for the times shown and the reactions analysed by denaturing polyacrylamide gel electrophoresis. The pre-mRNA, mRNA and 5' exon intermediate are shown. The addition of the 3' ESE sequences and the U1 binding site increased the lengths of the pre-mRNA and the mRNA but not that of the 5' exon intermediate. The effects of adding multiple copies of this ESE sequence to this pre-mRNA is documented fully elsewhere (Jobbins *et al*, 2018).



Appendix Fig. S7. Effects of a 3'-terminal 5'SS on the recruitment of U2AF35, U2AF65 and U2 snRNP to BGSMN2-U1 pre-mRNA. The U2 snRNP was detected by using a nuclear extract from HeLa cells expressing mEGFP-U2B", and U2AF35 and U2AF65 were detected using a single extract from cells in which mCherry-U2AF35 and mEGFP65 had been expressed (Chen *et al*, 2017). Two-way colocalization experiments were done with each extract and Cy5-labeled pre-mRNA. The interpretative cartoons on the right are coloured to indicate the components labeled and detected in each experiment.



GloC

Appendix Fig. S8. Colocalization of mEGFP-SRSF1ARS on GloC and BGSMN2 + ESE-Ax4. Nuclear extract expressing mEGFP-SRSF1ARS was incubated with GloC or BGSMN2-ESE Cy5-pre-mRNA, amd two-way colocalization was done to measure the number of steps in which the mEGFP colocalised with the pre-mRNA was bleached.

**BGSMN2-ESE** 





Appendix Fig. S9. SL3 mutations impair the binding of SRSF1∆RS but maintain the interactions with FUS RRM. (A) Isothermal titration calorimetry of the binding of SRSF1∆RS on U1 snRNA SL3. (B) Isothermal titration calorimetry of the binding of SRSF1∆RS on U1 snRNA SL3 mutant. (C) Overlay of the 2D <sup>1</sup>H-<sup>15</sup>N HSQC spectra of FUS RRM before (black) and after addition of 1.3 molar equivalent of SL3 wild type (red) or SL3 mutant (green). (D) Plot of the normalized chemical shift perturbations (CSP) of the FUS amide resonances upon titration with SL3 wild-type (red) or SL3 mutant (green).



**Appendix Fig. S10. Protein cross-links to U1 snRNA** *in vivo*. The heat map shows the distribution of cross-links to U1 snRNA for 147 RNA-binding proteins, from ENCODE project data (Van Nostrand *et al*, 2020). U1 snRNA is represented along the ordinate. The strategy used in the experiments precluded the observation of cross-links at the 5' end of U1 snRNA. A list of all the proteins represented is included in Appendix Table 1.



Appendix Fig. S11. Complexes identified by bleaching as containing two molecules of mEGFP-SRSF1 emit approximately twice as many photons as those identified as containing one molecule. The total counts emitted upon irradiation at 488 nm was measured for every spot counted in Figure 3B (mEGFP-SRSF1 colocalised with pre-mRNA GloC-U1). The background measured in the same area after bleaching was subtracted. The counts detected from individual complexes containing one or two molecules of mEGFP-SRSF1 are plotted as a box plots, labelled 1 or 2 respectively. In the plot labelled 1+1, values from the single molecules complexes in plot 1 were shuffled at random and added pairwise to the

values in plot 1, simulating complexes with two molecules of SRSF1. The median values are shown as a line in each box, and the values are (1) 1,472, (2) 3,085 and (1+1) 3,802.