
1 Supplementary Methods

1.1 ANGSD-asso’s hybrid model - for fast computation

The score test as described in Skotte et al. [2012] only has to estimate the
parameters of the null model, where uncertainty on the variables do not have
to be taken into account. It is therefore faster than our approach, where we
both have to estimate the null and the alternative model. The idea behind
the hybrid model is combining the speed of the score test with the desirable
properties of ANGSD-asso’s latent model, where estimates of the effect size and
standard error can be obtained. It works by first running the score test, and
then if the site has a P-value below a certain threshold, we additionally run the
slower ANGSD-asso’s latent model as well

p =

{
pscore < threshold ⇒ return pEM

pscore ≥ threshold ⇒ return pscore.
(1)

The threshold can be set by the user, the default value is 0.05.

1.2 ANGSD-asso’s dosage model

The expected genotype E[G|x] can easily be calculated from the genotype prob-
abilities. This is an easy way to accommodate some of the genotype uncertainty
and is therefore a method for trying to deal with genotype uncertainty in asso-
ciation studies

E[G|x] = p(G = 1|x) + 2p(G = 2|x). (2)

The genotype probability p(G|x) can be calculated using the genotype likelihood
p(x|G) and the frequency f of the genetic variant, for calculating the prior
p(G|f). This is done using Bayes’ formula

p(G|x, f) =
p(x|G)p(G|f)

p(x)
=

p(x|G)p(G|f)∑
g∈0,1,2 p(x|G = g)p(G = g|f)

. (3)

Here it is assumed that we have one homogeneous population where f describes
the frequency of the genetic variant well across all individuals. Other priors
can be used, for instance a prior based on the individual allele frequency (π)
or haplotype frequencies. We perform standard ordinary least squares using
E[G|x] as our explanatory variable

yi =
∑
c

γczic + E[Gi|xi]β + εi. (4)

1.3 Simulated sequencing data

Sequencing data was simulated by first choosing an average depth for a group
of individuals and then sampling the specific depth assuming a Poisson distri-
bution. For simplicity we assumed a constant error rate of 1 %, furthermore we
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assumed that only two bases exist and sample the reads from these two alleles
conditional on the simulated genotype and the error rate. For the run-times in
Figure 5 and Supplementary Figure 13 and the effects of priming in Supplemen-
tary Figure 11, genetic data was simulated using frequencies from the Yoruba
population from Lazaridis et al. [2014b] where the curated Human Origins data
set was selected.

We chose 6 different simulation scenarios, as summarised in Table 1. In sce-
nario 1 we evaluate the false positive rate when there is sequencing depth and
phenotype correlation, under our null hypothesis of no effect of the genotype. In
scenario 2 we examine the statistical power when simulating under our alterna-
tive hypothesis with no sequencing depth and phenotype correlation. Scenario 3
is similar to scenario 1 and 4 is similar to 2, but with the addition of population
structure. Scenario 5 and 6 are similar to scenario 2 and 4 respectively, but with
correlation between sequencing depth and phenotype correlation. The sequenc-
ing depth and phenotype correlation was simulated using a logistic function
modelling the probability of being in the group with high average sequencing
depth p(Di = high). As this function maps the input into probabilities, also the
steepness of the curve can conveniently be controlled with just one parameter.

p(Di = high|δ, yi) =
1

1 + e(−δyi)
(5)

The higher (in absolute value) δ is, to a larger degree the phenotype will correlate
with being in the group of high or low average sequencing depth, meaning the
lowest values of the phenotype will have the lowest probability of being in the
high depth group whereas the highest values of the phenotype will have the
highest probability of being in the high depth group (if δ > 0 and vice versa if
δ < 0).

From the simulation data we estimate frequencies from the genotype likeli-
hoods. For the admixed individuals we assume that the admixture proportions
are known, we estimate the population frequencies using the approach from
Skotte et al. [2013]. The sequencing depth and phenotype correlation is simu-
lated as described in eq. 5.

1.4 Simulating estimated admixture proportions

We added simulations where we performed association analysis of the variant
rs2951755. We used the curated Human Origins data set [Lazaridis et al., 2014a]
with individuals from the Human Genetic Diversity Project (HGDP). In this
data set rs2951755 has a frequency of 0.1 in French and 0.63 in Yoruba. We
chose this variant because it has a high difference in population specific frequen-
cies. We simulated genotypes for rs2951755 and between 50 to 50,000 variants
based on frequencies from randomly sampled variants from the HGDP data.
We simulated individuals as a mix between the French and Yoruba with similar
admixture proportions to that of scenario 4 (see Figure 2) and with the same
simulated effect size of 0.3 and an effect of ancestry of 1. The genotype likeli-
hoods were then used to estimate the admixture proportions using NGSadmix
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[Skotte et al., 2013]. The results are shown in Supplementary Table 3 & 4 when
using both the known and estimated admixture proportions.

2 Simulating scenario 1 and 2
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Figure 1: Simulation scenario 1 with varying the sequencing depth and pheno-
type correlation (δ) (eq. 5). We have a population with 1,000 individuals with-
out population structure or effect of genotype. We use a significance threshold
of 10−3. Each point is the mean value from 10,000 simulations. (a): False pos-
itive rate divided by the expected false positive rate (10−3) as a function of the
sequencing depth phenotype correlation, using ANGSD-asso’s latent model and
dosage model respectively with a sample frequency prior (f) and an individual
allele frequency prior (π). (b) Bias of the estimated effect sizes. (c) The simu-
lated admixture proportions and the mean sequencing depth for the simulated
individuals.
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Figure 2: Simulation scenario 2 with varying the genotype effect size (β) for
a population without structure. We have the same mean sequencing depth as
in Supplementary Figure 1 (c). The phenotype is simulated as a quantitative
trait, with different effect sizes of the genotype, for each tested effect size it is
the mean value from 10,000 simulations. (a): Statistical power to detect a true
association with a significance threshold of (10−3), using ANGSD-asso’s latent
model and dosage model respectively with a sample frequency prior (f) and an
individual allele frequency prior (π). (b): Bias of the estimated effect sizes.
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3 Sequencing depth phenotype correlation with
a quantitative phenotype
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Figure 3: Simulation scenario 5 with varying the effect size of the genotype (β)
and with sequencing depth phenotype correlation (δ = 5, eq. 5). The phenotype
is simulated as a quantitative trait, with different effect sizes of the genotype,
for each tested effect size it is the power calculated from 10,000 simulations.
(a): Statistical power to detect a true association with a significance threshold
of (10−3), using ANGSD-asso’s latent model and dosage model respectively with
a sample frequency prior (f), removing individuals with 0 reads and estimating
f from the genotype likelihoods. (b): Like (a) but keeping individuals with 0
reads. (c): Like (a) but knowing the simulated f . (d): Like (a) but keeping
individuals with 0 reads and knowing the simulated f .
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Figure 4: Like Supplementary Figure 3, but showing the bias of the estimated
effect size.
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Figure 5: Simulation scenario 6 with varying genotype effect size (β), sequencing
depth phenotype correlation (δ) is fixed at a value of 5 (eq. 5). There is an
effect of ancestry of population 1 (γ = 1). The phenotype is simulated as a
quantitative trait, for each tested effect size it is the mean power from 10,000
simulations. (a): We show the statistical power to detect a true association
with a significance threshold of (10−3), using ANGSD-asso’s latent model and
dosage model respectively with a sample frequency prior (f) and an individual
allele frequency prior (π). (b): Like (a) but keeping individuals with 0 reads.
(c): Like (a) but knowing the simulated f and π. (d): Like (a) but keeping
individuals with 0 reads and knowing the simulated f and π.
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Figure 6: Like Supplementary Figure 5, but showing the bias of the estimated
effect size.
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4 Sequencing depth phenotype correlation with
a binary phenotype and population structure

The binary phenotype is simulated like this:

p(y = 1) =
1

1 + e−(β·g+γ·q)
(6)

Depth phenotype correlation was simulated like this:

p(Dhigh|y = 1) =
1

1 + e−δ
(7)

p(Dhigh|y = 0) = 1− 1

1 + e−δ
(8)

The higher δ is the more probable cases will be in the high depth category.
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Figure 7: Simulations like scenario 6 but for a binary phenotype instead of a
quantitative as in supplementary figure 5.
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Figure 8: Like Supplementary Figure 7, showing the bias of the estimated effect
size (β) not the odds ratio.
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5 Sequencing depth phenotype correlation with
a binary phenotype

Figure 9: Estimated odds ratio (OR) from all 3 methods used in Table 2, in
order to show the bias of the estimated effect size. The estimated effect sizes
were simulated using a relative risk (RR) of 1.14. For showing the bias of the
estimated effect size, the OR is used, as this can be obtained from the logistic
regression. A RR of 1.14 with a disease prevalence of 0.1 is equivalent to an OR
of 1.158. The formula for converting OR to RR from Zhang and Kai [1998] was
used.

Figure 10: Like Supplementary Figure 9, but keeping individuals with 0 reads,
like in Table 3.
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5.1 Priming coefficients for faster convergence

(a) (b)

(c)

Figure 11: (a): Iterations for the analysis of 442,769 sites for 5,000 individuals
with a simulated quantitative trait. Sequencing depth is on average 1X for the
individuals when not priming coefficients. (b): Same analysis as (a) but when
priming coefficients. (c): Effect sizes for ANGSD-asso’s latent model when not
using priming and when using priming.
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5.2 Genotype likelihoods from NGS data

Next generation sequencing (NGS) produces reads with the observed nucleotide
bases. These reads are then aligned to a reference genome, and each position
will be covered by a certain number of reads, the more reads covering a position
the more certainty there is of the true genotype of that position. The number
of reads covering a position is called the sequencing depth. Each base in a
sequenced read will have a quality score denoting the certainty of the called
nucleotide base. Genotype likelihoods (GLs) is the likelihood of observing the
sequence data xj given an unknown genotype G, meaning p(xj |G) for a given
position in the genome j. The sequence data xj will consist of R observed bases
xj = (b1, b2, ..., bR).

The GL p(xj |G) is calculated using the quality scores of xj , one method
for doing so is by assuming the R observed bases are independent given our
genotype G

p(Xj |G) ∝
R∏
r=1

p(br|G) =

R∏
r=1

p(br|A1, A2) =

Where A1 and A2 are the two alleles of the genotype G, summing over the
alleles A and rewriting the likelihood

R∏
r=1

∑
A∈A1,A2

p(br|A)p(A) =

And since p(A) or the probability of observing one of the two alleles must be
one half.

R∏
r=1

(
1

2
p(br|A1) +

1

2
p(br|A2)

)
.

The probability of a base b given an allele A relates to the error rate ε.

p(b|B) =

{
ε
3 , b 6= A

1− ε, b = A

Here R is the depth at site j, br is the observed rth base, and ε is the prob-
ability of an error as calculated from the quality score of br.

This is the approach used in the GATK framework McKenna et al. [2010],
other approaches where the quality score is not used directly exist, for example
SAMtools Li et al. [2009].

The likelihood can be used to calculate the posterior probability of the geno-
type G or the genotype probability, using a genotype prior, p(G) and Bayes
Theorem, like in eq. 3.
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6 Poisson distribution written as an exponential
family

For the Poisson distribution we have that the probability of our phenotype yi
of the ith individuals with value k can be written like this

p(yi = k|Gi, zi) =
λki e
−λi

k!
. (9)

Where our linear predictor for the Poisson regression is

ηi = logE[yi] = log λi. (10)

We can write up exp(log(p(yi = k|Gi, zi))

exp

(
log

(
λyii e

−λi

yi!

))
= exp(log λyii e

−λi − log (yi!)) = (11)

exp(yi log λi + log e−λi − log (yi!)) = exp(yi log λi − λi − log (yi!)). (12)

Then we can write it as an exponential family using notation from Dobson and
Barnett [2008]

exp

(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)

)
. (13)

Giving us a(φ) = 1, b(ηi) = λi = exp(ηi) and c(yi, φ) = − log (y!).

7 EM algorithm in ANGSD-asso’s latent model

Starting from eq. 4 in the main text where we have

N∑
i

log

 ∑
g∈{0,1,2}

p(yi|Gi = g, zi, θ)p(Gi = g|xi)

. (14)

The term p(yi|Gi, zi, θ) we base on a linear regression model. We assume that
given the genotype G, covariates Z and parameters θ the phenotype follow a
normal distribution with a mean given by

ηi = α+ βGi +
∑
c

γczic. (15)

We can then apply the EM algorithm for maximising the likelihood. First we
do the E-step, the term p(yi|Gi, zi, θ) is the only one that depends on θ, this is
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equivalent to maxisming

EG|y,x,Z,θ[log p(y|Gi, Z, θ)] = EG|y,x,Z,θ[log

N∏
i

p(yi|Gi, zi, θ)] (16)

=

N∑
i

EG|yi,xi,zi,θ[log p(yi|Gi, zi, θ)]. (17)

And then the M-step is differentiating this as in Lake et al. [2003]

∂

∂β

N∑
i

EG|yi,xi,zi,θ[log p(yi|Gi, zi, θ)] (18)

=

N∑
i

EG|yi,xi,zi,θ

[
∂

∂β
log p(yi|Gi, zi, θ)

]
(19)

=

N∑
i

EG|yi,xi,zi,θ

[
∂ηi
∂β

∂

∂ηi
log p(yi|Gi, zi, θ)

]
(20)

Using the rule of differentiating a sum going from (18) to (19). Using the chain
rule going from (19) to (20). ( dzdx = dz

dy
dy
dx )

The term p(yi|Gi, zi, θ) can be written as an exponential family

p(yi|Gi, zi, θ) =
1√

2πσ2
exp
−(y − ηi)2

2σ2

= exp

(
yiηi − η2i /2

σ2
− y2i /2σ2 − log(2πσ2)/2

)
= exp

(
yiηi − b(ηi)

a(σ)
+ c(yi, σ)

)
.

Where a(σ) = σ2, b(ηi) = η2i /2 and c(yi, σ) = −y2i /2σ2 − log (2πσ2)/2. For a
logistic regression we have a(σ) = 1, b(ηi) = log (1 + eηi) and c(yi, σ) = 0.
And for a Poisson regression we have a(φ) = 1, b(ηi) = λi = exp(ηi) and
c(yi, φ) = − log (y!).

In the case of b(ηi) = η2i /2 and a(σ) = σ2 (where b′(ηi) = ηi), we can de-
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rive the following.

N∑
i

EG|yi,xi,zi,θ

[
∂ηi
∂β

∂

∂ηi

yiηi − b(ηi)
a(σ)

+ c(yi, σ)

]
(21)

=

N∑
i

EG|yi,xi,zi,θ

[
∂ηi
∂β

yi − b′(ηi)
a(σ)

]
(22)

=

N∑
i

EG|yi,xi,zi,θ

[
Gi
yi − ηi
σ2

]
(23)

=

N∑
i

∑
g∈{0,1,2}

(
Gi
yi − ηi
σ2

)
p(Gi = g|yi, xi, zi, θ). (24)

In going from (23) to (24) we are taking the expectation across all values of G.
For the other variables (α, γ) in (15)

N∑
i

∑
g∈{0,1,2}

(
zi
yi − ηi
σ2

)
p(Gi = g|yi, xi, zi, θ). (25)

Where for α we will just replace zi with 1.

We recognise (24) and (25) as the score functions of a weighted regression,
with regards to the respective terms (α, β, γ) [Dutang, 2017]. Each individual
i, contributes one observation per possible genotype G the weights are given by
p(Gi|yi, xi, zi, θ) which is the probability of a genotype G given the phenotype
y, covariates z and parameters θ. This is maximised by doing weighted least
squares, where the parameters θ are chosen to maximise the likelihood.

The term p(Gi|yi, xi, zi, θ) can be estimated using Bayes’ theorem again mak-
ing use of the assumption p(Gi|xi, zi, θ) = p(Gi|xi), and that we can ignore the
sequence data when we have the genotype p(yi|Gi, xi, zi, θ) = p(yi|Gi, zi, θ) this
yields

p(Gi|yi, xi, zi, θ) =
p(yi|Gi, zi, θ)p(Gi|xi)∑

g∈{0,1,2} p(yi|Gi = g, zi, θ)p(Gi = g|xi)
. (26)

7.1 Optimisation strategy for a normal distributed phe-
notype

First an initial guess of the standard deviation is calculated from the phenotype,
using the sample standard deviation

s = sd[y] (27)

Then linear regression is done with the full model, using the dosages calculated
form the genotype probabilities, to estimate the an initial guess of the coefficients
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for ANGSD-asso’s latent model for faster convergence. This is referred to in this
article as priming the coefficients.

Regression weights are then calculated according to (26) and weighted least
squares is done using the parameters and weights from the last iteration of the
EM algorithm. Each individual has three entries in the design matrix (G, Z),
where G is a vector with each of the three possible genotypes for each individual,
each weighted by p(Gi|yi, xi, zi, θ) as estimated for that individual and for that
genotype. Then s is updated by using the weighted sum of squared residuals,
from the weighted least squares with n− o degrees of freedom. Where n is the
number of individuals and o is the number of coefficients in the linear model
as described in (15). The term p(yi|Gi, zi, θ) can be calculated using a normal
distribution with the following parameters, where ηi is from (15).

p(yi|Gi, zi, θ) = N (ηi, s
2). (28)

8 SNPTEST bias with simulated data

Figure 12: This data is simulated with 10,000 individuals with an average depth
of 0.1, 1, 10, 20X, 2,500 individuals each. Varying the effect size of the genotype
(β). There is an effect of ancestry of population 1 (γ = 0.5), the admixture
proportions for population 1 are for the same 2,500 individuals each (Q1=0.15,
0.4, 0.95, 1). We use a significance threshold of 10−3. The linear models are
adjusted for ancestry, SNPTEST was run without transforming the phenotype
or covariates to make it as comparable to ANGSD-asso’s latent model as possible.
Each point is based on 1,000 simulations. (a): We show the statistical power
to detect a true association using ANGSD-asso’s latent model and SNPTEST’s
latent model respectively with a sample frequency prior (f) and an individual
allele frequency prior (π). (b): We show the bias of our estimated effect size.
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9 Running times for a quantitative trait

Figure 13: Running times for an analysis of a simulated quantitative trait with
442,769 genetic variants, varying the number of individuals (1,000, 5,000, 10,000,
20,000, 50,000 and 100,000), the model is run with 2 covariates (age and gender).
The genetic data has an average depth of 1X. For each point we have run
the analysis 3 times and then used the mean running time. All runs but the
SNPTEST analysis is run in ANGSD.
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10 UK Biobank data adjusted for rs78058190

analysis: ANGSD P ANGSD β ANGSD P (adj.) ANGSD (adj.) β
age, sex, BMI, PC 1-10
rs113414093 (R2 0.58) 1.56 · 10−6 0.022 0.79 -0.0017
age, sex, BMI, PC 1-10
rs116204487 (R2 0.20) 2.91 · 10−8 0.022 0.0035 0.013
age, sex, BMI, PC 1-10
rs148358468 (R2 0.19) 6.49 · 10−9 0.023 0.0013 0.014

Table 1: This Table shows the P-value and estimated effect size (β), for the asso-
ciation of respectively rs113414093, rs116204487 and rs148358468 with waist-hip
ratio (inverse quantile transformed to a standard normal distribution) run with
(adj.) and without conditioning on the genetic variant rs78058190, the R2 val-
ues are shown in the table and are based on the LDproxy tool that is part of
LDlink [Machiela and Chanock, 2015].

analysis: SNPTEST P SNPTEST β SNPTEST P (adj.) SNPTEST (adj.) β
age, sex, BMI, PC 1-10
rs113414093 (R2 0.58) 1.60 · 10−6 0.022 0.86 -0.00078
age, sex, BMI, PC 1-10
rs116204487 (R2 0.20) 3.03 · 10−8 0.022 0.0083 0.010
age, sex, BMI, PC 1-10
rs148358468 (R2 0.19) 6.79 · 10−9 0.023 0.0038 0.011

Table 2: This Table shows the same as Supplementary Table 1, but using
SNPTEST.

11 Power and bias when using estimated admix-
ture proportions

Sites used for estimation of q biasestimatedQ biasknownQ
50 -0.10 -0.00073
500 -0.015 -0.00071
5,000 -0.0029 -0.00070
50,000 -0.0016 -0.000655

Table 3: This table shows the bias for doing association analysis respectively
using known admixture proportions or using estimated admixture proportions.
It is simulated like in Figure 2 with 1,000 individuals 1,000 runs for each number
of sites and an effect size of the genotype of 0.3, and γ = 1.
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Sites used for estimation of q powergeno powerestimatedQ powerknownQ
50 0.985 0.301 0.833
500 0.985 0.769 0.833
5,000 0.985 0.820 0.833
50,000 0.985 0.830 0.833

Table 4: This table is like Supplementary Table 3, but showing the statistical
power, using a threshold of 0.001.
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