Supplemental Material

For: Specific strains of honeybee gut *Lactobacillus* stimulate host immune system to protect against pathogenic *Hafnia alvei*

Haoyu Lang, Huijuan Duan, Jieni Wang, Wenhao Zhang, Jun Guo, Xue Zhang, Xiaosong Hu, Hao Zheng,

Contents: Figure S1	Page 2
Figure S2	3
Figure S3	4
Figure S4	5
Table S1	6
Table S2	7
Table S3	8
Supplementary References	9

FIG S1 *B. apousia* and *B. apis* strains did not protect against *H. alvei* infection in honeybee gut, and scheme for engineered *H. alvei* SMH01 mutant constitutively expressing the green fluorescent protein. (A) Absolute abundance of *H. alvei* of different treatment groups 5 days post-inoculation with *H. alvei*. Bees treated with *B. apousia* W8102 and *B. apis* W8152 do not affect the colonization of *H. alvei*. (B) Wild-type *H. alvei*. (C) Green fluorescent mutant *H. alvei*. (D) The GFP gene and the kanamycin resistance gene were knocked-in the chromosome downstream of the *lacZ* gene.

FIG S2 *Gilliamella* and *Lactobacillus* strains did not protect against *H. alvei* infection in the honeybee gut. (A-D) The liquid cultures or cell-free supernatant of *G. apicola* W8136, *G. apis* W8123, *L. melliventris*, and *L. apis* W8172 did not inhibit the growth of *H. alvei in vitro*.

FIG S3 KEGG analysis of the gut epithelial of honeybees mono-colonized with *Gilliamella*. Representative enriched KEGG pathways upregulated in the *G. apicola* W8136 group, compared to W8123.

FIG S4 KEGG analysis of the gut epithelial of honeybees mono-colonized with L. melliventris W8171. Representative enriched KEGG

pathways up- (A) and down-regulated (B) in the L. melliventris W8171 group, compared to MF.

Gene	Reference	Forward	Reverse
Abaecin	(1)	TCGGATTGAATGGTCCCTGAC	ATCTTCGCACTACTCGCCAC
Apidaecin	(1)	GTAGGTCGAGTAGGCGGATCT	TTTTGCCTTAGCAATTCTTGTTG
Cactus-1	(1)	CTATCGTGGAGAAACTGCGTAT	TCAGGAAGTGGTTCTGGTATTG
Cactus-2	(1)	ATCAGACGGCTCTGCTCTAT	TCGTCTTCGTCAGTGGTATCT
Dorsal	(1)	AGAGATGGAACGCAGGAAAC	TGACAGGATATAGGACGAGGTAA
Dredd	(1)	GCGTCATAAAGAAAAAGGATCA	TTTCGGGTAATTGAGCAACG
Hymenoptaecin	(1)	GTCGTCCATCCTTGGACATT	TTTCCCAAACTCGAATCCTG
PGRP-LC	(1)	TCCGTCAGCCGTAGTTTTTC	CGTTTGTGCAAATCGAACAT
Relish	(1)	GGAGCTGATCCAAATCGAAC	AGTGGCATCCATCATT
RPS18	(1)	AGGTGTTGGTCGTCGTTAT	CATTCTCCAGCACGCTTAT
Toll	(1)	TAGAGTGGCGCATTGTCAAG	ATCGCAATTTGTCCCAAAAC
Defensin-1	(2)	TGCGCTGCTAACTGTCTCAG	AATGGCACTTAACCGAAACG
Defensin-2	(3)	GCAACTACCGCCTTTACGTC	GGGTAACGTGCGACGTTTTA
Lysozyme	(3)	ACACGGTTGGTCACTGGTCC	GTCCCACGCTTTGAATCCCT
Actin	(4)	TGCCAACACTGTCCTTTCTG	AGAATTGACCCACCAATCCA

 Table S1. qPCR primer sequences for gene expression analysis.

Table S2. AMPs used in this study.

AMPs	Sequence	Length	Reference
abaecin	YVPLPNIPQPGRRPFPTFPGQGPFNPKIKWPQGY	34	(5)
apidaecin-1a	GNNRPVYIPQPRPPHPRI	18	(6)
apidaecin-1b	GNNRPVYIPQPRPPHPRL	18	(6)
defensin-1	VTCDLLSFKGQVNDSACAANCLSLGKAGGHCEKGVCICRKTSFKDLWDKRFG	52	(7)
defensin-2	VTCDVLSWQSKWLSINHSACAIRCLAQRRKGGSCRNGVCICRK	43	(7)
hymenoptaecin	QERGSIVIQGTKEGRNRPSLDIDYKQRVYDKNGMTGDAYGGVNIRPGQPTRQHA	02	(0)
	GFEFGKEYKNGFIRGQSEVQRGPGGRLSPYVGINGGFRF	93	(8)

Table S3.	Bacterial	isolates	used	in	this	study	/.
-----------	-----------	----------	------	----	------	-------	----

Strain	Collection_site	Isolated medium	NCBI accession number
Hafnia alvei SMH01	China: Jilin	Heart infusion agar	OK206815 (16S rRNA sequence)
Bartonella apis W8152	China: Jilin	Heart infusion agar	GCF_016100395
Bifidobacterium asteroids W8102	China: Jilin	Heart infusion agar	GCF_007559275
Gilliamella apis W8123	China: Jilin	Heart infusion agar	GCF_016101085
Gilliamella apicola W8136	China: Jilin	Heart infusion agar	GCF_016101285
Lactobacillus melliventris W8171	China: Jilin	MRS	GCF_016102065
Lactobacillus apis W8172	China: Jilin	MRS	GCF_016102055

Supplementary References

- 1. Horak R D, Leonard S P, Moran N A. Symbionts shape host innate immunity in honeybees. Proc Biol Sci. 2020; 287(1933):20201184.
- Daisley B A, Pitek A P, Chmiel J A, Al K F, Chernyshova A M, Faragalla K M, et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 2020; 14(2):476-491.
- Daisley B A, Pitek A P, Chmiel J A, Gibbons S, Chernyshova A M, Al K F, et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun Biol. 2020; 3(1):534.
- Kesnerova L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020; 14(3):801-814.
- Casteels P, Ampe C, Riviere L, Van Damme J, Elicone C, Fleming M, et al. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem. 1990; 187(2):381-386.
- Welch N G, Li W, Hossain M A, Separovic F, O'Brien-Simpson N M, Wade J D. (Re)Defining the proline-rich antimicrobial peptide family and the Identification of putative new members. Front Chem. 2020; 8:607769.
- Klaudiny J, Albert S, Bachanova K, Kopernicky J, Simuth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol. 2005; 35(1):11-22.
- Casteels P, Ampe C, Jacobs F, Tempst P. Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem. 1993; 268(10):7044-7054.