

Fig. S1. VD7 antibody validation.

(A) Specificity of the VD7 antibody was tested on HUVEC lysates by western blot analysis. Preimmune-serum, VD7 immune serum or a commercial α -catenin antibody were tested at the indicated dilutions. (B) HUVECs were transfected with control siRNA or α -catenin–targeting siRNA for 72h. Total cell lysates were immunoblotted with affinity purified VD7 antibodies or commercial antibodies against α -catenin and α -tubulin (as indicated).

(A) Peptide sequence of α -catenin used for rabbit immunization (top) and for antibody purification (bottom). Note that both peptides share the 7 amino acids that form the α 1-helix in α -catenin. (B) Confluent MDMVECs were fixed, permeabilized, and stained with the VD7 antibody restricted to the α 1-helix, total α -catenin and VE-cadherin antibodies. (C) Quantification of the signal intensities of staining with the 7aa motif-specific VD7 antibodies relative to total α -catenin signal intensities as shown in (B) (n=3 independent experiments). Bars (B): 25µm. Statistical significance was analyzed using the unpaired two-tailed Student's t-test (C). Results are shown as means ±SEM. **, P ≤ 0.01.

Fig. S4. The α 1-helix is unfolded in dimeric α -catenin.

(A) α -catenin was precipitated from purified dimeric and monomeric α -catenin preparations using the VD7 antibody. Isotype-matched antibodies were used as a control. The immunoprecipitates were analyzed by SDS-PAGE and immunoblotted for total α -catenin. (B) Quantification of immunoprecipitated α -catenin dimers and monomers relative to total α -catenin input as shown in (A) (n=3 independent experiments). Statistical significance was analyzed using the unpaired two-tailed Student's t-test. Results are shown as means ±SEM. **** P ≤ 0.0001.

Table S1. Genotypes from intercrosses of VEC- α C_ Δ VBD and VEC- α C_swapVBD mice

Mating	no. of litters	no. of offspring	+/VEC- αC_ΔVBD	VEC-αC_ΔVBD /VEC- αC_ΔVBD	% of VEC-αC_ΔVBD /VEC-αC_ΔVBD (% of expected)
+/VEC-αC_ΔVBD x VEC- αC_ΔVBD/ VEC-αC_ΔVBD	97	239	199	40	17 (34)

Mating	no. of litters	no. of offspring	+/VEC- αC_swapVBD	VEC-αC_swapVBD /VEC-αC_swapVBD	% of VEC- αC_swapVBD /VEC- αC_swapVBD (% of expected)
+/VEC-αC_swapVBD x VEC- αC_swapVBD/VEC- αC_swapVBD	39	152	104	48	32 (64)