SUPPLEMENTARY MATERIALS Table S1: Characteristics and descriptions of 27 EIS in further detail | Name of electronic information system | Country
setting and
economic
status ^b | System
start
date ^a | Phase of
Development | Systems description | Sector/s
involved | Population
sources ^{c,d} | |---|---|--------------------------------------|-------------------------|---|-------------------------|--| | | EIS | identified t | hrough database | search (PubMed, Web of Science and Goog | le Scholar): | | | Bacterium
Analysis Pipeline
(BAP) ¹ | Not specific | 2016 | Operational | Predicts and determines the pathogen presented from contigs in whole genome sequencing data. | ent Human and
animal | Not specific (inferred as Hospital and community data, and veterinary clinical data) | | District Health
Information
System (DHIS-2)
platform ² | Uganda, LIC | 2013
demo,
2014
launch | Operational | Develops real-time reports to an existing
surveillance system, including causes of illne
by collecting further data | Human
ess | Hospital data | | ResistanceOpen ³ | Not specific | 2016* | Operational | - A platform for aggregating, analysing, and disseminating regional AMR information. | Human | Hospital and community data | | A clinically-
oriented
Antimicrobial
Resistance
Surveillance
Network
(ACORN) ⁴ | Southeast Asia
(Cambodia, Lao
and Vietnam),
LMIC | 2019 | Piloted | - Information system to strengthen routine clinical care in hospitals in LMIC settings | Human | Hospital data | | Name of electronic information system | Country
setting and
economic
status ^b | System
start
date ^a | Phase of
Development | | | | Sector/s
involved | Population
sources ^{c,d} | |---|--|--------------------------------------|-------------------------|---|--|--|----------------------|--------------------------------------| | AutoMated tool
for Antimicrobial
resistance
Surveillance
System(AMASS) ⁵ | Southeast Asia
(Cambodia, Lao,
Myanmar,
Nepal, Thailand,
Vietnam), LMIC
and UK, HIC | 2019* | Operational | - | - | An offline system to analyse routinely integrated electronic data independently Rapidly generates surveillance reports on AMR | Human | Hospital data | | Antimicrobial
resistance
surveillance
system
(i-AMRSS) ⁶ | India, LMIC | 2017* | Operational | - | - | A tool used for the analysis and management of AMR data | Human | Hospital and community data | | HOTspots ⁷ | Australia, HIC | 2020* | Under
construction | - | - | A geospatial platform that visualises susceptibility patterns and temporal trends of antimicrobials | Human | Hospital and community data | | Infectious Diseases Surveillance Information System for Antimicrobial Resistance (ISIS-AR) 8 | Netherlands, HIC | 2008 | Operational | - | - Monitors trends and extent of AMR as well as outbreaks | | Human | Hospital and community data | | HAITool ⁹ | Portugal, HIC | 2018* | Operational | - | | A real-time decision-support system to support
antibiotic surveillance stewardship program
Implementation by monitoring AMR and
prescriptions | Human | Hospital data | | Name of electronic information system | Country
setting and
economic
status ^b | System
start
date ^a | Phase of
Development | Systems description Sector/s Population involved sources ^{c,d} | |--|---|--------------------------------------|-------------------------|---| | WHONET-
SaTScan ¹⁰ | Italy, HIC | 2016* | Piloted | The first use of WHONET and SaTScan in Italy to monitor AMR in hospital settings Compared to the current surveillance system in place within one hospital with data collected between 2012-2014. | | WHONET-
SaTSCan (#2) ¹¹ | United states of
America, HIC | 2002-2006 | Operational | - WHONET-SaTScan software was used in the Human Hospital and Brigham & Woman's Hospital (Boston), to compare the data between 2002-2006 with the current outbreak detection program | | WHONET-
SaTSCan (#3) ¹² | Argentina, MIC | (2005-
2007) | Piloted | - WHONET-ScTSCan software in Argentina was Human Hospital and deployed and assessed using data from 2005- community data 2007 to detect outbreaks of AMR <i>Shigella</i> | | Antibiotic consumption surveillance (ACS) of the watch-and reserve-group antibiotics ¹³ | Germany, HIC | 2018* | Operational | Antibiotic consumption surveillance (ACS) of Human Hospital data
the watch-and reserve-group antibiotics | | MEGARes ¹⁴ | Not specific | 2016* | Operational | Database and annotation structure for high throughput acyclical classifiers and hierarchical statistical analysis of big data Not specified but described in terms of public health relevance. | Marseille Antibiotic Resistance System (MARSS)¹⁷ New York Surveillance **Antimicrobial** Resistance Project (NYARP)¹⁸ France, HIC United states of America, HIC 2013 2000-2002 Operational Piloted Automatically compares weekly resistance isolates. Emits alarms when a threshold is identification and verification infections for AMR. detected for key phenotypes to allow for rapid Electronically monitors trends in bloodstream Hospital data Hospital data Human Human | Name of electronic information system | Country
setting and
economic
status ^b | System
start
date ^a | Phase of
Development | tems description Secto
involv | • | |--|---|--------------------------------------|-------------------------|--|--| | | | | EIS identifi | rough grey literature search: | | | WHONET ¹⁹ | Global: currently in 130 countries | 1989 | Operational | Database software for the analysis and Humar management of microbiology laboratory data animal Assists in monitoring and sharing of antimicrobial susceptibility data at various levels. | | | Critical
Antimicrobial
Resistance
Alert (CARAlert)
²⁰ | Australia, HIC | 2016 | Operational | A system that alerts and notifies clinicians of Human potential critical antimicrobial resistances (CARs) requiring response at the local and jurisdictional levels. | n Hospital and
community data | | Australian
Passive
Antimicrobial
resistance
Surveillance
(APAS) ²¹ | Australia, HIC | 2015 | Operational | Integrates, analyses, and reports on AMR data Humar contributed by public and private pathology services | n Hospital and
community data | | Fingertips ²² | United Kingdom,
HIC | 2016 | Operational | AMR local indicators to support the Human development of local action plans to optimise antibiotic prescribing and reduce AMR and healthcare-associated infections. | n Hospital and community data | | 'NARMS Now:
Human data'
and 'NARMS
Now:
Integrated
data'. ²³ | United States of
America, HIC | 2015 | Operational | NARMS Now: Human Data is an interactive Human tool that contains AMR data from humans to create an accessible platform to identify AMR occurrences. | n, animal Hospital data for humans, Animal slaughter tests, and retail meats for animals | | Name of electronic information system | Country
setting and
economic
status ^b | System
start
date ^a | Phase of
Development | Systems description | Sector/s
involved | Population
sources ^{c,d} | |---|---|--|-------------------------|--|----------------------|---| | | | | | NARMS Now: Integrated data contain AMR data on food animals at slaughter and retail meats. Both NARMS Now sites include interactive graphs, maps, tables, and downloadable data. | | | | AMRmap ²⁴ | Russia, HIC | 2018 | Operational | Web platform for analysing and visualisation of
AMR data that integrates information
from
microbiological surveillance program in Russia | Human | Hospital and community data | | 'INFECT' and
'INFECT VET' ²⁵ | Switzerland, HIC | 2018
(humans),
2020
(animals) | Operational | Interactive web application to provide rapid access to the latest AMR data for clinically important pathogens Enable data to be tailored to the local resistance epidemiology and the patients' setting Assist health professionals with empirical treatment choices by integrating validated antimicrobial treatment guidelines from external sources | Human, Animal | Hospital and community data fo humans, and veterinary clinical data for animals | | The Danish
Microbiology
Database
(MiBa) ^{26,27} | Denmark, HIC | 2010 | Operational | Nationwide database for microbiology to
provide real-time surveillance Provides nationwide access for healthcare
personnel to microbiology reports. | Human | Hospital and community data | ^a Where no start date was specified, year of publication was used. bLIC, low-income country; LMIC, low- and middle-income country; MIC, middle-income country; HIC, high-income country ^c Hospital data: AMR data collected from people who have been hospitalised. ^d Community data: Data collected from people who are in the community, such as samples taken or requested by general practitioners, or from outpatients. Table S2: The expanded technical capabilities and design characteristics for each EIS | | Front end | d of the system | Back end of the system | | | | |--|--|--|--|--|---|---| | Electronic
Information
system ^a | Accessibility and usability | information visualisation and interactivity | Database security | Database structures | Data storage | Other technical features | | Bacterium
Analysis Pipeline
(BAP) ¹ | - Users create a profile - Data is uploaded using a metadata MS Excel spreadsheet using a developed template | The printable report, excel spreadsheet User profile: can access and re-analyse their data with an interactive profile | Data is only accessible to user accounts unless it is made publicly available. | Front end of the system is developed by HTML5 and JavaScript Database structure: MySQL database | - Center for Genomic Epidemiology (CGE) platform uses 1 web server and 2 computer servers (all run on Linux with openSUSE) - Data are backed up daily and recovered if needed | Uses ResFinder algorithm
to identify acquired AMR
genes | | District Health Information System (DHIS-2) platform² ⇒ Design info accessed from DHIS-2 website ²⁸ | Users can set up data elements, entry forms, indicators, and reports and use inbuilt tools to analyse data or export it Integrated messaging is available to communicate with other users Data capture can be done on a variety of devices | Interactive charts, graphs, tables, and geographic maps creates personal dashboards to collect and display specific maps/graphs in one place. | Selection of customisable security and privacy features, including user management and encryption Users have control over access privileges per user and role, including | Not specified | Not specified | Not specified | | | Front end | of the system | Back end of the system | | | | |---|---|---|---|--|---|--| | | | | restricting certain users | | | | | ResistanceOpen ³ | A login feature allows users to upload indices for curators to review A login feature allows user-orientated analytics (hospital-specific trends, community comparisons) | The online interface is based around a navigable map, which can be expandable and contracted by the user Users can perform multifunctional searches in the toolbar for quick and direct searching of bacteria or antimicrobial-specific visualisations | - Accessible over a secure connection, using the HTTPS protocol | Uses standard programming languages, including JavaScript, HTML, CSS, PHP, and MYSQL Compatible with both desktop and mobile devices. | The web application is hosted in the cloud on an Amazon EC2instance database. It runs on an Amazon RDS. | The database uses online resistance indices generated from healthcare institutions/laboratories and regional, national, and international bodies | | A clinically-
oriented
Antimicrobial
Resistance
Surveillance
Network
(ACORN) ⁴ | Not specified | Qualitative data
summarised in interactive
tables and graphs For data visualisation and
analysis will be visualised
using an R Shiny interactive
dashboard | Documents are stored securely and only accessible by surveillance staff and authorised personnel. Personal data must not be kept as identifiable data for longer than necessary for the purposes concerned | Not specified - | Cloud based server | Not specified | | | Front end o | f the system | Back end of the system | | | | |---|--|---|---|---------------|---|--| | AutoMated tool
for Antimicrobial
resistance
Surveillance
System(AMASS) ⁵ | - Users download AMASS package from the website and obtain raw data sets - Users then configure data dictionary files and then upload, and save data files in the AMASS application to review reports and share them around | Automatically generates
reports on 6 various AMR
surveillance sections | - The reports and anonymous summary data contain no patient identifiers, providing security | Not specified | - Local
(computer)
based server | Generates 2 log files; one for users to validate input data and one for consultation with R users, statisticians, or the development team | | Antimicrobial
resistance
surveillance
system
(i-AMRSS) ⁶ | - Registered users can - upload data that is validated by microbiologists | Tables and graphs are generated once data is validated | Not specified | Not specified | Not specified | Not specified | | HOTspots ⁷ | - Has a custom-built platform with Hypertext Preprocessor (PHP), HTML, JavaScript, and D3.js visualisation library for the front end - Users can use the multifunctional search toolbar for quick and direct searching of the year, organism, and antibiotic to visualise. | Displays a digital geospatial
map surveillance platform
of uploaded data
Line plot | Not specified | Not specified | - Delivered on a
Linux server
and is
accessible on
any world web
search engine | The system uses Stata
15.1 for data
management and
descriptive statistics Uses MySQL
programming
language | | Infectious
Diseases | Not specified - | Annual reports are generated on the | - Password protected | | Not specified | Not
specified | | | Front end of the system | Back end of the system | |---|---|---| | Surveillance
Information
System for
Antimicrobial
Resistance (ISIS-
AR) ⁸ | consumption of antimicrobials and AMR Resistance figures are provided upon request or can be obtained through interactive reports on the web interface | users only ones allowed to generate reports of their data - Datasets contain anonymised data on all isolates to protect all personal information - Thorough security management of the database is compliant with the baseline information security of the Dutch government | | HAITool ⁹ | Healthcare workers can upload and integrate data of infections due to AMR Used by physicians to check the antibiotic prescription Visualised colour-coordinated graphs Contains an alerts module, decision-support system, and surveillance system | Not specified - SQL server - Data is periodically extracted using Java programming language from existing information systems in hospitals which are then processed and | | | Front end | d of the system | | Back | end of the system | | |--|---|---|--|---------------|--|---| | WHONET-
SaTSCAN ¹⁰ | Not specified | - Generates reports with a hospital response | Not specified | Not specified | Not specified | aggregated in a single data warehouse - Uses WHONET BacLink software as a conversion tool for data entry - SaTScan software undergoes spatial, temporal, or spacetime scan statistics | | WHONET-
SaTSCan (#2) ¹¹ | Not specified | Generates reports and
includes an alert system | Not specific | Not specific | Not specific | Not specific | | WHONET-
SaTSCan (#3) ¹² | Not specific | - Generates reports and real-
time alerts | Not specific | Not specific | Not specific | Not specific | | Antibiotic consumption surveillance (ACS) of the watch-and reserve-group antibiotics ¹³ | Data must be submitted electronically in a standardised format Reports are retrieved by users via an interactive database within 1 hour of upload Users can specify and tailor reports according to their preferences | Basic reports of trend analysis Ranking list Report for comparing data for different organisations/units in the hospital Report for comparing data for the individual hospital and aggregated data for reference hospitals | - Users have password-protected accounts | Not specified | Not specified | - Uses an existing web-
based data portal
(webKess) | | MEGARes ¹⁴ | - Users can input
keywords and receive
corresponding
matches | Analyses large datasets in a website Can be integrated into a sequence analysis pipeline through download | Not specified | Not specified | MySQL server
stores the
sequence and
annotation
tables | The database schema
is updated through
Python scripts Uses Docker platform
for installation of
pipeline | | | Front end o | Back end of the system | | | | | |---|--|---|--|---------------|-----------------------------|---| | BR-GLASS ¹⁵ | - Hospitals submit data - to the system | Visual representations of data in the forms of interactive charts and tables | Not specified | Not specified | Not specified | Not specified | | WHONET ¹⁹ | User log in Data entry Data editing Query tabular and graphs display options User selects the type of analysis, organisms to study and data files to be included | National data collection
and feedback
Analyses, alerts, action for
outbreaks, and other public
health concerns
Training in data
entry/analysis/interpretati
on | Secure login with password protection Secure data configuration, management storage, backups, and virus protection | Not specified | - Web-based
data storage | BacLink is used for
configuring data file
imports | | Critical
Antimicrobial
Resistance Alert
(CARAlert)
²⁰ | Used by pathology laboratories for identifying/confirming AMR Once isolates are tested and confirmed as a critical AMR, it is reported into the CARAlert system web portal | Generates summary reports via email to jurisdictions and states in Australia | - Secure system,
no patient
level data is
held
Authorised
officers in each
state can
access the
system | Not specified | Not Specified | Not Specified | | Australian Passive
Antimicrobial
resistance
Surveillance
(APAS) ²¹ | - Laboratories enter - data from public/private hospitals, aged care homes, and community | Collects, analyses, and reports on AMR data from pathology laboratories | Not specified | Not specified | Not specified | Not specified | | Fingertips ²² | - Users consist of - health care workers, | Overview of counts and rates | Not specified | Not specified | Not specified | Not specified | | | Front end | Back end of the system | | | | | |--|--|---|---|---------------|---------------|--| | | acute trusts, clinical
groups, governmental
bodies | Interactive maps Spine charts Graphs pf temporal trends
over a time scale | | | | | | 'NARMS Now:
Human data' and
'NARMS Now:
Integrated data'.
²³ | Users can download data in a user-friendly format Data is readily available to the public online | - Integrated reports, with interactive graphs | Not specified | Not specified | Not specified | Not specified | | AMRmap ²⁴ | Data is obtained from AMR surveillance studies Users can access via the website | Provides interactive data
analysis and visualisation
tools of distribution plots,
time-trends, regression
plots, prevalence maps,
and various graphs and
tables | - Data is de-
identified | Not specified | Not specified | The platform is developed by using R programming language and software environment for statistical computing JavaScript graphics library and modules are used | | 'INFECT' and 'INFECT VET' ²⁵ ⇒ Design info accessed from INFECT website ²⁹ | Data is provided by
the Swiss Centre for
Antibiotic resistance Users can download
the App on mobile or
tablet | Visual display if susceptible bacterium to each antibiotic Display of interactive maps with regions | Not specified | Not specified | Not specified | - Code is available on
GitHub | | The Danish
Microbiology
Database (MiBa)
²⁶ | - Departments of
clinical microbiology
transmit a copy of
reports to MiBa | - Data is transferred into reports | - Patient reports are only accessible by permitted healthcare professionals | Not specified | Not specified | Not specified | | | Front e | nd of the system | Back end of the system | | | | | |
---|--|--|------------------------|--|---------------|--|--|--| | Multidrug-
resistant
organism
(MDRO)
surveillance
system ¹⁶ | - Medical staff can
retrieve the data | Results from the analysis are displayed in a webbased user interface Data is displayed in a line chart to describe the trends of the MDRO count, bubble charts also display outliers Has an alert system for potential outbreaks | Not specified | - Uses a MDRO clustering system for data collection, conflict pressing, classification, analysis, visualisation and notifications. | Not specified | - The MDRO system includes an app module, data exchange module and database module | | | | Bacterial real-
time Laboratory-
based
Surveillance
System
(BALYSES) ¹⁷ | Not specific | - Generates weekly reports and emits alarms | Not specific | Not specific | Not specific | Not specific | | | | Marseille
Antibiotic
Resistance
Surveillance
System
(MARSS) ¹⁷ | Not specific | - Generates weekly reports and emits alarms | Not specific | Not specific | Not specific | Not specific | | | | New York
Antimicrobial
Resistance
Project
(NYARP) ¹⁸ | Not specific | - Informs clinicians about trends within a defined geographic area | Not specific | Not specific | Not specific | Not specific | | | ^a Not specified = the information was not identified/clearly understood within the relevant source; additional/targeted information may be able to be found elsewhere. BMJ Global Health Table S3: The CDC surveillance system effectiveness guideline indicators identified in the EIS reviewed | | | CI | OC surveillance sys | tem effectiveness | guideline indicat | ors | | | | |--|---|--|---|--|---|--------------|---|-------------|---------------------------------| | Electronic
Information
system | Stability | Representativ
eness | Timeliness | Simplicity | Acceptability | Flexibility | Data Quality | Sensitivity | Positive predictive value (PPV) | | Bacterium
Analysis
Pipeline
(BAP) ¹ | Not directly,
refers to
reliability | No | Not directly,
analysis
component of the
EIS is near real-
time, unspecified
on overall
timeliness | Not directly,
described as
simple
(structure),
developed with
user feedback | Not directly,
reports on the
use of EIS | Not directly | Not directly | No | No | | District
Health
Information
System
(DHIS-2)
platform ² | Not directly,
built onto an
existing system | Yes, describes
the
representativen
ess via hospital
and paediatric
population
source | Yes, describe
timeliness for a
rapid detection
and response | Not directly, built
onto an existing
system | Yes, assessed the
EIS prior to
implementation | Not directly | Yes, described
the data quality
and limitations
(contamination
and missing
data) | No | No | | ResistanceO
pen ³ | Not directly,
described being
available for
health care
workers, policy
makers and
researchers.
Also identifies
reliability by
using indices
generated by
healthcare | Yes, described
the data
locations and
what resistance
it represented | Not directly | Yes, directly
described
simplicity in terms
of data
aggregation, and
for the structure/
format | Not directly | Not directly | Yes, identifies a list of requirements that the indices require from curators check for with the data | No | No | | | | CD | OC surveillance sys | tem effectiveness | guideline indicat | ors | | | | |--|---|--|---|--|---|---|---|----|----| | | institutions/
laboratories | | | | | | | | | | A clinically-
oriented
Antimicrobia
I Resistance
Surveillance
Network
(ACORN) ⁴ | Not directly | Yes, described collecting data on meningitis, pneumonia, and sepsis but sampling both hospital and community sources | Not directly,
mentions real-
time access to
data | Yes, mentions simple descriptive statistics being used where appropriate as well as its being created for simple to use dashboard. | Yes, an objective is to evaluate the acceptability of the EIS and package tools | Not directly,
mentions the
data to be
merged with lab
data onsite
using a flexible
automated
computer script | Yes, contains
baseline
assessments of
the data
collected | No | No | | AutoMated
tool for
Antimicrobia
I resistance
Surveillance
System(AMA
SS) ⁵ | Yes, states the EIS cannot validate the reliability of data but will be included in future versions. Also, states it is readily available for compatible datasets | Yes, describes in
terms of
collecting
sample for
specific
pathogens from
hospital and
microbiology
sources | Yes, described the
EIS to reduce the
time for
producing and
preparing reports
etc. over
conventual
methods
(manually) | Not directly,
described the
system as user
friendly,
compatible
structure | Not directly | Not directly,
describes the
ability of
exporting data
files from
WHONET or
other lab info
systems and
generating
reports | Not directly, described selecting hospitals the contained microbiology data routinely and had prior experience in data quality controls | No | No | | Antimicrobia
I resistance
surveillance
system
(i-AMRSS) ⁶ | Not directly | Not directly,
highlights the
function of
validating data | Not directly,
discussed real-
time results | Not directly | Not directly | Not directly | Not directly,
discussed the
need to enforce
quality
antimicrobial
testing in labs | No | No | | HOTspots ⁷ | Not directly,
described the
system being | Yes, described
the source of
the data | Not directly | Not directly | No | No | Not directly | No | No | | | | CI | DC surveillance sys | stem effectivenes | s guideline indicat | cors | | | | |---|---|---|---|-------------------|---------------------|--------------|--|----|----| | | readily available
at point of care
and accessible
freely online | collected (primary and tertiary health care providers), why and location to monitor the desired pathogen | | | | | | | | | Infectious
Diseases
Surveillance
Information
System for
Antimicrobia
I Resistance
(ISIS-AR) ⁸ | Not directly,
discusses the
publicly
available part of
EIS and the
password-
protected part | Not directly,
described the
data collection
and sources but
no evaluation of
it | Yes, states
timeliness | Not directly | Not directly | No | Yes, states
quality of data
and how to
improve it | No | No | | HAITool ⁹ | Not directly,
describes EIS
being available
and reliable
within the
interventions
for
implementation | Not directly, but
described
collecting data
for health
workers from a
variety of
health-related
sources
(hospital,
pharmaceutical,
community) | Not directly,
states
real time
results but not
evaluated | Not directly | Not directly | Not directly | Not directly | No | No | | WHONET-
SaTSCAN ¹⁰ | Not directly,
state's reliability
being an | Yes, set out to
compare this
EIS with the | Not directly,
states timeliness
being essential | Not directly | Not directly | Not directly | Not directly | No | No | | | | CI | OC surveillance sys | tem effectiveness | guideline indica | tors | | | | |--|---|---|--|---|------------------|-------------------------------|--------------|---|---| | | essential
component of
surveillance
tools | current system to determine if it is better, conducted in the same hospital which the data is compared to is representative | and the EIS being
real-time feature
but no evaluation
of it | | | | | | | | WHONET-
SaTSCan
(#2) ¹¹ | Not directly | Not directly | Not directly,
states the
automatic and
timely generation
of alters of
clusters | Not directly | Not directly | No | No | Yes, states sufficient sensitivity to detect clinically significant clusters identified | Yes, states
PPV to avoid
an excessive
number of
false alterts | | WHONET-
SaTSCan
(#3) ¹² | Not directly | Not directly | Yes, directly mentions timeliness and that SaTSCan generates timely signals | Not directly | Not directly | No | No | No | No | | Antibiotic consumptio n surveillance (ACS) of the watch-and reserve- | Not directly,
describes the
availability of
the system in
the aspects of
users | Yes, described
the source and
quantity of data
used | Yes, states
timeliness missing
in other systems
and refers to this
one being real-
time | Yes, described as
being simple and
can easily be used
by personnel with
limited training
and recourses | Not directly | Yes, states
being flexible | Not directly | No | No | | | | CI | OC surveillance sys | stem effectiveness | guideline indica | itors | | | | |--|---|--|--|--|---|--|--|----|----| | group
antibiotics ¹³ | | | | | | | | | | | MEGARes ¹⁴ | Not directly | Yes, the datasets used represent the target population for AMR | Not directly,
mentioned real-
time results | Not directly | Not directly | Not directly | Not directly,
mentioned
using high
quality but no
evaluation | No | No | | BR-GLASS ¹⁵ | Not directly | Not directly | Not directly,
mentioned real-
time results | Not directly,
mentioned a
simple and
intuitive means to
filter and analyse
data | Not directly,
contains
voluntary
participation | Not directly | Not directly,
mentioned
using quality
checks | | No | | WHONET ¹⁹ | Not directly,
mentions being
reliable | Not directly,
mentions data
sources | Not directly,
discusses
real-time
results | Not directly,
described
functionality of
system but not
evaluation | Not directly
mentioned | Yes, states
flexibility and
discusses how
the EIS is
flexible in
software and
data areas | Yes, discusses
data quality | No | No | | Critical
Antimicrobia
I Resistance
Alert
(CARAlert)
²⁰ | No | Not directly | No | Australian
Passive
Antimicrobia | No | Yes, states representativen ess | Not directly | No | No | No | No | No | No | | | | CI | OC surveillance sy | stem effectivene | ess guideline indica | ators | | | | |--|---|---|--------------------|------------------|----------------------|--|--|----|----| | l resistance
Surveillance
(APAS) ²¹ | | | | | | | | | | | Fingertips ²² | Not directly | Yes, discusses collecting data from numerous domains to provide information on local AMR indicators | No | No | No | No | Not directly | No | No | | 'NARMS
Now:
Human
data' and
'NARMS
Now:
Integrated
data'. ²³ | Not directly,
does discuss
availability | Not directly,
discusses the
source for data
collected | No | Not directly | Not directly | Yes, states
flexibility and
being flexible | Not directly | No | No | | AMRmap ²⁴ | Not directly | Yes, monitors community, hospital acquired infectious based off updated isolates into the system. There is a table that describes the data example and what its | Not directly | Not directly | Not directly | No | Not directly, states data quality is ensured using common protocols and reference methods in a central laboratory are certainly the main | No | No | Bacterial real-time Laboratory -based Surveillanc No Not directly state being real- time No No No Yes, states PPV | | | (| CDC surveillance | system effecti | veness guideline in | dicators | | | |---|--------------|--------------|------------------|----------------|---------------------|----------|----|--| | e System
(BALYSES) ¹⁷ | | | | | | | | | | Marseille
Antibiotic
Resistance
Surveillanc
e System
(MARSS) ¹⁷ | No | Not directly | Not directly | No | No | No | No | | | New York
Antimicrobi
al
Resistance
Project
(NYARP) ¹⁸ | Not directly | Not directly | No | No | No | No | No | | No Ni Yes, states PPV Yes, states PPV Table S4: Information collected from grey literature search of NAPs that describe national AMR surveillance systems and plans to implement an electronic data collection tool/system. | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there
any indication
of AMR EIS in
the future? | Additional information | |---------|--------------------|--|----------------------------|---|---| | Japan | High | Japan
Nosocomial
Infectious
Surveillance
(JANIS) ³⁰ | No | Yes | Development of an AMR database system called ASIARS-Net (ASIan Antimicrobial Resistance Surveillance Network) is being developed that can also be used internationally Based on the JANIS (Japan Nosocomial Infectious Surveillance) system, which is operated in close collaboration with WHONET. | | Sweden | High | Swedish
Strategy to
Combat
Antibiotic
Resistance
(2020-2023) 31 | No | Yes | An objective of this strategy (to increase knowledge through surveillance), the government expects the possible exchange of information between IT systems and analytical tools to be further developed. An additional AMR surveillance system was found within alternative studies, known as 'Swedish Surveillance of Antimicrobial Resistance, SVEBAR', although additional information was not able to be located, and was difficult to determine details of this system ³². | | Ireland | High | Ireland
National
Action Plan
(iNAP) ³³ | No | Yes | An objective for enhancing the surveillance of antibiotic resistance and use (page 73), addressed the idea to strengthen the national surveillance system by ensuring integration and timely information Described as a real time laboratory-based alert system to identify outbreaks and relevant events. | | Canada | High | Canadian AMR
surveillance
system
(CARSS) ³⁴ | No | Yes | A new surveillance initiative includes developing an electronic platform to
integrate and share AMR data from public health laboratories. | | Korea | High | Korean Global
Antimicrobial | No | Yes | In 2017, a demonstration project of the development of an electronic
system to track patients was described | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication
of AMR EIS in the future? | Additional information | |-------------|--------------------|---|----------------------------|--|---| | | | Resistance
Surveillance
System (Kor-
GLASS) 35 | | | However, further details/information on this electronic system was not found | | Philippines | Lower
Middle | Secondary
data source ³⁶ | No | Yes | Development of a system in human health, healthcare-associated
infections (HAI) and livestock health for AMU and AMR | | Brunei | High | Secondary
data source ³⁶ | No | Yes | Development of an AMU data monitoring system for involving national
private/public health sectors, commercial farms, and poultry
slaughterhouses | | Cambodia | Lower
Middle | Secondary
data source ³⁶ | No | Yes | - Mention of the development of an AMR surveillance database | | Indonesia | Lower
Middle | Secondary
data source ³⁶ | No | Yes | A platform for a surveillance network to be established for national
laboratory data | | Laos | Lower
Middle | Secondary
data source ³⁶ | No | Yes | - Mention of the development of an AMR surveillance database | | Malaysia | Upper
Middle | Secondary
data source ³⁶ | No | Yes | Creation of a system between the Ministry of Health, university, and
private hospitals is planned | | Myanmar | Lower
Middle | Secondary
data source ³⁶ | No | Yes | Planning to implement a national surveillance system in hospitals and veterinary diagnostic laboratories An early warning system to identify AMR | | Thailand | Upper
Middle | Secondary
data source ³⁶ | No | Yes | A surveillance system for AMR and HAI to be created to developed signalling systems to be across local and national levels | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |----------|--------------------|--|----------------------------|--|---| | Ethiopia | Low | Strategy for
the Prevention
and
Containment
of AMR in
Ethiopia ⁴⁰ | No | Yes | Strategic objective two: is to strengthen the knowledge and evidence on AMU and AMR through a One health surveillance and research Developing networks and platforms for regular and formal interactions to exchange information is part of Objective 5, and may form an EIS in the future | | Ghana | Low | Ghana
National
Action Plan on
Antimicrobial
Resistance
2017-2021 ⁴¹ | No | No | - Aims to establish a One health AMR surveillance system, nothing indicates an EIS plans yet | | Kenya | Lower
Middle | National
Action Plan on
Prevention
and
Containment
of
Antimicrobial
Resistance
2017-2022 ⁴² | No | No | Strengthening the knowledge and surveillance systems to detect and
report resistance pathogens is an objective in the NAP, not indication of
an EIS development yet | | Liberia | Low | National
Action Plan on
Prevention
and
Containment
of | No | Yes | Plans to develop systems to ensure a regular and effective
monitoring/reporting of AMR patterns across multiple sectors | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there
any indication
of AMR EIS in
the future? | Additional information | |--------------|--------------------|--|----------------------------|---|--| | Sierra Leone | Low | Sierra Leone:
National
Strategic Plan
for Combating
Antimicrobial
Resistance
2018-2022 ⁴⁷ | No | Yes | - Plans to establish an AMR database that includes a One health approach | | South Africa | Upper
Middle | South African
antimicrobial
resistance
national
strategy
framework
2018-2024 ⁴⁸ | No | Yes | An objective is to develop an antimicrobial resistance surveillance system for inpatients in hospitals, for outpatients in all other health care settings and the community, and for animals and non-human usage of antimicrobials | | Tanzania | Lower
Middle | The National
Action Plan on
Antimicrobial
Resistance
2017-2022 ⁴⁹ | No | Yes | - Plans to develop an AMR surveillance reporting system | | Zimbabwe | Low | One Health
Antimicrobial
Resistance
National
Action Plan
2017-2021 ⁵⁰ | No | No | A strategy to integrate the surveillance for humans, animals, and the environment in an integrated surveillance system No clear indication of an EIS being developed | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |---------------|--------------------|---|----------------------------|--|---| | Barbados | Middle | National Action Plan on Combatting Antimicrobial Resistance 2017-2022 ⁵¹ | No | No | - Improving the One health approach but not EIS indicated | | United States | High | National
Action Plan for
combating
Antibiotic
Resistant
Bacteria ⁵² | No | Yes | Centers for Disease Control and Prevention (CDC) plan to add electronic reporting for AMU and AMR data for electronic health records within 5 years of this NAP being published Within 1 year CDC aims to create a user-friendly electronic portal that makes aggregated data publicly available and integrated analyses | | Afghanistan | Low | National
Action Pfxlan
on
Antimicrobial
Resistance
2017-2021 ⁵³ | No | No | - Moving towards a One health approach | | Bahrain | High | National
Action Plan on
Antimicrobial
Resistance
2019 ⁵⁴ | No | No | Aims to set up an AMR surveillance program, not indication of an EIS
being developed | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |---------|--------------------|---|----------------------------|--|--| | Egypt | Lower
Middle | Egypt National
Action Plan for
Antimicrobial
Resistance
2018-2022 ⁵⁵ | No | No | - Aims to strengthen surveillance system to a One Health approach | | Iran | Lower
Middle | National
action plan of
the Islamic
Republic of
Iran for
combating
antimicrobial
resistance
during 2016 –
2021 ⁵⁶ | No | Yes | Plans to develop a strategic plan to combat AMR in a one health approach Aims to design and enforce laws to facilitate mandatory reporting for the instance of electronic reporting systems, which will become a part of the Electronic Health Record | | Iraq | Upper
Middle | National
action plan of
antimicrobial
resistance in
Iraq 2018-
2022 ⁵⁷ | No | Yes | Aims to strengthen NAP by generating a multi-sector AMR information
sharing system for Humans, animals, and the environment | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |--------------|--------------------|---|----------------------------|--|--| | Jordan | Lower
Middle | Jordan Antimicrobial Resistance National Action Plan 2018-2022 ⁵⁸ | No | Yes | - Plans to
implement a national electronic health system | | Saudi Arabia | High | Kingdom of
Saudi Arabia:
National
action plan on
combating
antimicrobial
resistance ⁵⁹ | No | Yes | - Plans to integrate data into electronic health records when possible | | Lebanon | Upper
Middle | National
action plan on
combating
antimicrobial
resistance ⁶⁰ | No | No | - No indication of EIS, although plans to move towards a One health approach | | Libya | Upper
Middle | National
action plan on
prevention
and
containment
of
antimicrobial | No | No | - Plans to establish a surveillance system for humans and animals | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |-----------|--------------------|---|----------------------------|--|--| | | | resistance
2019-2023 ⁶¹ | | | | | Oman | High | Antimicrobial resistance (AMR) national action plan ⁶² | No | Yes | Aims to monitor trends in AMR through a well-established surveillance
system/network | | Pakistan | Low | Antimicrobial
resistance
national action
plan ⁶³ | No | No | Aims to establish an integrated national AMR surveillance system, no indication of an EIS | | Palestine | Lower
Middle | National
action plan for
antimicrobial
resistance
2020-2024 ⁶⁴ | No | Yes | Aims to implement electronic and network systems sharing within
medical laboratories within the Ministry of Health | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |-------------|--------------------|---|----------------------------|--|---| | Finland | High | National
action plan on
antimicrobial
resistance
2017-2021 ⁶⁹ | No | Yes | To develop a real-time notification and reporting system is a part of the
major action areas | | Germany | High | German
Antimicrobial
Resistance
Strategy
(DART) ⁷⁰ | No | No | Reports to ESAC-Net) European Surveillance of Antimicrobial
Consumption No indication of EIS developed | | Netherlands | High | Netherlands
Approach to
Antibiotic
Resistance ⁷¹ | No | No | - No indication of EIS | | Norway | High | Norwegian
National
Strategy
against
Antibiotic
Resistance
2015-2020 ⁷² | No | No | - Aims to standardise and extend surveillance systems to establish a global surveillance program on AMR and AMU | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |--------------|--------------------|--|----------------------------|--|--| | Serbia | Upper
Middle | National Antibiotic Resistance Control Programme for 2019- 2021 ⁷³ | No | Yes | - Plans to implement a common system for registration of AMC with an electronic system for health care | | Tajikistan | Low | National action plan to tackle antimicrobial resistance in the Republic of Tajikistan ⁷⁴ | No | No | Plans to improve surveillance system and implement more of a One
health approach | | Macedonia | Upper
Middle | Antimicrobial
Resistance
Strategy in
Macedonia
2012-2016 ⁷⁵ | No | No | - No indication of EIS | | Turkmenistan | Upper
Middle | National
strategy for
containment
of
antimicrobial
resistance in
Turkmenistan
2017-2025 ⁷⁶ | No | Yes | Aims to establish a national surveillance system Indicates the creation of a database to monitor and submit data to into a single electronic laboratory network | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |-------------|--------------------|---|----------------------------|--|--| | Timor-Leste | Low | National
Action Plan on
Antimicrobial
Resistance
2017-2020 ⁸⁰ | No | No | - Plans to set up a surveillance system for AMR, no indication of EIS | | India | Lower
Middle | National
Action Plan on
Antimicrobial
Resistance ⁸¹ | No | No | - Plans to implement and strengthen surveillance system as a One health approach | | Maldives | Upper
Middle | National
Action Plan for
Containment
of
Antimicrobial
Resistance
2017-2022 ⁸² | No | Yes | Plans to set up a national surveillance system to provide early warning
signs of emerging resistance and monitor trends at national and
subnational levels | | Sir Lanka | Upper
Middle | National
Strategic Plan
for Combating
Antimicrobial
Resistance in
Sri Lanka
2017-2022 ⁸³ | No | No | - Plans to optimise surveillance system, no indication of an EIS | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |------------|--------------------|---|----------------------------|--|--| | Australia | High | Australia National Antimicrobial Resistance Strategy 2020 and beyond ⁸⁴ | Yes | | - Does not mention APAS or CARAlert in this report, although these are two types of EIS in operation in Australia | | China | Upper
Middle | National
action plan to
contain
antimicrobial
resistance
2016-2020 ⁸⁵ | No | No | - Aims to strengthen the AMR surveillance and implement a One health approach | | Micronesia | Lower
Middle | Federated
States of
Micronesia
National AMR
Action Plan
2019-2023 ⁸⁶ | No | Yes | - Aims to strengthen the electronic laboratory information system for AMR reporting and surveillance in all state laboratories | | Fiji | Upper
Middle | National
antimicrobial
resistance
action plan
2015 ⁸⁷ | No | Yes | - Recognises the lack of an EIS, plans to develop one for AMR surveillance | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |---------------------|--------------------|--|----------------------------|--|--| | Mongolia | Lower
Middle | National multi-
sectoral action
plan on
combatting
antimicrobial
resistance
2017-2020 ⁸⁸ | No | Possibly | - Suggests possibility for development of EIS with fostered research and development for new tools to combat AMR | | Nauru | High | National multi-
sectoral plan
on
antimicrobial
resistance for
the Republic
of Nauru
2021-2025 ⁸⁹ | No | No | - Plans to improve current AMR surveillance system, no indication of EIS | | Papua New
Guinea | Lower
Middle | Papua New
Guinea Action
Plan on
Antimicrobial
Resistance
2019-2023 ⁹⁰ | No | No | Plans to develop an AMR surveillance system with a reference laboratory,
not an EIS | | Country | Economic
status | Name of
surveillance
system /
NAP | Presence
of AMR
EIS? | If no, is there any indication of AMR EIS in the future? | Additional information | |-------------------------|--------------------|---|----------------------------|--|--| | Republic of
Marshall | Upper
Middle | Republic of
Marshall | No | No | Plans to develop an AMR surveillance system with a reference laboratory,
not an EIS | | Islands | | Islands: National multisectoral plan on antimicrobial resistance 2019-2023 ⁹¹ | | | | | Tuvalu | Lower
Middle | National
multi-
sectoral plan
to combat
antimicrobial
resistance
2021-2025 ⁹² | No | No | Plans to strengthen current surveillance systems such as incorporating
animal date, no development of EIS is clearly indicated | ## References - Thomsen MCF, Ahrenfeldt J, Cisneros JLB, Jurtz V, Larsen MV, Hasman H, et al. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance. PLoS One. 2016;11(6):e0157718. - 2. Lamorde M, Mpimbaza A, Walwema R, Kamya M, Kapisi J, Kajumbula H, et al. A Cross-Cutting Approach to Surveillance and Laboratory Capacity as a Platform to Improve Health Security in Uganda. Health Secur. 2018;16(S1):S76–86. - 3. MacFadden DR, Fisman D, Andre J, Ara Y, Majumder MS, Bogoch II, et al. A Platform for Monitoring Regional Antimicrobial Resistance, Using Online Data Sources: ResistanceOpen. J Infect Dis. 2016 Dec 1;214(suppl_4):S393–8. - Turner P, Ashley EA, Celhay OJ, Douangnouvong A, Hamers RL, Ling CL, et al. ACORN (A Clinically-Oriented Antimicrobial Resistance Surveillance Network): a pilot protocol for case based antimicrobial resistance surveillance. Wellcome Open Res [Internet]. 2020 Jun 1 [cited 2021 Feb 11];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250055/ - 5. Lim C, Miliya T, Chansamouth V, Aung MT, Karkey A, Teparrukkul P, et al. Automating the Generation of Antimicrobial Resistance Surveillance Reports: Proof-of-Concept Study Involving Seven Hospitals in Seven Countries. Journal of Medical Internet Research. 2020;22(10):e19762. - 6. Kaur J, Sharma A, Dhama AS, Buttolia H, Ohri VC, Walia K, et al. Developing a hybrid antimicrobial resistance surveillance system in India: Needs & challenges. Indian J Med Res. 2019 Feb;149(2):299–302. - Wozniak TM, Cuningham W, Buchanan S, Coulter S, Baird RW, Nimmo GR, et al. Geospatial epidemiology of Staphylococcus aureus in a tropical setting: an enabling digital surveillance platform. Sci Rep. 2020 Aug 5;10(1):13169. - 8. Altorf-van der Kuil W, Schoffelen AF, de Greeff SC, Thijsen SF, Alblas HJ, Notermans DW, et al. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands. Euro Surveill. 2017 Nov;22(46). - Simões AS, Maia MR, Gregório J, Couto I, Asfeldt AM, Simonsen GS, et al. Participatory implementation of an antibiotic stewardship programme supported by an innovative surveillance and clinical decision-support system. J Hosp Infect. 2018 Nov;100(3):257– 64. - 10. Natale A, Stelling J, Meledandri M, Messenger LA, D'Ancona F. Use of WHONET-SaTScan system for simulated real-time detection of antimicrobial resistance clusters in a hospital in Italy, 2012 to 2014. Euro Surveill. 2017 Mar 16;22(11). - 11. Huang SS, Yokoe DS, Stelling J, Placzek H, Kulldorff M, Kleinman K, et al. Automated detection of infectious disease outbreaks in hospitals: a retrospective cohort study. PLoS Med. 2010 Feb 23;7(2):e1000238. - 12. Stelling J, Yih WK, Galas M, Kulldorff M, Pichel M, Terragno R, et al. Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect. 2010 Jun;138(6):873–83. - Schweickert B, Feig M, Schneider M, Willrich N, Behnke M, Peña Diaz LA, et al. Antibiotic consumption in Germany: first data of a newly implemented web-based tool for local and national surveillance. Journal of Antimicrobial Chemotherapy. 2018 Dec 1;73(12):3505–15. - 14. Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, et al. MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Research. 2017 Jan 4;45(D1):D574–80. - 15. Pillonetto M, Jordão RT de S, Andraus GS, Bergamo R, Rocha FB, Onishi MC, et al. The Experience of Implementing a National Antimicrobial Resistance Surveillance System in Brazil. Front Public Health [Internet]. 2021 Jan 14 [cited 2021 Mar 30];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841397/ - 16. Tseng Y-J, Wu J-H, Ping X-O, Lin H-C, Chen Y-Y, Shang R-J, et al. A Web-based multidrugresistant organisms surveillance and outbreak detection system with rule-based classification and clustering. J Med Internet Res. 2012 Oct 24;14(5):e131. - 17. Abat C, Chaudet H, Colson P, Rolain J-M, Raoult D. Real-Time Microbiology Laboratory Surveillance System to Detect Abnormal Events and Emerging Infections, Marseille, France. Emerg Infect Dis. 2015 Aug;21(8):1302–10. - 18. Graham PL, San Gabriel P, Lutwick S, Haas J, Saiman L. Validation of a multicenter computer-based surveillance system for hospital-acquired bloodstream infections in neonatal intensive care departments. Am J Infect Control. 2004 Jun;32(4):232–4. - Stelling J, O'Brien TF. WHONET: Software for Surveillance of Infecting Microbes and Their Resistance to Antimicrobial Agents. In: Molecular Microbiology [Internet]. John Wiley & Sons, Ltd; 2016 [cited 2021 Jun 8]. p. 692–706. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555819071.ch48 - 20. CARAlert Annual Report: 2019 | Australian Commission on Safety and Quality in Health Care [Internet]. [cited 2021 Apr 19]. Available from: https://www.safetyandquality.gov.au/publications-and-resources/resource-library/caralert-annual-report-2019 - Australian Passive Antimicrobial Resistance Surveillance (APAS) First report: multiresistant organisms | Australian Commission on Safety and Quality in Health Care [Internet]. [cited 2021 Apr 19]. Available from: https://www.safetyandquality.gov.au/publications-and-resources/resource- - library/australian-passive-antimicrobial-resistance-surveillance-apas-first-report-multi-resistant-organisms - Johnson AP, Muller-Pebody B, Budd E, Ashiru-Oredope D, Ladenheim D, Hain D, et al. Improving feedback of surveillance data on antimicrobial consumption, resistance and stewardship in England: putting the data at your Fingertips. J Antimicrob Chemother. 2016 Dec 20;dkw536. - 23. Karp BE, Tate H, Plumblee JR, Dessai U, Whichard JM, Thacker EL, et al. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance. Foodborne Pathog Dis. 2017 Oct 1;14(10):545–57. - 24. Kuzmenkov AY, Trushin IV, Vinogradova AG, Avramenko AA, Sukhorukova MV, Malhotra-Kumar S, et al. AMRmap: An Interactive Web Platform for Analysis of Antimicrobial Resistance Surveillance Data in Russia. Front Microbiol. 2021;12:620002. - 25. Federal Office of Public Health and Federal Food Safety and Veterinary Office. Swiss Antibiotic Resistance Report 2020. Usage of Antibiotics and Occurrence of Antibiotic Resistance in Switzerland. November 2020. FOPH publication number: 2020-OEG-64. [Internet]. 2020 [cited 2021 May 11]. Available from: https://www.anresis.ch/wp-content/uploads/2020/11/Swiss-Antibiotic-Resistance-Report-2020_def_WEB.pdf - 26. Voldstedlund M, Haarh M, Mølbak K, Representatives the MB of. The Danish Microbiology Database (MiBa) 2010 to 2013. Eurosurveillance. 2014 Jan 9;19(1):20667. - 27. DANMAP 2019, Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark [Internet]. https://www.danmap.org. 2019 [cited 2021 Apr 9]. Available from: https://www.danmap.org/reports/2019 - 28. District Health Information System-2 [Internet]. DHIS2. 2021 [cited 2021 Jul 27]. Available from: https://dhis2.org/ - 29. INFECT INterface For Empirical antimicrobial ChemoTherapy [Internet]. [cited 2021 Jul 30]. Available from: https://www.infect.info - Kajihara T, Yahara K, Hirabayashi A, Shibayama K, Sugai M. Japan Nosocomial Infections Surveillance (JANIS): Current Status, International Collaboration, and Future Directions for a Comprehensive Antimicrobial Resistance Surveillance System. Jpn J Infect Dis. 2021 Mar 31;74(2):87–96. - 31. Government Offices of Sweden. Swedish Strategy to combat antimicrobial resistance 2020-2023.pdf [Internet]. 2020 [cited 2021 Jun 16]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/swedish-strategy-to-combat-antimicrobial-resistance-2020-2023.pdf?sfvrsn=dacbb55f_1&download=true - 32. Söderblom T, Billström H, Kahlmeter G, Aspevall O. Working with the Swedish early warning and antimicrobial resistance surveillance system SVEBAR. European Congress of Clinical Microbiology and Infectious Diseases. Abstract [Internet]. 2014 May 10; Available from: https://www.escmid.org/escmid_publications/escmid_elibrary/material/?mid=14923 - 33. Ireland: National action plan on antimicrobial resistance [Internet]. [cited 2021 May 19]. Available from: https://www.who.int/publications/m/item/ireland-national-action-plan-on-antimicrobial-resistance - 34. Canadian Antimicrobial Resistance Surveillance System Report Update 2020. :108. - 35. The new Korean action plan for containment of antimicrobial resistance | Elsevier Enhanced Reader [Internet]. [cited 2021 Apr 20]. Available from: https://reader.elsevier.com/reader/sd/pii/S2213716516301412?token=5D7AA06E413 1996428D39055E19B6C901D0B2A4B4F606CDE37193DBAB91461D9176F538DB51B8D 2D582A997FCE93FA34&originRegion=us-east-1&originCreation=20210420030031 - 36. Chua AQ, Verma M, Hsu LY, Legido-Quigley H. An analysis of national action plans on antimicrobial resistance in Southeast Asia using a governance framework approach. The Lancet Regional Health Western Pacific [Internet]. 2021 Feb 1 [cited 2021 Apr 12];7. Available from: https://www.thelancet.com/journals/lanwpc/article/PIIS2666-6065(20)30084-5/abstract - 37. Resapath French surveillance network for antimicrobial resistance in bacteria from diseased animals [Internet]. [cited 2021 Apr 12]. Available from: https://www.anses.fr/fr/system/files/LABO-Ra-Resapath2018EN.pdf - 38. World Health Organization, Food and Agriculture Organization of the United Nations, World Organisation for
Animal Health, World Health Organization. Eritrean National Ation Plan on Antimicrobial Resistance 2021-2025 [Internet]. 2021 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/eritrean-amr-nap---layout-finalized-22-2-2021---copy-with-dates-of-signatures.pdf?sfvrsn=65856898_1&download=true - 39. World Health Organization. Eswatini National Antimicrobial Resistance Containment Strategic Plan 2018-2022 [Internet]. 2020 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/eswatini_final-signed-amr-strategy-implementation-plan-10june2021.pdf?sfvrsn=1fab5cbb_3&download=true - 40. Ethiopian Food, Medicine and Healthcare Administration and Control Authority. Ethiopia: Strategy for the Prevention and Containment of Antimicrobial Resistance for Ethiopia 2015-2020 [Internet]. [cited 2021 Nov 1]. Available from: https://www.who.int/publications/m/item/ethiopia - 41. Ministry of Health. Ghana National Action Plan on Antimicrobial Resistance 2017-2021 [Internet]. 2017 [cited 2021 Nov 1]. Available from: - https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/ghana-nap-amr-2017-2021.pdf?sfvrsn=319f21d6_1&download=true - 42. Government of Kenya. NATIONAL ACTION PLAN ON PREVENTION AND CONTAINMENT OF ANTIMICROBIAL RESISTANCE, 2017 -2022 [Internet]. WHO | Regional Office for Africa. 2017 [cited 2021 Nov 1]. Available from: https://www.afro.who.int/publications/national-action-plan-prevention-and-containment-antimicrobial-resistance-2017-2022 - 43. National Action Plan on Prevention and Containment of Antimicrobial Resistance in Liberia. 2017;89. - 44. Government of the Republic of Malawi. Malawi Antimicrobial Rsistance Strategy 2017-2022 [Internet]. 2016 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/malawi_antimicrobial-resistance-strategy-2017-2022.pdf?sfvrsn=f2b81215_1&download=true - 45. Ministry of Health and Quality of Life. Mauritius National Action Plan on Antimicrobial Resistance [Internet]. 2017 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/mauritius-national-action-plan-on-antimicrobial-resistance-.pdf?sfvrsn=775058b1_1&download=true - 46. Federal Ministries of Agriculture, Environment and Health. Nigeria Antimicrobial Resistance National Action Plan 2017-2022 [Internet]. 2017 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/a-future-for-children/nigeria-amr-national-action-plan.pdf?sfvrsn=153f003d_1&download=true - 47. Government of Sierra Leone. Sierra Leone: National Strategic Plan for Combating Antimicrobial Resistance 2018-2022 [Internet]. [cited 2021 Nov 1]. Available from: https://www.who.int/publications/m/item/sierra-leone-national-strategic-plan-for-combating-antimicrobial-resistance - 48. Department of Health, Republic of South Africa. South Africa: South African antimicrobial resistance national strategy framework 2018-2024 [Internet]. [cited 2021 Nov 1]. Available from: https://www.who.int/publications/m/item/south-africa-south-african-antimicrobial-resistance-national-strategy-framework-a-one-health-approach - 49. The United Republic of Tanzania. The National Action Plan on Antimicrobial Resistance 2017-2022 [Internet]. 2017 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/the-national-action-plan-on-antimicrobial-resistance-2017-2022.pdf?sfvrsn=31d0867d_1&download=true - 50. Ministry of Health, Ministry of Agriculture, Ministry of Environment. Zimbabwe One Health AMR NAP 2017-2021 [Internet]. 2017 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc- - npm/nap-library/zimbabwe_amr_nap_2017_2021.pdf?sfvrsn=c70e3ec1_1&download=true - 51. Barbados: National Action Plan on Combatting Antimicrobial Resistance 2017-2022 [Internet]. 2017 [cited 2021 Nov 1]. Available from: https://www.who.int/publications/m/item/barbados-national-action-plan-on-combatting-antimicrobial-resistance - 52. The White House Washington. National Action Plan for combating Antibiotic Resistant Bacteria [Internet]. 2015 [cited 2021 Nov 1]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/national-action-plan-for-combating-antibiotic-resistant-bacteria.pdf?sfvrsn=bf707027_1&download=true - 53. Ministry of Public Health. Afghanistan: National action plan on antimicrobial resistance 2017-2021 [Internet]. 2017 [cited 2021 Nov 1]. Available from: https://www.who.int/publications/m/item/afghanistan-national-action-plan-on-antimicrobial-resistance - 54. Kingdom of Bahrain. Bahrain: National action plan on antimicrobial resistance [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/bahrain-national-action-plan-on-antimicrobial-resistance - 55. World Health Organization. Egypt National Action Plan for Antimicrobial Resistance 2018-2022 [Internet]. 2018 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/egypt-national-action-plan-for-antimicrobial-resistance.pdf?sfvrsn=95406ca_1&download=true - 56. Moradi G, Gouya MM, Eshrati B, Mohraz M, Piroozi B. National action plan of the Islamic Republic of Iran for combating antimicrobial resistance during 2016 2021. Med J Islam Repub Iran. 2018;32:65. - 57. Ministry of Health / Environment, and Agriculture. National action plan of antimicrobial resistance in Iraq 2018-2022 [Internet]. 2018 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/iraq-national-action-plan-of-antimicrobial-resistance-in-iraq - 58. Ministry of Health. Jordan Antimicrobial Resistance National Action Plan 2018-2022 [Internet]. [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/infographics-pdf/antimicrobial-resistance-(amr)/jordan_amr-nap_2018-2022.pdf?sfvrsn=83be0540_1&download=true - 59. Ministry of Health. Kingdom of Saudi Arabia: National action plan on combating antimicrobial resistance [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/kingdom-of-saudi-arabia-national-action-plan-on-combating-antimicrobial-resistance - 60. Ministry of Public Health. National action plan on combating antimicrobial resistance [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/lebanon-national-action-plan-on-combating-antimicrobial-resistance - 61. State of Libya. Libya: National action plan on prevention and containment of antimicrobial resistance 2019-2023 [Internet]. 2018 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/libya-national-action-plan-on-prevention-and-containment-of-antimicrobial-resistance - 62. Ministry of Health, Agriculture and Fisheries. Oman: Antimicrobial resistance (AMR) national action plan [Internet]. 2020 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/oman-antimicrobial-resistance-(amr)-national-action-plan - 63. Ministry of National Health Services, Regulations and Coordination Government. Pakistan: Antimicrobial resistance national action plan [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/pakistan-antimicrobial-resistance-national-action-plan - 64. Centers for Disease Control and Prevention. Palestine: National action plan for antimicrobial resistance 2020-2024 [Internet]. 2020 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/palestine-national-action-plan-for-antimicrobial-resistance - 65. Ministry of Health and Animal Resources. Sudan: National action plan on antimicrobial resistance 2018-2020 [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/sudan-national-action-plan-on-antimicrobial-resistance - 66. Ministry of Health and Prevention. United Arab Emirates Nation Action Plan for Antimicrobial Resistance 2019-2023 [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/uae_nap-amr-english.pdf?sfvrsn=83bb9e84_1&download=true - 67. The Ministry of Health. Czech Republic: National action plan on antimicrobial resistance 2011-2013 [Internet]. 2011 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/czech-republic-national-action-plan-on-antimicrobial-resistance - 68. Ministry of Health. Denmark National Action Plan on Antibiotics in Human Healthcare [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/denmark-national-action-plan-on-antibiotics-in-human-healthcare-2017.pdf?sfvrsn=98102e2b_1&download=true - 69. Ministry of Social Affairs and Health. Finland: National action plan on antimicrobial resistance [Internet]. 2017 [cited 2021 Nov 2]. Available from: - https://www.who.int/publications/m/item/finland-national-action-plan-on-antimicrobial-resistance - 70. The Federal Government. Germany: Fighting antibiotic resistance for the good of both humans and animals [Internet]. 2015 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/germany-fighting-antibiotic-resistance-for-the-good-of-both-humans-and-animals - 71. Dutch House of Representatives. Netherlands Approach to Antibiotic Resistance [Internet]. 2015 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/letter-to-parliament-about-the-approach-to-antibiotic-resistance.pdf?sfvrsn=f92bc8c8_1&download=true - 72. Stuedal B, Tandberg T, Paiewonsky P. Norwegian National Strategy against Antibiotic Resistance 2015-2020. 2015;36. - 73.
Lukic I. SERBIA NATIONAL ANTIBIOTIC RESISTANCE CONTROL PROGRAMME FOR THE PERIOD 2019-2021. 2019;47. - 74. Ministry of Health and Social Protection, Ministry of Agriculture, Committee of Food Security. National action plan to tackle antimicrobial resistance in the Republic of Tajikistan [Internet]. 2018 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/tajikistan-national-action-plan-to-tackle-antimicrobial-resistance-in-the-republic-of-tajikistan - 75. Ministry of Health. Antimicrobial Resistance Strategy in Macedonia 2012-2016 [Internet]. 2011 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-strategy-macedonia-fyr.pdf?sfvrsn=3f80c162_1&download=true - 76. Ministry of Health and Medical Industry. National strategy for containment of antimicrobial resistance in Turkmenistan 2017-2025 [Internet]. 2018 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/turkmenistan-national-strategy-for-containment-of-antimicrobial-resistance-in-turkmenistan - 77. HR Government. United Kingdom of Great Britain and Northern Ireland: UK five year antimicrobial resistance strategy [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/united-kingdom-of-great-britain-and-northern-ireland-uk-five-year-antimicrobial-resistance-strategy - 78. Ministry of Health and Family Welfare. Bangladesh: Antimicrobial resistance containment in Bangladesh 2017-2022 [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/bangladesh-antimicrobial-resistance-containment-in-bangladesh-2017-2022 - 79. Royal Government of Bhutan. Bhutan National Action Plan on Antimicrobial Resistance 2018-2022 [Internet]. 2017 [cited 2021 Nov 2]. Available from: - https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/bhutan-national-action-plan-on-amr-(2018-2022).pdf?sfvrsn=6dda532a_1&download=true - 80. Ministry of Health. National Action Plan on Antimicrobial Resistance in Timor-Leste 2017-2020 [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/national-action-plan-on-antimicrobial-resistance-timor-leste-2017-2020.pdf?sfvrsn=7d9c62a5_1&download=true - 81. Sharma A. National Action Plan on Antimicrobial Resistance in India. 2017;57. - 82. Ministry of Health. National Action Plan for Containment of Antimicrobial Resistance in Maldives 2017-2022 [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/national-action-plan-for-containment-of-antimicrobial-resistance-2017-2022.pdf?sfvrsn=dd5e60ca_1&download=true - 83. Ministry of Health. National Strategic Plan for Combating Antimicrobial Resistance in Sri Lanka 2017-2022 [Internet]. 2017 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/national-strategic-plan-for-combating-antimicrobial-resistance-in-sri-lanka-2017%C3%A2-2022.pdf?sfvrsn=3125370f_1&download=true - 84. Australian Government. Australia National Antimicrobial Resistance Strategy 2020 and beyond [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/australia-national-antimicrobial-resistance-strategy-2020-and-beyond-.pdf?sfvrsn=e3dddbc1_1&download=true - 85. China: National action plan to contain antimicrobial resistance 2016-2020 [Internet]. 2014 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/china-national-action-plan-to-contain-antimicrobial-resistance-(2016-2020) - 86. Department of Health and Social Affairs. Federated States of Micronesia National AMR Action Plan 2019-2023 [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/federated-states-of-micronesia-national-amr-action-plan-2019-2023_endorsed.pdf?sfvrsn=9d60daa6_1&download=true - 87. Government of Fiji. Fiji: National antimicrobial resistance action plan 2015 [Internet]. 2015 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/fijinational-antimicrobial-resistance-action-plan-2015 - 88. Ministry of Health and Agriculture. Mongolia: National multi-sectoral action plan on combatting antimicrobial resistance (2017-2020) [Internet]. 2021 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/mongolia-national-multi-sectoral-action-plan-on-combatting-antimicrobial-resistance-(2017-2020) - 89. Ministry of Health and Medical Services. National multi-sectoral plan on antimicrobial resistance for the Republic of Nauru 2021-2025 [Internet]. 2021 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/nauru-national-multi-sectoral-plan-on-antimicrobial-resistance-for-the-republic-of-nauru - 90. Government of Papua New Guinea. Papua New Guinea Action Plan on Antimicrobial Resistance 2019-2023 [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/png-action-plan-on-amr-090919_signed.pdf?sfvrsn=1dd11db2_1&download=true - 91. Health and Human Services. Republic of Marshall Islands: National multisectoral plan on antimicrobial resistance [Internet]. 2019 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/republic-of-marshall-islands-national-multisectoral-plan-on-antimicrobial-resistance - 92. Ministry of Health. Tuvalu: National multi-sectoral plan to combat antimicrobial resistance [Internet]. 2021 [cited 2021 Nov 2]. Available from: https://www.who.int/publications/m/item/tuvalu-national-multi-sectoral-plan-to-combat-antimicrobial-resistance