
8 SUPPLEMENTARY FILE

8.1 Proof of Proposition 1

The claim quickly follows from two well known linear algebra theorems:
Woodbury identity and matrix determinant lemma. We recall the both re-
sults below.

Theorem 8.1 Theorem 1. Suppose that A and C are invertible n by n
matrices and U , V are n by p matrices. Then

det
(
A+ UV T

)
= det

(
Ip +V TA−1U

)
det
(
A
)

and(
A+ UCV

)−1
= A−1 − A−1U

(
C−1 + V A−1U

)−1
V A−1.

We will start with the proof of the first claim. Thanks to Theorem 1.,
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)
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Z
)
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Now

ln det(
[k]

Vλ) = ln det
(
λQQ+ λR Ip +

[k]

Ω
)
− ln det

(
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)
+ ln det

( [k]

W
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,

which finishes the proof. To show the second claim, we will rewrite
[k]

V −1λ as

[k]
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[k]

W−1 −
[k]

W−1
[k]

Z
(
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[k]

Ω
)−1 [k]T

Z
[k]
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thanks to (8.1). Therefore

[k]

ỹT
[k]

V −1λ

[k]

ỹ = − [k]T
q
(
λQQ+ λR Ip +

[k]

Ω
)−1 [k]
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[k]

ỹT
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[k]

ỹ .

8.2 Gradient and Hessian for the objective in (18)

Denote by h(λQ, λR) the objective function of interest, i.e.

h(λQ, λR) := ln det
(
λQQ+λR Ip +Ω

)
−ln det

(
λQQ+λR Ip

)
−qT

(
λQQ+λR Ip +Ω

)−1
q,

1



where Ω and q were defined in the statement of proposition 3 (“[k]”s symbols

were omitted for clarity). After using notations Dλ :=
(
λQQ + λR Ip +Ω

)−1
and Q̃λ := λQQ+ λR Ip, this function takes the short form

h(λQ, λR) = ln detD−1λ − ln det Q̃λ − qTDλq.

To find the gradient and Hessian of h we will use the following well known
formulas

Proposition 8.2 Suppose that A and B are p by p, symmetric, positive
semi-definite matrices, ν is p is p-dimensional vector and tA+ sB is positive
definite. Then it holds
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∂t

{
ln det

(
tA+ sB

)}
= tr

[(
tA+ sB

)−1
A
]
,

�

∂2

∂t∂s

{
ln det

(
tA+ sB

)}
= − tr

[(
tA+ sB

)−1
A
(
tA+ sB

)−1
B
]
,

�

∂2

∂t2

{
ln det

(
tA+ sB

)}
= − tr

[((
tA+ sB

)−1
A
)2]

,

�

∂

∂t

{
− νT

(
tA+ sB

)−1
ν
}

= νT
(
tA+ sB

)−1
A
(
tA+ sB

)−1
ν,

�

∂2

∂t ∂s

{
− νT

(
tA+ sB

)−1
ν
}

= − νT
(
tA+ sB

)−1
A
(
tA+ sB

)−1
B
(
tA+ sB

)−1
ν

− νT
(
tA+ sB

)−1
B
(
tA+ sB

)−1
A
(
tA+ sB

)−1
ν,

�
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Thanks to the above, we quickly get

∇h
∣∣
λ=λ0

=

[
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]
+ qTDλ0QDλ0q

tr
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]
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and
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h
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=
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8.3 Asymptotic confidence interval

We start from the optimization problem

argmin
B∈Rp+m

{ ∑
i
ψ(XiB) − yTXB +

1

2
BTQB︸ ︷︷ ︸

`(B)

}
. (21)

Calculating the derivatives of ` yields

∂`

∂B
(B) = X Tψ′(XB)−X Ty+QB and

∂2`

∂B2
(B) = X TΨXBX +Q, (22)

where {
ψ′(XB) :=

[
ψ′(X1B), . . . , ψ′(XnB)

]T
ΨXB := diag

{
ψ′′(X1B), . . . , ψ′′(XnB)

} .

Denote by BT the true signal and consider the Taylor series expansion of
∂`
∂B

about BT. If we consider the value of Taylor polynomial in the solution

of (21), B̂, this yields the following expression

∂`

∂B

(
B̂
)

=
∂`

∂B

(
BT

)
+ (B̂ −BT)T

∂2`

∂B2

(
BT

)
+ o

(
‖B̂ −BT‖22

)
Since the left-hand side of the above equals zero, using (22) we get the

first-order approximation of B̂

B̂ = BT −
[
∂2`
∂B2

(
BT

)]−1
∂`
∂B

(
BT

)
=

BT −
[
X TΨXBT

X +Q
]−1[
X Tψ′(XBT)−X Ty +QB

]
=[

X TΨXBT
X +Q

]−1[(
X TΨXBT

X +Q
)
BT −X Tψ′(XBT) + X Ty −QBT

]
=[

X TΨXBT
X +Q

]−1[
X TΨXBT

XBT −X Tψ′(XBT) + X Ty
]

=[
X TΨXBT

X +Q
]−1
X TΨXBT

X B̂0,

where B̂0 := BT +
[
X TΨXBT

X
]−1(

X Ty − X Tψ′(XBT)
)

is the first-order

approximation of the generalized linear model estimate, i.e. for Q = 0. It
was shown that, under some regularity conditions, this estimate is unbiased
and asymptotic normal (Fahrmeir & Kaufmann, 1985). The corresponding
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asymptotic variance is
[
X TΨXBT

X
]−1

. Consequently, the asymptotic vari-

ance , vara, of B̂ is given by

vara(B̂) =
[
X TΨXBT

X +Q
]−1
X TΨXBT

X
[
X TΨXBT

X +Q
]−1

.

8.4 Signal patterns

Figure 12: Examplary vectors of b model coefficients generated as b ∼
N (0, σ2

b (Q
true)−1), where Qtrue is Laplacian matrix of Atrue graph adjacency

matrix. Clearly, b coefficient values reflect the connectivity structure rep-
resented by Atrue matrices assumed in the simulation study; left plot: A1

“homologous regions”, middle left plot: A2 “modularity”, middle right plot:
A3 “density of connections, masked”, right plot: A4 “neighboring regions”
(see: Fig. 2). In the left plot, vertical dashed line marks the separation
between coefficients corresponding to left hemisphere brain regions and right
remishpere brain regions assumed in A1 “homologous regions” construction.
In the middle left plot, vertical dashed lines mark the separation between
connectivity modules assumed in A2 “homologous regions” construction. In
the middle right plot, vertical dashed lines mark the separation between con-
nectivity modules assumed in A3 “homologous regions” construction.
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8.5 Numerical experiments settings

Figure 13: Atrue connectivity graph adjacency matrices (1st column panels)
and Aobs connectivity graph adjacency matrices (2nd-4th column panels)
used in Scenario 1. Aobs matrix is constructed by randomizing Atrue until a
desired dissimilarity, diss(Aobs,Atrue), is achieved
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Figure 14: Atrue connectivity graph adjacency matrices used in Scenario
2. Atrue matrix is constructed from A1, ...,A4 matrices (1st-4th row panels,
respectively) by changing of k, k ∈ {1, 4, 7, 10}, columns (and corresponding
rows) of this matrix into their negative values (such structure of Atrue yields
the tendency that k coefficients of true signal will be separated from others.)
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Figure 15: Atrue and Aobs connectivity graph adjacency matrices used in
Scenario 3. Atrue matrix is defined as one of A1, ...,A4 matrices (1st-4th
row panels, respectively). Corresponding Aobs is constructed by randomly
removing or adding edges to the graph of connections represented by Atrue
until desired density ratio, dens(Aobs)/dens(Atrue), is obtained (the ratio
increases from 0.5 to 1.5 from left to right in each row plot panel).
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8.6 Numerical experiments results

Figure 16: MSEr for estimation of b as a function of dissimilarity between
Aobs and Atrue as measured by diss(Aobs,Atrue) (Scenario 1). Results for
griPEER (blue line) and logistic ridge (red line). Presented are the average
values of MSEr from 100 runs for combinations of: n ∈ {100, 200, 400},
p ∈ {66, 198, 528}. Standard errors of the mean are shown.
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Table 3: Regularization parameters and execution time of numerical exper-
iments. Presented are median values out of 100 repetitions in each of the
experiment’s setting for all scenario index-specific parameter values (Param;
scenario 1: dissimilarity, scenario 2: number of connectivity matrix columns
with signs switched, scenario 3: density ratio). Experiment settings are sum-
marized by experiment scenario index (SC; ranging 1-3), base connectivity
matrix (A), number of observations (n), and number of predictors (p).

SC A n p griP λQ griP λR rid λ Exec [s]

1 1 A1 100 66 52.9 0.2 0.3 22.8
2 1 A1 100 198 271.7 0.9 2.0 60.4
3 1 A1 200 66 0.1 0.1 0.1 12.8
4 1 A1 200 528 737.7 1.3 3.1 707.0
5 1 A1 400 528 434.7 0.5 1.2 958.5
6 1 A2 100 66 0.4 0.0 0.2 12.0
7 1 A2 100 198 2.7 0.0 1.6 25.4
8 1 A2 200 66 0.1 0.0 0.1 11.2
9 1 A2 200 528 4.3 0.1 2.4 1277.0

10 1 A2 400 528 1.8 0.0 1.0 288.0
11 1 A3 100 66 0.6 0.0 0.4 8.0
12 1 A3 100 198 2.1 0.1 1.8 21.6
13 1 A3 200 66 0.4 0.0 0.2 6.7
14 1 A3 200 528 3.1 0.1 2.5 258.5
15 1 A3 400 528 1.4 0.0 1.1 120.0
16 1 A4 100 66 2.2 0.0 0.2 24.5
17 1 A4 100 198 2.5 0.0 1.3 34.1
18 1 A4 200 66 0.9 0.0 0.1 10.3
19 1 A4 200 528 3.9 0.0 2.0 541.0
20 1 A4 400 528 1.4 0.0 0.9 354.5
21 2 A1 100 66 0.7 0.2 0.3 20.5
22 2 A2 100 66 0.4 0.0 0.2 9.7
23 2 A3 100 66 0.4 0.0 0.3 6.0
24 2 A4 100 66 1.1 0.0 0.2 3.8
25 3 A1 100 66 0.8 0.1 0.3 13.0
26 3 A2 100 66 0.8 0.0 0.3 12.0
27 3 A3 100 66 1.4 0.0 0.4 10.2
28 3 A4 100 66 0.5 0.0 0.2 13.8
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