
iScience, Volume 25

Supplemental information

Specific motifs mediate post-synaptic and surface transport of G protein-coupled receptors Xin Xu, Zhe Wei, and Guangyu Wu

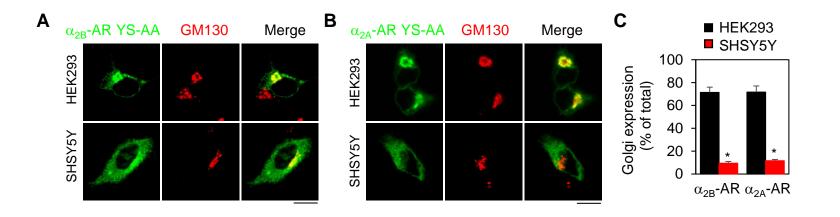


Figure S2. The subcellular distribution of YS-AA mutants of α_2 -ARs in different cell types. Related to Figure 3. (A) Colocalization of the YS-AA mutant of α_{2B} -AR with GM130 in HEK293 and SHSY5Y cells. Scale bar, 10 µm. (B) Colocalization of the YS-AA mutant of α_{2A} -AR with GM130 in HEK293 and SHSY5Y cells. Scale bar, 10 µm. (C) Quantitative data shown in (A) and (B). The data are expressed as percentages of total expression with a total of at least 20 cells quantified in each experiment. Bars represent mean \pm SE (n = 3). Unpaired Student's t test; *p < 0.001 versus HEK293 cells.

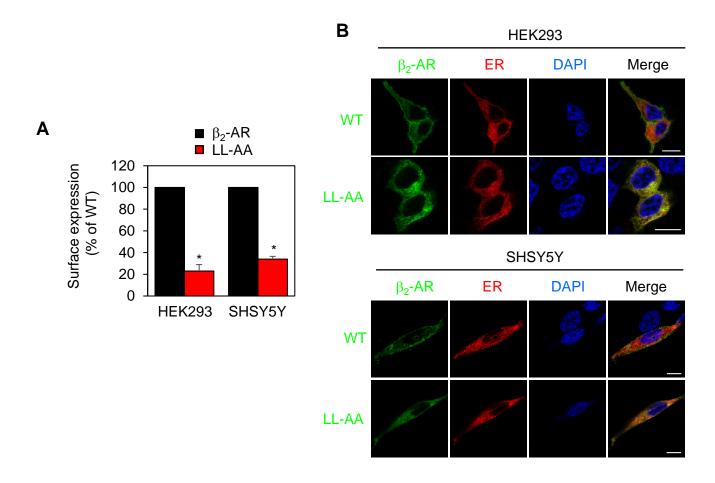


Figure S3. Trafficking function of the LL motif of β_2 -AR in HEK293 and SHSY5Y cells. Related to Figure 3. (A) Surface expression of β_2 -AR or its LL-AA mutant measured by radioligand binding of intact live cells, The data are expressed as percentages of WT. Bars represent mean \pm SE (n = 3-6). Unpaired Student's t test; *p < 0.001 versus WT. (B) Colocalization of β_2 -AR or its LL-AA with the ER marker DsRed-ER revealed by confocal microscopy. The images shown are representatives of 2 experiments. Scale bars, 10 μ m.

Table S1. Primers used to clone mutants into the pEGFP-N1 vector by mutagenesis. Related to Figures 4-6.

Mutants	Sense (S) or antisense (A)	Sequences
VSVG DxE-AxA VSVGct DxE-AxA VSVGct DxE-AxA/LL-AA	S	AGAAAAGACAGATTTATACAGCCATAGCGATGAACCGACTTGGA AACAG
	A	CTGTTTCCAAGTCGGTTCATCGCTATGGCTGTATAAATCTGTCT TTTCT
VSVGct LL-AA	S	GAAATTTAAAAAGTACTTCCTCCAGGCCGCGAAATATATTCCCC GGGATCCAATG
	A	CATTGGATCCCGGGGAATATATTTCGCGGCCTGGAGGAAGTACT TTTTAAATTTC
β₂ARα2ct IL-AA	S	CCGTGCCTTTCGAAGGGCCGCTTGCCGGCCGTGGACC
	A	GGTCCACGGCCGGCAAGCGGCCCTTCGAAAGGCACGG
M3R LL-AA	S	CATTCAGAACCACTTTCAAGATGGCGGCGCTGTGCCAGTGTGAC AAAAAA
	А	TTTTTTTGTCACACTGGCACAGCGCCGCCATCTTGAAAGTGGTT CTGAATG