¹ SUPPLEMENTARY MATERIAL

2

3 Supplementary methods

4

5 Tumour analyses

TMA sections (4 µm) were stained with a multimarker panel including primary antibodies 6 7 against CD3, CD8 and CD68 using fluorescence-based multiplex immunohistochemistry following the protocol described in (1). Briefly, a 5-plex stain was designed using the Opal[™] 8 9 Multiplex IHC method (PerkinElmer/Akoya, USA). Deparaffinization was performed in xylene, 10 followed by hydration in graded alcohols. The Dako PT link module was used for heatinduced epitope retrieval for 20 min at 97 °C using the EnVision™ FLEX Target Retrieval 11 Solution (3-in-1) pH 9 (Agilent/Dako, USA, catalogue number K800421-2) in 65 °C preheat 12 mode. The Dako PT link module was also used for antibody stripping for 20 min at 97 °C 13 14 using AR9 buffer (PerkinElmer/Akoya, USA, catalogue number AR9001KT) in 80 °C preheat mode (AR6 (PerkinElmer/Akoya, USA, catalogue number AR6001KT) was used prior to 15 16 staining of cytokeratins/E-cadherin). Antibody staining was done using the Opal[™] 4 Color 17 Manual IHC Kit and an Opal 620 reagent pack (PerkinElmer/Akoya, USA, catalogue 18 numbers NEL810001KT and FP1495001KT; kit contains blocking solution/antibody diluent, 19 secondary antibody, Opal fluorophores and DAPI) according to the manufacturer's 20 recommendations. Briefly, in each cycle following antigen retrieval/antibody stripping, tissue 21 sections were incubated for 10 minutes with blocking solution prior to incubation with primary 22 antibody solution for 30 minutes. After 3x2 minutes washes in TBST, the secondary antibody 23 (PerkinElmer/Akoya, USA) was incubated for 10 minutes. A new 3x2 minutes wash cycle was performed before incubation with Opal fluorophore for 10 minutes. A final 3x2 minutes 24 25 wash cycle was performed prior to antibody stripping. Monoclonal primary antibodies were 26 chosen to facilitate reproducibility of the study since they are generally more specific than polyclonal antibodies, easier to reproduce and less affected by formalin fixation bias. The 27 28 specific clones were selected based on comparative testing and quality assessments by the 29 Nordic immunohistochemical Quality Control (NordiQC; nordiqc.org) organisation. The following primary antibodies and Opal fluorophores were used (in the order they were 30 stained): CD68 (1:6000, clone KP1, Agilent/Dako, catalogue number M081401-2; detected 31 32 by Opal 620 at 1:125); CD3 (1:400, clone F7.2.38, Agilent/Dako, catalogue number M725401-2; detected by Opal 570 at 1:100), CD8 (1:600, clone C8/144B, Agilent/Dako, 33 catalogue number M710301-2; detected by Opal 520 at 1:100). The tissue was hybridised 34 35 with a cocktail of epithelial markers in the last staining cycle to facilitate accurate epithelial

segmentation by the digital image analysis algorithm (anti-pan Cytokeratin (1:2000, clone C-36 11, Abcam, UK, catalogue number ab7753), anti-pan Cytokeratin Type I/II (1:1000, clone 37 AE1/AE3, Thermo Fisher Scientific, USA, catalogue number MA5-13156) and anti-E-38 39 cadherin (1:10000, clone 36, BD Biosciences, USA, catalogue number 610182)); detected by Opal 690 at 1:100. DAPI (PerkinElmer/Akoya, USA) was used as counterstain prior to slide 40 41 mounting with ProLong Diamond Antifade Mountant (Invitrogen/Thermo Fisher Scientific, 42 USA, catalogue number P36970). All fluorophores were included in singleplex stains to create spectral libraries to unmix individual spectral signatures in the multiplex. The spectral 43 signature of the tissue autofluorescence was obtained from a slide not probed with any 44 45 fluorophore but otherwise treated as the other library stains. All markers were optimised prior 46 to multiplex staining as follows. A separate test TMA (n = tissue cores = 166; 83 unique samples in duplicate), consisting of cores taken from a variety of tissues, including colorectal 47 (normal (n = 12; 6 in duplicate) and cancer (n = 82; 41 in duplicate)) and lymph node tissues 48 (n = 6; 3 in duplicate), as well as a broad variety of other normal tissues and cancers 49 (including normal testis, prostate, liver, appendix, spleen, thymus and tonsil) was stained by 50 conventional brown staining (3,3'-diaminobenzidine) for each marker individually to 51 52 determine optimal antibody concentrations. Antibodies were then paired with an Opal 53 fluorophore, and the test TMA was fluorescently labelled by each marker individually, along with DAPI (monoplex stain). A negative control experiment was performed where the primary 54 55 antibody was omitted from one slide. These stains were compared to the brown stains to 56 determine if antibody, or Opal fluorophore concentrations, needed fine-tuning to achieve 57 optimal specificity and linear dynamic range. When optimal concentrations for fluorescent 58 labelling were determined, a multiplex stain was performed on the test TMA and compared to 59 the monoplex stains to ensure proper staining also when performing the sequential multiplex staining procedure (e.g., control for potential antigen blocking by the TSA reagent). Multiplex 60 stains were optimised to achieve signal balance between the fluorophores to avoid potential 61 signal bleedthrough and facilitate accurate unmixing of the fluorophore spectras. Finally, 62 strip-testing was performed on the test TMA to ensure that antibodies were properly stripped 63 away between each staining cycle. This was done by a regular cycle of staining with each 64 65 antibody individually, followed by heat treatment in the PT link module and another cycle of staining using blocking solution, secondary antibody and the next fluorophore in the 66 multiplex, but this time omitting any primary antibody. Images were then taken to verify that 67 no signal above background values was detected from the second fluorophore applied. 68

⁶⁹ Image acquisition and digital image analysis

70 Multispectral images of the TMAs were acquired at 20x magnification (0.5 μ m/pixel) using the

71 Vectra 3.0 Automated Quantitative Pathology Imaging System, 200 slides (Vectra software

version 3, PerkinElmer/Akoya, USA). Four images (2x2) were taken of each tissue core. The 72 73 standard setup for multispectral imaging was used, i.e. images were taken at 35 wavelengths 74 across the five excitation filters. Exposure times for the various filters were as follows; DAPI: 75 50ms, FITC: 150ms, Cy3: 150ms, Texas Red: 150ms, Cy5: 150ms (however, of note, the 76 system automatically limits the exposure if a fluorophore is in danger of becoming 77 overexposed and this is later automatically adjusted for during calculations of fluorophore 78 intensities in the accompanying inForm software). Multispectral image analysis of the 79 multiplex stains was carried out with the inForm Image Analysis Software (version 2.3, Akoya Biosciences). Representative training images were initially loaded and spectrally unmixed 80 81 with the spectral libraries generated from the individual fluorophore library stains and the 82 autofluorescence slide. A machine-learning algorithm was then trained by user-specified 83 tissue annotations aided by the epithelial markers' signal to segment tumour tissue versus stromal tissue and background. The segmentation of individual cells was based on the 84 nuclear DAPI signal (specifically, in inForm, the minimum size for nuclei was set to 80 pixels, 85 typical size was set to 320 pixels, minimum signal was set to 0.18, splitting was set to 2.26, 86 87 growth of nuclei set to 0.35 and membrane signal was used to aid segmentation). CD68 88 signal was included for segmentation of cytoplasm in cells where this marker was detected (specifically, inner distance to the nucleus was set to 0 pixels, outer distance to the nucleus 89 was set to 6 pixels, minimum size was set to 20 pixels, minimum signal was set to 0.3 with 90 91 no bounds on the maximum). Membrane segmentation was aided by the signals from CD8 92 (full-scale count set to 10.9), CD3 (full-scale count set to 9.0) and the epithelial markers (full-93 scale count set to 8.7) with a maximum distance to membrane set to 12 pixels. See 94 supplementary Figure S1 for representative examples from the image analysis in inForm. A 95 review of all images was performed after batch processing. The raw file containing mean intensity signals per cell in the entire cohort was analysed using R software, version 3.3.1 (R 96 97 Foundation for Statistical Computing, Vienna, Austria). No R packages (besides base packages) were used. A custom script was written to score cells as positive for a marker if 98 mean signal intensities were above the threshold set for the marker. Cell densities were then 99 calculated based on the number of positive cells within the tissue category (tumour epithelial 100 101 tissue or stroma) or within the tissue core as a whole. For scoring cell positivity, the mean 102 fluorescence intensity within the nuclear area of cells was used for CD3 and CD8, while 103 mean cellular scores (within the nuclear, cytoplasmic and membrane area combined) were 104 used for CD68. CD3 and CD8 cells were generally small and often tightly packed; thus, using 105 the tighter segmentation of the nuclear area resulted in optimal scoring of these cells. However, using the entire cell area for mean fluorescence intensity-based scoring was 106 visually found to be better for the generally larger CD68 macrophages (this is why only CD68 107 108 was used during cytoplasm segmentation). Positivity thresholds were set based on manual

- 109 inspection of representative images and after evaluating the expression distribution across all
- cells. To check the thresholds set, we also tested scoring cells with one threshold set below
- and one above the thresholds used to procure the final data. The data produced by using the
- lower and higher thresholds correlated well for each marker (Spearman's rho 0.84 0.93).

113 Molecular alterations

- 114 For correct interpretation of *BRAF* V600E status, we assembled results from previous
- immunohistochemistry (IHC) for BRAF V600E (2), BRAF V600 pyrosequencing (3) and
- 116 targeted BRAF sequencing in a customized Ampliseq hotspot gene panel (4). For
- 117 inconsistent cases, pyrosequencing was redone before a final consensus was made. Eight
- cases were mutated according to IHC, but wildtype according to DNA based methods, these
- 119 were considered wildtype. Four cases were mutated according to IHC and pyrosequencing,
- but wildtype according to hotspot panel sequencing with low variant allele frequency in three
- 121 cases; these were considered mutated.
- 122 Results from previous pyrosequencing of *KRAS* codon 12 and 13 (3)and hotspot gene panel
- sequencing were compared (4). Pyrosequencing was redone for inconsistent results. Three
- 124 cases were *KRAS* mutated according to pyrosequencing, but wildtype according to hotspot
- 125 panel sequencing with low variant allele frequency; these were considered mutated. Two
- 126 cases were removed from the final *KRAS* interpretation status due to inconsistent results.
- 127

Lopes N, Bergsland CH, Bjørnslett M, Pellinen T, Svindland A, Nesbakken A, et al. Digital
image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic value of
CDX2 and its negative correlation with SOX2. Lab Invest. 2020;100(1):120-34.

Aasebo KO, Dragomir A, Sundstrom M, Mezheyeuski A, Edqvist PH, Eide GE, et al.
Consequences of a high incidence of microsatellite instability and BRAF-mutated tumors: A
population-based cohort of metastatic colorectal cancer patients. Cancer Med. 2019;8(7):3623-35.
Sorbye H, Dragomir A, Sundstrom M, Pfeiffer P, Thunberg U, Bergfors M, et al. High BRAF
Mutation Frequency and Marked Survival Differences in Subgroups According to KRAS/BRAF
Mutation Status and Tumor Tissue Availability in a Prospective Population-Based Metastatic

137 Colorectal Cancer Cohort. PLoS One. 2015;10(6):e0131046.

Nunes L, Aasebo K, Mathot L, Ljungstrom V, Edqvist PH, Sundstrom M, et al. Molecular
characterization of a large unselected cohort of metastatic colorectal cancers in relation to primary
tumor location, rare metastatic sites and prognosis. Acta Oncol. 2020;59(4):417-26.

- 141
- 142

Supplementary tables

TABLE S1 Unadjusted non-parametric analysis of correlations between CD3, CD8 and CD68 tumour immune cell densities and clinicpathological variables in a Scandinavian population-based cohort of metastatic colorectal cancer patients

	Missing		CD3	CD8		CD68	
Characteristics	n	Medians	p-value	Medians	p-value	Medians	p-value
Age (years) < 75/> 75		56.1/ 70.3	0.163	36.9/ 45.9	0.090	46.6/ 35.0	0.165
Gender Female/Male		60.2/ 58.9	0.820	41.2/ 38.9	0.577	40.0/ 43.3	0.587
PS ECOG 0-1/>1		56.3/ 63.4	0.362	41.6/ 35.1	0.974	45.3/ 39.4	0.488
Primary tumour location Left / Right	7	53.9/ 65.5	0.200	32.2/ 50.5	0.001	40.4/ 42.7	0.698
Metastatic site							
Liver absent/present		55.7/ 62.3	0.879	53.5/ 33.0	0.002	39.4/ 41.6	0.834
Lung absent/present		59.2/ 63.4	0.719	42.4/ 34.8	0.309	42.7/ 37.7	0.634
Lymph node absent/present		62.9/ 53.3	0.387	37.5/ 47.4	0.159	39.1/ 47.1	0.431
Peritoneum absent/present		63.4/ 45.6	0.219	40.6/ 39.4	0.882	43.4/ 29.1	0.392
Bone absent/present		59.5/ 63.4	0.575	40.8/ 34.7	0.667	43.4/ 17.4	0.010
Synchronous metastases no/yes		63.3/ 56.3	0.920	43.0/ 35.1	0.632	35.8/ 45.3	0.396
Primary tumour resected no/yes		78.0/ 58.7	0.271	36.9/ 40.8	0.919	40.1/ 41.3	0.679
Secondary metastasis surgery no/yes	1	58.3/ 69.0	0.200	38.5/ 51.4	0.227	39.6/ 50.8	0.311
Preoperative radiotherapy no/yes		59.5/ 65.4	0.734	40.8/ 30.6	0.834	40.5/ 43.4	0.573
Tumour grade 1-2/3	15	64.3/ 53.7	0.241	38.5/ 47.2	0.669	39.2/ 52.8	0.242
KRAS wildtype/mutation	15	65.7/ 50.1	0.066	43.0/ 37.2	0.520	41.1/ 46.4	0.738
BRAFV600E wildtype/mutation		56.3/ 62.7	0.391	37.0/ 47.2	0.065	40.5/ 42.6	0.311
MSS/MSI	1	54.8/102.4	0.041	35.1/141.4	< 0.001	40.4/ 55.7	0.089
CDX2 positive/negative	2	59.5/ 62.7	0.846	38.7/44.1	0.227	40.4/ 51.3	0.366
APC wildtype/mutation	50	61.0/ 72.7	0.774	43.9/ 31.4	0.033	49.4/ 41.9	0.828
TP53 wildtype/mutation	50	67.5/ 55.9	0.794	38.7/ 40.8	0.814	46.6/42.6	0.414
PIK3CA wildtype/mutation	50	60.6/ 69.6	0.736	36.0/ 60.1	0.027	42.7/54.3	0.448
SMAD4 wildtype/mutation	50	65.3/ 55.2	0.353	39.4/ 42.6	0.317	46.6/ 33.0	0.181
		rho	p-value	rho	p-value	rho	p-value
CD68 density		0.25	< 0.001	0.26	< 0.001		
Age (years)		0.10	0.038	0.10	0.030	-0.05	0.344

Abbreviations: Median: median density of tumour infiltrating immune cells per mm²; p-value: determined by non-parametric Mann-Whitney U test, except for continuous variables determined by Spearman's rank correlation; rho; Spearman's rank correlation coefficient; PS ECOG: performance status score developed by Eastern Cooperative Oncology Group; Right-sided: Site of primary colon cancer in ascending colon and transversum; Left-sided: Site of primary colon cancer in descending colon, sigmoid and rectum; Synchronous metastases: within six months after initial diagnoses

TABLE S2 Results from adjusted linear regressions of tumour infiltrating CD3 and CD8 lymphocytes and CD68 macrophages with respect to clinical and pathological variables in a Scandinavian population-based cohort of 376 metastatic colorectal cancer patients

Variables	С	D3 tumour der	nsity	C	D8 tumour den	sity	CD68 tumour density			
	В	95 % CI	p-value	В	95 % CI	p-value	В	95 % CI	p-value	
Age > 75 years	0.55	(-0.84, 1.95)	0.435	0.56	(-0.69, 1.80)	0.382	-0.93	(-2.46, 0.61)	0.235	
Female	-0.06	(-1.33, 1.22)	0.930	-0.80	(-1.94, 0.34)	0.167	-0.38	(-1.79, 1.02)	0.590	
PS ECOG > 1	0.57	(-0.86, 2.00)	0.435	0.23	(-1.05, 1.51)	0.722	0.94	(-0.63, 2.51)	0.239	
Right-sided	1.44	(-0.02, 2.91)	0.053	0.95	(-0.37, 2.25)	0.159	0.03	(-1.58, 1.64)	0.972	
Liver metastases	-0.26	(-1.71, 1.19)	0.725	-1.31	(-2.60, -0.01)	0.048	-0.34	(-1.94, 1.25)	0.673	
Lung metastases	-0.63	(-2.16, 0.92)	0.425	-0.08	(-1.46, 1.29)	0.904	0.13	(-1.56, 1.82)	0.881	
Lymph node metastases	-0.50	(-1.99, 0.98)	0.505	0.18	(-1.15, 1.51)	0.791	0.58	(-1.05, 2.21)	0.486	
Peritoneal metastases	-0.60	(-2.31, 1.10)	0.487	-0.53	(-2.06, 1.00)	0.495	-0.48	(-2.35, 1.40)	0.618	
Bone metastases	-1.43	(-4.04, 1.19)	0.283	-0.53	(-2.87, 1.80)	0.653	-3.34	(-6.22, -0.47)	0.023	
Synchronous metastases	-0.04	(-1.42, 1.35)	0.961	-0.19	(-1.42, 1.05)	0.764	-0.59	(-2.10, 0.93)	0.449	
Primary tumour resected	1.58	(-1.05, 4.22)	0.238	0.86	(-1.50, 3.21)	0.475	-1.47	(-4.37, 1.43)	0.319	
Secondary metastasis surgery	1.54	(-0.93, 4.01)	0.221	0.94	(-1.27, 3.15)	0.403	1.37	(-1.35, 4.08)	0.324	
Preoperative radiotherapy	0.46	(-2.44, 3.35)	0.757	1.54	(-1.05, 4.12)	0.244	-0.92	(-4.10, 2.26)	0.570	
Tumour grade 3	-1.02	(-2.75, 0.71)	0.246	-0.88	(-2.43, 0.66)	0.261	0.47	(-1.43, 2.37)	0.624	
KRAS mutation	-1.04	(-2.52, 0.44)	0.167	-0.20	(-1.52, 1.12)	0.769	1.39	(-0.24, 3.01)	0.094	
BRAFV600E mutation	-0.69	(-2.83, 1.45)	0.526	-0.20	(-2.12, 1.71)	0.835	1.44	(-0.92, 3.79)	0.231	
MSI	2.35	(-0.47, 5.16)	0.102	5.44	(2.93, 7.96)	< 0.001	2.45	(-0.65, 5.54)	0.121	
CDX2 negative	0.31	(-1.55, 2.17)	0.743	0.25	(-1.41, 1.91)	0.768	-0.39	(-2.43, 1.66)	0.712	
APC mutation	0.21	(-1.16, 1.57)	0.768	-0.72	(-1.94, 0.50)	0.244	0.00	(-1.50, 1.50)	0.996	
TP53 mutation	0.80	(-0.48, 2.09)	0.218	-0.05	(-1.19, 1.10)	0.938	-0.75	(-2.16, 0.67)	0.299	
PIK3CA mutation	0.29	(-1.34, 1.92)	0.728	1.43	(-0.03, 2.89)	0.054	0.22	(-1.57, 2.02)	0.806	
SMAD4 mutation	-1.27	(-3.26, 0.72)	0.210	-0.84	(-2.61, 0.94)	0.355	-1.12	(-3.31, 1.06)	0.313	
Abbreviations: B: Regression co	efficient o	calculated using	square roo	t of total	number of posit	ive cells pe	r mm²; R	ight-sided: Site	of	

primary colon cancer in ascending colon and transversum; Left-sided: Site of primary colon cancer in descending colon, sigmoid and rectum; MSI: microsatellite instable high; CDX2 negative: loss of CDX2 expression

TABLE S3 Associations between different treatment decisions and tumour infiltration of CD3 and CD8 lymphocytes and CD68 macrophages in a population-based cohort of metastatic colorectal cancer patients (n = 448)

		CD	3	CD	8	CD	68
Chemotherapy	n	Median	p-value	Median	p-value	Median	p-value
Prior adjuvant							
Yes	67	40.5	0.046	38.0	0.945	33.2	0.235
No	381	62.1		40.6		41.9	
1 st line							
Yes	280	56.3	0.254	38.5	0.313	45.2	0.699
No	168	67.5		45.1		37.5	
1 st line combination							
Yes	216	59.6	0.659	37.9	0.596	48.5	0.299
No	64	50.0		43.4		36.9	
2 nd line							
Yes	162	61.3	0.523	36.5	0.385	61.8	0.021
No	117	51.1		44.1		32.7	
3 rd line							
Yes	73	60.6	0.526	33.1	0.612	74.4	0.267
No	89	63.3		40.6		49.4	
Abbreviations: p-value:	determine	ed by the nor	n-parametric	Mann-Whitn	ey U-test		

TABLE S4 Results from unadjusted Cox regression analyses of overall survival in a population-based Scandinavian cohort of metastatic colorectal cancer patients not given palliative chemotherapy (n = 168)

Variable	n (%)	HR	95 % CI	p-value
BRAFV600E mutation	48 (22)	1.67	(1.20, 2.31)	0.002
CDX2 negative	41 (24)	1.84	(1.28, 2.64)	0.001
MSI	19 (9)	1.76	(1.08, 2.86)	0.024
CD3 density	. ,	0.99	(0.97, 1.02)	0.657
CD68 density		1.00	(0.98, 1.03)	0.725
CD8 density		0.98	(0.96, 1.01)	0.173
Abbreviations: n: number of pa	atients [,] HR [,] ha	azard rat	io: CI: confiden	ce

Abbreviations: n: number of patients; HR: hazard ratio; CI: confidence interval; p-value: from likelihood ratio test; MSI-H: microsatellite instable high; CD3 density: square root transformed number of tumour infiltrating CD3 lymphocytes per mm² tumour tissue microarray; CD8 density: square root transformed number of tumour infiltrating CD8 lymphocytes per mm² tumour tissue microarray; CD68 density: square root transformed number of tumour infiltrating CD68 macrophages per mm² tumour tissue microarray **TABLE S5** Results from Cox regression of progression-free survival in a population-based Scandinavian cohort of 244 metastatic colorectal cancer patients after 1st line chemotherapy

		Un	adjusted			Fully adjuste	ed
						(n = 244, e = 2	34)
Variable	n/e	HR	95 % CI	p-value	HR	95 % CI	p-value
Age, years	279/269	1.01	(0.99, 1.02)	0.395	1.00	(0.98, 1.01)	0.580
Female	279/269	1.11	(0.87, 1.41)	0.409	0.87	(0.65, 1.15)	0.315
PS ECOG	279/269	2.18	(1.58, 3.00)	< 0.001	1.95	(1.35, 2.83)	< 0.001
Right-sided	276/266	1.02	(0.79, 1.31)	0.878	0.75	(0.55, 1.03)	0.074
Tumour grade 3	273/263	1.85	(1.38, 2.47)	< 0.001	1.74	(1.20, 2.51)	0.004
> 1 metastatic site	279/269	1.41	(1.11, 1.80)	0.005	1.24	(0.93, 1.66)	0.141
Synchronous metastasis	279/269	0.95	(0.75, 1.21)	0.700	0.82	(0.62, 1.09)	0.175
Secondary metastasis surgery	278/268	0.33	(0.22, 0.49)	< 0.001	0.37	(0.23, 0.60)	< 0.001
ALP > UNL	264/254	1.54	(1.20, 1.98)	0.001	1.40	(1.05, 1.88)	0.023
BRAFV600E mutation	279/269	1.40	(1.03, 1.91)	0.032	1.20	(0.79, 1.82)	0.402
KRAS mutation	270/260	0.94	(0.74, 1.21)	0.630	1.55	(1.13, 2.12)	0.007
CDX2 negative	277/267	1.97	(1.41, 2.75)	< 0.001	1.45	(0.94, 2.25)	0.093
MSI-H	278/268	2.11	(1.27, 3.53)	0.004	2.39	(1.15, 4.98)	0.020
CD3 density	279/269	0.99	(0.97, 1.01)	0.303	1.00	(0.98, 1.03)	0.533
CD68 density	279/269	0.98	(0.97, 1.00)	0.111	0.99	(0.97, 1.02)	0.533
CD8 density	279/269	1.00	(0.98, 1.02)	0.948	n.i.		
Abbreviations: n: number of pati	ents; e: num	nber of e	vents; HR: haza	ard ratio; CI	: confid	lence interval; p	-value:
from likelihood ratio test; PS EC	OG: perform	nance sta	atus score deve	loped by E	astern (Cooperative On	cology
Group; Right-sided tumour: Site	of colon car	ncer in a	scending colon	and transv	ersum;	Synchronous	
metastases: within six months a	fter initial dia	agnoses;	ALP > UNL: A	Ikaline Pho	sphatas	se above upper	normal
limit; MSI-H: microsatellite instal	ole high; CD	3 density	y: square root tr	ansformed	numbe	er of tumour infilt	trating
CD3 lymphocytes per mm ² tumo	our tissue mi	icroarray	; CD8 density: s	square root	transfo	ormed number o	f tumour
infiltrating CD8 lymphocytes per	mm ² tumou	r tissue	microarray; CD	68 density:	square	root transforme	d number
of tumour infiltrating CD68 macr	ophages pe	r mm² tu	mour tissue mid	croarray: n.	i.: not ir	ncluded	

TABLE S6 Results from fully adjusted Cox regression of overall survival in a population-basedScandinavian cohort of 245 metastatic colorectal cancer patients treated with 1st line chemotherapy

VariableHRAge, years 1.00 Female 0.66 PS ECOG 2.20 Right-sided 0.98 Tumour grade 3 1.72 > 1 metastatic site 1.34 Synchronous metastasis 0.81 Secondary metastasis surgery 0.32 ALP > UNL 1.83 BRAFV600E mutation 1.61 KRAS mutation 1.60 CDX2 negative 1.74 MSI-H 3.35 CD3 high 0.73 CD68 high 0.61 Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	95 % Cl (0.99, 1.01) (0.50, 0.88)	p-value 0.965
Age, years1.00Female0.66PS ECOG2.20Right-sided0.98Tumour grade 31.72> 1 metastatic site1.34Synchronous metastasis0.81Secondary metastasis surgery0.32ALP > UNL1.83BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(0.99, 1.01) (0.50, 0.88)	0.965
Female0.66PS ECOG2.20Right-sided0.98Tumour grade 31.72> 1 metastatic site1.34Synchronous metastasis0.81Secondary metastasis surgery0.32ALP > UNL1.83BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(0.50, 0.88)	
PS ECOG2.20Right-sided0.98Tumour grade 31.72> 1 metastatic site1.34Synchronous metastasis0.81Secondary metastasis surgery0.32ALP > UNL1.83BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	/	0.005
Right-sided 0.98 Tumour grade 3 1.72 > 1 metastatic site 1.34 Synchronous metastasis 0.81 Secondary metastasis surgery 0.32 ALP > UNL 1.83 BRAFV600E mutation 1.61 KRAS mutation 1.60 CDX2 negative 1.74 MSI-H 3.35 CD3 high 0.73 CD68 high 0.61 Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.53, 3.15)	< 0.001
Tumour grade 3 1.72 > 1 metastatic site 1.34 Synchronous metastasis 0.81 Secondary metastasis surgery 0.32 ALP > UNL 1.83 BRAFV600E mutation 1.61 KRAS mutation 1.60 CDX2 negative 1.74 MSI-H 3.35 CD3 high 0.73 CD68 high 0.61 Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(0.72, 1.33)	0.872
> 1 metastatic site1.34Synchronous metastasis0.81Secondary metastasis surgery0.32ALP > UNL1.83BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.19, 2.49)	0.004
Synchronous metastasis0.81Secondary metastasis surgery0.32ALP > UNL1.83BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.00, 1.80)	0.048
Secondary metastasis surgery0.32ALP > UNL1.83BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(0.62, 1.07)	0.141
ALP > UNL1.83 $BRAFV600E$ mutation1.61 $KRAS$ mutation1.60 $CDX2$ negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(0.19, 0.52)	< 0.001
BRAFV600E mutation1.61KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.37, 2.44)	< 0.001
KRAS mutation1.60CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.03, 2.52)	0.036
CDX2 negative1.74MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.17, 2.18)	0.003
MSI-H3.35CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.12, 2.70)	0.013
CD3 high0.73CD68 high0.61Abbreviations: n: number of patients; e: nhazard ratio; CI: confidence interval; p-varatio test; PS ECOG: performance statusEastern Cooperative Oncology Group; Rigof colon cancer in ascending colon and tra	(1.64, 6.84)	0.001
CD68 high 0.61 Abbreviations: n: number of patients; e: n hazard ratio; CI: confidence interval; p-va ratio test; PS ECOG: performance status Eastern Cooperative Oncology Group; Rig of colon cancer in ascending colon and tra	(0.55, 0.97)	0.029
Abbreviations: n: number of patients; e: n hazard ratio; CI: confidence interval; p-va ratio test; PS ECOG: performance status Eastern Cooperative Oncology Group; Rig of colon cancer in ascending colon and tra	(0.46, 0.81)	0.001
Synchronous metastases: within six mont diagnoses; ALP > UNL: Alkaline Phospha normal limit; MSI-H: microsatellite instable density of tumour infiltrating CD3 lymphoo CD68 high: density of tumour infiltrating C median value	alue: from likelih score develope ight-sided tumo ansversum; ths after initial atase above up e high; CD3 hig cytes > median CD68 macropha	is; HR: nood ed by ur: Site per yh: value; ages >

TABLE S7 Results from Cox regression of overall survival according to MSI, BRAF and CDX2 status in subgroups with high (> median) and low density of tumour infiltrating CD3 lymphocytes and CD68 macrophages in a Scandinavian population-based cohort of metastatic colorectal cancer patients

			MSI BRAFV600E mutated						C	DX2 loss		
Variable	n (%)	HR	95 % CI	p-value	n (%)	HR	95 % CI	p-value	n (%)	HR	95 % CI	p-value
CD3 low	9 (4)	2.24	(1.13, 4.44)	0.021	41 (18)	1.60	(1.13, 2.26)	0.007	41 (18)	2.34	(1.64, 3.33)	< 0.001
CD3 high	26 (12)	2.85	(1.86, 4.36)	< 0.001	50 (22)	1.80	(1.31, 2.49)	< 0.001	42 (19)	2.10	(1.48, 2.98)	< 0.001
CD68 low	15 (7)	1.51	(1.08, 2.09)	0.015	45 (20)	1.51	(1.08, 2.09)	0.015	39 (18)	2.00	(1.40, 2.85)	< 0.001
CD68 high	20 (9)	2.52	(1.56, 4.07)	< 0.001	46 (21)	1.86	(1.33, 2.59)	< 0.001	44 (19)	2.39	(1.69, 3.38)	< 0.001
Abbreviations: n: number of patients with MSI, BRAF mutation or CDX2 loss; HR: hazard ratio; CI: confidence interval; p-value: from likelihood ratio test;												
MSI: microsat	tellite instat	ble high										

FIGURE S1 Representative examples from the inForm software image analysis. Raw images (top, white boxes indicate zoomed in portions of the images) were spectrally unmixed (middle top). Tissue autofluorescence was also unmixed in this step (omitted here for visualization purposes). Based on a user-trained machine learning algorithm, the tissue was segmented into specified categories (middle bottom). Finally, individual nuclei were segmented based on the DAPI signal (bottom), and cytoplasmic and membrane segmentation were aided by signals from CD68, CD3, CD8 and the epithelial markers, as described in the methods section. Signal detected within the nuclear area was used to score cells as CD3 and/or CD8 positive, while signal within the entire cell was used to score cells as CD68 positive (described in the methods section). Only nuclear segmentation is included in the figure for visualization purposes. All images were reviewed after batch analysis and regions of necrosis, folds or poor quality were excluded (illustrated by the dark regions in the tissue and cell segmentation maps for the core on the right). Scale bar equals 100 µm in the images of the cores, while the portions in the lower corners are 5x further zoomed.

Figure S2 Scatter plots demonstrating the correlation of immune cell density between two tumour cores taken from each patient in the generation of tissue microarray (TMA) in a Scandinavian population-based cohort of metastatic colorectal cancer patients (n=436). A) density of whole tissue CD3 lymphocytes B) density of whole tissue CD8 lymphocytes C) density of stroma CD68 macrophages. Abbreviations: p-value: determined by Spearman's rank correlation; rho; Spearman's rank correlation coefficient.

FIGURE S3 Overall survival (OS) according to high (>median) vs low tumour infiltration of CD3 lymphocytes and CD68 macrophages and tumour molecular alterations in a Scandinavian population-based cohort of metastatic colorectal cancer treated with 1st-line chemotherapy. Kaplan-Meier curves were constructed, statistical significance test with the log-rank test for p-value and univariate cox regression for hazard ratio (HR) and 95% confidence interval (CI). A) OS of tumor infiltrating CD3 lymphocytes in subgroups of MSI and MSS cases B) OS according to tumour infiltrating CD3 lymphocytes in subgroups of BRAF mutated and wildtype cases C) OS according to tumour infiltrating CD3 lymphocytes in subgroups of CDX2 positive and negative cases D) OS of tumour infiltrating CD68 macrophages in subgroups of MSI and MSS cases E) OS according to tumour infiltrating CD68 macrophages in subgroups of BRAF mutated and wildtype cases F) OS according to tumour infiltrating CD68 macrophages in subgroups of CDX2 positive and negative cases

