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I. Supplementary methods 
 
1. Database content 

GRAND is a large-scale, multi-study catalog of GRNs that provides regulatory models for 
perturbed and unperturbed human cell lines, as well as normal and cancer tissues. These models 
were generated using data from large repositories including GTEx, TCGA, CCLE, and the 
Connectivity Map, as well as selected studies from GEO. The GRNs in GRAND are classified into 
four large groups—small molecule screens, cancer tissues, normal tissues, and cell lines. 
GRAND allows users to browse, visualize, analyze, and download these GRNs either through the 
web interface or programmatically through GRAND’s API. GRAND also allows network-based 
queries to identify small molecule candidate drugs that can potentially correct altered regulatory 
processes in disease states and users can upload their own networks to run the collection of tools 
in GRAND. 

The GRNs hosted in GRAND, including the inference pipeline to generate each network, are 
accessible through an interactive web interface as well as through a well-defined application 
program interface (API). A network visualization module allows the users to query and plot 
subnetworks of interest based on several selection parameters as well as to compute the 
corresponding targeting scores. To support analysis of the collection of networks, we developed 
two web server applications that allow users to query the GRAND database. The first allows users 
to perform functional enrichment analysis on a set of TFs ranked by targeting score. The second 
utility is similar to Connectivity Map analysis (1), but uses network features instead of expression 
to identify candidate drugs and drug combinations that could be used to reverse or alter regulatory 
patterns in a particular disease state. Finally, users can upload their own networks for visualization 
and analysis in GRAND. We demonstrated the utility of GRAND by presenting an example in 
which we compare GRNs between colon cancer and normal colon tissue to identify the genes 
that are differentially targeted by key regulatory TFs. We then use these to identify an 
investigational drug that may have a specific effect in colon cancer (Figure 4).  

2. Browsing phenotypic information 

Each network page has a table of phenotypic information about the samples used for network 
reconstruction process. For aggregate networks, this table was intended to give information about 
the samples and classify them by variables such as sex, age, ethnicity, and survival. For single-
sample networks, the phenotypic information page allows the user to visualize and download the 
sample-specific network. To facilitate the selection of networks, phenotypic variables are 
classified into continuous variables, such as height and age, and categorical variables, such as 
sex and ethnicity. Continuous variables are plotted as scatter plots at the top of the network page. 
Clicking on an individual sample within the plot links to the network visualization page. When 
continuous variables are missing, we display additional information about the data such as the 
number of differentially targeted and expressed genes and TFs in each cell line and drug sample, 
as well as the top ten enriched GO terms for differential TF and gene targeting in cancer. 
Categorical variables are plotted using pie charts in the phenotypic information page. Clicking on 
each category within individual pie charts filters the phenotypic information page by the selected 
phenotype. 

3. CLUEreg: Drug repurposing analysis using gene regulatory network 
 
To build CLUEreg, we extended the small molecule resource in GRAND to all the approved and 
experimental drugs profiled in the Connectivity Map, consisting of 19,791 total small molecules. 
Because each small molecule is administered to multiple cell lines using a variety of doses and 



sampling times, we used PANDA to build an aggregate GRN for each drug, totaling 19,791 GRNs. 
For each drug-specific GRN, we constructed a “targeting score” for each gene as the sum of 
inbound edge weights. For each TF, we calculated a targeting score as the sum of outbound edge 
weights. The targeting score of all drug-specific GRNs are assembled into a gene-by-drug or TF-
by-drug targeting matrix. We then reduce the complexity of these matrices to the set of 
“differentially targeted/targeting” genes or TFs by comparing the targeting weight to the 
distribution of weights within the matrix and selecting as differentially targeted/targeting those 
genes/TFs that have targeting scores that deviate with more than two standard deviations from 
the mean.  
 
To use CLUEreg, users provide two lists, one consisting of genes (or TFs) with increased targeting 
and the second consisting of genes (or TFs) with decreased targeting in the disease of interest. 
These are compared to the library of 19,791 drug-specific GRNs to identify small molecule drug 
treatments that likely reverse the targeting score of the gene/TF in the original input GRN. For a 
given input of a differentially targeted gene (or TF) list, CLUEreg computes two measures of 
agreement with the effect of each drug (Figure 3).  
 
The first is the cosine similarity comparing the differentially targeted gene lists in a user’s input 
query and a specific drug as described in Duan et al. (2). A cosine similarity equal to -1 indicates 
that the drug has a regulatory pattern that is the reverse of the input list, suggesting that the drug 
is a candidate for reversing the differential regulation induced by the disease state under 
investigation. In contrast, a cosine similarity equal to 1, indicates that the small molecule 
exacerbates the input list, as it aligns perfectly with its direction and sense.  
 
The second measure computed by CLUEreg is the overlap score (2) between the input list and 
the differentially targeted genes (or TFs) for each drug, defined as: 
 
𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = |𝐼𝑛𝑝𝑢𝑡_𝐺𝑒𝑛𝑒𝑠_𝑈𝑝⋂𝐷𝑟𝑢𝑔_𝐺𝑒𝑛𝑒𝑠_𝐷𝑜𝑤𝑛 | + |𝐼𝑛𝑝𝑢𝑡_𝐺𝑒𝑛𝑒𝑠_𝐷𝑜𝑤𝑛⋂𝐷𝑟𝑢𝑔_𝐺𝑒𝑛𝑒𝑠_𝑈𝑝 | 
−|(𝐼𝑛𝑝𝑢𝑡_𝐺𝑒𝑛𝑒𝑠_𝑈𝑝⋂𝐷𝑟𝑢𝑔𝑠_𝐺𝑒𝑛𝑒𝑠_𝑈𝑝 | − |(𝐼𝑛𝑝𝑢𝑡_𝐺𝑒𝑛𝑒𝑠_𝐷𝑜𝑤𝑛	⋂𝐷𝑟𝑢𝑔𝑠_𝐺𝑒𝑛𝑒𝑠_𝐷𝑜𝑤𝑛	)|,  

 
Where 𝐼𝑛𝑝𝑢𝑡_𝐺𝑒𝑛𝑒𝑠_𝑈𝑝 refers to the list of user-given high-targeted genes, 𝐷𝑟𝑢𝑔_𝐺𝑒𝑛𝑒𝑠_𝐷𝑜𝑤𝑛 is 
the list of low-targeted genes in a given drug network, 𝐼𝑛𝑝𝑢𝑡_𝐺𝑒𝑛𝑒𝑠_𝐷𝑜𝑤𝑛 is the the list of user-
given low-targeted genes, and 𝐷𝑟𝑢𝑔_𝐺𝑒𝑛𝑒𝑠_𝑈𝑝 is the list of high-targeted genes in a given drug 
network. A positive overlap score between a query targeting list and a drug targeting list suggests 
that the drug reverses the input, while a negative overlap score suggests that the drug and the 
input have similar regulatory effects. In developing the application, we have found that both 
metrics provide highly consistent rankings of candidate drugs.  
CLUEreg computes a p-value for each drug candidate by resampling 10,000 random inputs of 
varying lengths as a null distribution. In addition, q-values are provided as corrected p-values 
using the Benjamini-Hochberg procedure (3). There are several drug classes that can induce 
profound changes on transcription and often produce false positives in connectivity analysis. An 
example of such drugs are Histone Deacetylase (HDAC) inhibitors. To control for these effects, 
we computed a tau-value as described in the Connectivity Map (1). First, we computed the cosine 
similarity of each drug in CLUEreg against all other drugs to generate a cosine similarity 
distribution. Then to generate the tau-value, we rank the cosine similarity between the input query 
and a given drug within the precomputed distribution of all drugs. Tau varies between 0 and 1 and 
represents the fraction of drugs in the database that have a stronger connectivity. Low tau-values 
indicate specific activities, while large tau values indicate compounds with promiscuous effects. 
We also implemented drug combinations in CLUEreg as described in Duan et al. (2) by ranking 
pairs of drugs within the top 20 hits. Drug pairs are ranked by their cosine similarity such that an 
optimal pair has a cosine similarity of 0, which indicates activity on orthogonal gene/TF vectors. 



Therefore, the optimal drug combination has compounds that optimally reverse the input 
regulatory profiles while acting on different target genes and pathways. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



II. Supplementary figures 

 
Figure S1 - Screenshot of small molecule, cell line, cancer types, and tissues summary 
plots in GRAND. A. The main page for each resource displays a summary interactive plot for the 
catalog of networks. For small molecules, a bubble plot for each compound leads to the targeting 
scores across doses, cell lines and sampling times. Cell line, tissue, and cancer TF and miRNA 
networks are organized by tissue of origin. B. A sample-specific network can be selected 



interactively by differential expression or targeting score of TFs and genes or by phenotypic 
variables such as donor age, sex, and ethnicity.  
 
 

 
Figure S2 - Summary statistics of the cancer resource and the tissues resource. A. UpSet 
plot of the set intersection size of the most important clinical attributes in the cancer resource 
using colon cancer as an example. The plot represents the intersection between different groups 
of clinical attributes, for example the first group has 16 patients that belong to the groups “alive, “ 
“stage 2” cancer, and with the cancer located in the “sigmoid colon.“ B. Age distribution of the 
subjects from GTEx included in the tissues resource. 
 
 
 



 
Figure S3 - The small molecule resource integrates drug characteristics with cell line 
phenotypic information. The resource combines information from the Connectivity Map and 
the Drug Repurposing Hub (DRH) for more than 173,013 samples. Each sample is represented 
by an edge in the diagram.  
 

 

 

 

 

 

 

 

 

 

 

 

 



III. Supplementary tables 

Table S1 - Database content by condition and regulation modality. PAAD: Pancreatic 
adenocarcinoma, GBM: Glioblastoma multiforme, COAD: Colon adenocarcinoma. 
Resource Types Data set Regulation Number 

of GRNs 
Network 
type 

Reference 

Cell lines LCL, 
Fibroblast 

GTEx TF 2 Aggregate (4) 

Cell lines 35 tissues 
of origin 

CCLE TF 1,376 Single-
sample 

This paper 

Cell lines 35 tissues 
of origin 

CCLE miRNA 1 Aggregate This paper 

Tissues 36 tissue 
types 

GTEx TF 36 Aggregate (5) 

Tissues 36 tissue 
types 

GTEx miRNA 36 Aggregate (6) 

Tissues 29 tissue 
types 

GTEx TF 8,279 Single-
sample 

(7) 

Cancer PAAD TCGA TF 150 Single-
sample 

(8) 

Cancer GBM TCGA/GGN TF 1,023 Single-
sample 

(9) 

Cancer COAD TCGA/GEO TF 1,638 Single-
sample 

(10) 

Cancer All TCGA TF 22 Aggregate This paper 

Small 
molecules 

2,858 
labeled 
drugs 

CLUE/DRH TF 173,013 Targeting 
scores 

This paper 
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