8 SUPPLEMENTARY FILE

8.1 Proof of Proposition 1

The claim quickly follows from two well known linear algebra theorems: Woodbury identity and matrix determinant lemma. We recall the both results below.

Theorem 8.1 Theorem 1. Suppose that A and C are invertible n by n matrices and U, V are n by p matrices. Then

$$\det (A + UV^{\mathsf{T}}) = \det (\mathbf{I}_{p} + V^{\mathsf{T}}A^{-1}U) \det (A) \text{ and } (A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

We will start with the proof of the first claim. Thanks to Theorem 1.,

$$\det \left(\overset{[k]}{V_{\lambda}} \right) = \det \left(\overset{[k]}{W} + \overset{[k]}{Z} \overset{\widetilde{Q}_{\lambda}^{-1}}{Z} \overset{[k]^{\mathsf{T}}}{Z} \right) = \det \left(I_{p} + \overset{[k]^{\mathsf{T}}}{Z} \overset{[k]}{W^{-1}} \overset{[k]}{Z} \overset{\widetilde{Q}_{\lambda}^{-1}}{Q} \right) \det \left(\overset{[k]}{W} \right)$$
$$= \det \left(\widetilde{Q}_{\lambda} + \overset{[k]^{\mathsf{T}}}{Z} \overset{[k]}{W^{-1}} \overset{[k]}{Z} \right) \det \left(\widetilde{Q}_{\lambda} \right)^{-1} \det \left(\overset{[k]}{W} \right).$$

Now

$$\ln \det(V_{\lambda}^{[k]}) = \ln \det \left(\lambda_Q Q + \lambda_R \operatorname{I}_p + \Omega^{[k]}\right) - \ln \det \left(\lambda_Q Q + \lambda_R \operatorname{I}_p\right) + \ln \det \left(W^{[k]}\right)$$

which finishes the proof. To show the second claim, we will rewrite $V_{\lambda}^{^{[k]}}$ as

$$V_{\lambda}^{[k]} = W^{[k]} - W^{[k]} Z \left(\lambda_Q Q + \lambda_R I_p + \Omega \right)^{-1} Z^{[k]} W^{[k]},$$

thanks to (8.1). Therefore

$$\widetilde{\widetilde{y}}^{[k]} V_{\lambda}^{[k]-1} \widetilde{\widetilde{y}} = - \widetilde{q}^{[k]\mathsf{T}} \left(\lambda_Q Q + \lambda_R \operatorname{I}_p + \Omega \right)^{-1} \widetilde{q}^{[k]} + \widetilde{\widetilde{y}}^{\mathsf{T}} W^{-1} \widetilde{\widetilde{y}}^{[k]}.$$

8.2 Gradient and Hessian for the objective in (18)

Denote by $h(\lambda_Q, \lambda_R)$ the objective function of interest, i.e.

$$h(\lambda_Q, \lambda_R) := \ln \det \left(\lambda_Q Q + \lambda_R \operatorname{I}_p + \Omega \right) - \ln \det \left(\lambda_Q Q + \lambda_R \operatorname{I}_p \right) - q^{\mathsf{T}} \left(\lambda_Q Q + \lambda_R \operatorname{I}_p + \Omega \right)^{-1} q,$$

where Ω and q were defined in the statement of proposition 3 ("[k]"s symbols were omitted for clarity). After using notations $D_{\lambda} := (\lambda_Q Q + \lambda_R I_p + \Omega)^{-1}$ and $\widetilde{Q}_{\lambda} := \lambda_Q Q + \lambda_R I_p$, this function takes the short form

$$h(\lambda_Q, \lambda_R) = \ln \det D_{\lambda}^{-1} - \ln \det \widetilde{Q}_{\lambda} - q^{\mathsf{T}} D_{\lambda} q.$$

To find the gradient and Hessian of h we will use the following well known formulas

Proposition 8.2 Suppose that A and B are p by p, symmetric, positive semi-definite matrices, ν is p is p-dimensional vector and tA + sB is positive definite. Then it holds

•
$$\frac{\partial}{\partial t} \left\{ \ln \det \left(tA + sB \right) \right\} = \operatorname{tr} \left[\left(tA + sB \right)^{-1} A \right],$$

•
$$\frac{\partial^2}{\partial t \partial s} \left\{ \ln \det \left(tA + sB \right) \right\} = -\operatorname{tr} \left[\left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} B \right],$$

•
$$\frac{\partial^2}{\partial t^2} \left\{ \ln \det \left(tA + sB \right) \right\} = -\operatorname{tr} \left[\left(\left(tA + sB \right)^{-1} A \right)^2 \right],$$

•
$$\frac{\partial}{\partial t} \left\{ -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} \nu \right\} = \nu^{\mathsf{T}} \left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} \nu,$$

•
$$\frac{\partial^2}{\partial t \partial s} \left\{ -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} \nu \right\} = -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} B \left(tA + sB \right)^{-1} \nu,$$

•
$$\frac{\partial^2}{\partial t \partial s} \left\{ -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} \nu \right\} = -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} B \left(tA + sB \right)^{-1} \nu,$$

•
$$\frac{\partial^2}{\partial t \partial s} \left\{ -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} \nu \right\} = -2\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} \nu,$$

•
$$\frac{\partial^2}{\partial t^2} \left\{ -\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} \nu \right\} = -2\nu^{\mathsf{T}} \left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} A \left(tA + sB \right)^{-1} \nu$$

Thanks to the above, we quickly get

$$\nabla h \Big|_{\lambda = \lambda_0} = \left[\begin{array}{c} \operatorname{tr} \left[(D_{\lambda_0} - \widetilde{Q}_{\lambda_0}^{-1})Q \right] + q^{\mathsf{T}} D_{\lambda_0} Q D_{\lambda_0} q \\ \operatorname{tr} \left[D_{\lambda_0} - \widetilde{Q}_{\lambda_0}^{-1} \right] + q^{\mathsf{T}} D_{\lambda_0}^2 q \end{array} \right].$$

and

$$\mathbf{H}(h)\big|_{\lambda=\lambda_0} = \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix},$$

where

$$\begin{aligned} \mathbf{H}_{11} &:= -\operatorname{tr} \left[D_{\lambda_0} Q D_{\lambda_0} Q - \widetilde{Q}_{\lambda_0}^{-1} Q \widetilde{Q}_{\lambda_0}^{-1} Q \right] - 2q^{\mathsf{T}} D_{\lambda_0} Q D_{\lambda_0} Q D_{\lambda_0} q, \\ \mathbf{H}_{22} &:= -\operatorname{tr} \left[D_{\lambda_0}^2 - \widetilde{Q}_{\lambda_0}^{-2} \right] - 2q^{\mathsf{T}} D_{\lambda_0}^3 q, \\ \mathbf{H}_{12} &= \mathbf{H}_{21} &:= -\operatorname{tr} \left[(D_{\lambda_0}^2 - \widetilde{Q}_{\lambda_0}^{-2}) Q \right] - q^{\mathsf{T}} D_{\lambda_0} Q D_{\lambda_0}^2 q - q^{\mathsf{T}} D_{\lambda_0}^2 Q D_{\lambda_0} q. \end{aligned}$$

8.3 Asymptotic confidence interval

We start from the optimization problem

$$\underset{B \in \mathbb{R}^{p+m}}{\operatorname{argmin}} \left\{ \underbrace{\sum_{i} \psi(\mathcal{X}_{i}B) - y^{\mathsf{T}}\mathcal{X}B + \frac{1}{2}B^{\mathsf{T}}\mathcal{Q}B}}_{\ell(B)} \right\}.$$
(21)

Calculating the derivatives of ℓ yields

$$\frac{\partial \ell}{\partial B}(B) = \mathcal{X}^{\mathsf{T}} \psi'(\mathcal{X}B) - \mathcal{X}^{\mathsf{T}} y + \mathcal{Q}B \quad \text{and} \quad \frac{\partial^2 \ell}{\partial B^2}(B) = \mathcal{X}^{\mathsf{T}} \Psi_{\mathcal{X}B} \mathcal{X} + \mathcal{Q}, \quad (22)$$

where

$$\begin{cases} \psi'(\mathcal{X}B) := \left[\psi'(\mathcal{X}_1B), \dots, \psi'(\mathcal{X}_nB) \right]^\mathsf{T} \\ \Psi_{\mathcal{X}B} := \operatorname{diag} \left\{ \psi''(\mathcal{X}_1B), \dots, \psi''(\mathcal{X}_nB) \right\} \end{cases}$$

Denote by $B_{\rm T}$ the true signal and consider the Taylor series expansion of $\frac{\partial \ell}{\partial B}$ about $B_{\rm T}$. If we consider the value of Taylor polynomial in the solution of (21), \hat{B} , this yields the following expression

$$\frac{\partial \ell}{\partial B} (\hat{B}) = \frac{\partial \ell}{\partial B} (B_{\mathrm{T}}) + (\hat{B} - B_{\mathrm{T}})^{\mathsf{T}} \frac{\partial^{2} \ell}{\partial B^{2}} (B_{\mathrm{T}}) + o(\|\hat{B} - B_{\mathrm{T}}\|_{2}^{2})$$

Since the left-hand side of the above equals zero, using (22) we get the first-order approximation of \hat{B}

$$\begin{split} \hat{B} &= B_{\mathrm{T}} - \left[\frac{\partial^{2}\ell}{\partial B^{2}}(B_{\mathrm{T}})\right]^{-1} \frac{\partial\ell}{\partial B}(B_{\mathrm{T}}) = \\ B_{\mathrm{T}} - \left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right]^{-1} \left[\mathcal{X}^{\mathsf{T}}\psi'(\mathcal{X}B_{\mathrm{T}}) - \mathcal{X}^{\mathsf{T}}y + \mathcal{Q}B\right] = \\ \left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right]^{-1} \left[\left(\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right)B_{\mathrm{T}} - \mathcal{X}^{\mathsf{T}}\psi'(\mathcal{X}B_{\mathrm{T}}) + \mathcal{X}^{\mathsf{T}}y - \mathcal{Q}B_{\mathrm{T}}\right] = \\ \left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right]^{-1} \left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X}B_{\mathrm{T}} - \mathcal{X}^{\mathsf{T}}\psi'(\mathcal{X}B_{\mathrm{T}}) + \mathcal{X}^{\mathsf{T}}y\right] = \\ \left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right]^{-1} \mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X}\hat{B}^{0}, \end{split}$$

where $\hat{B}^0 := B_{\mathrm{T}} + \left[\mathcal{X}^{\mathsf{T}} \Psi_{\mathcal{X}B_{\mathrm{T}}} \mathcal{X} \right]^{-1} \left(\mathcal{X}^{\mathsf{T}} y - \mathcal{X}^{\mathsf{T}} \psi'(\mathcal{X}B_{\mathrm{T}}) \right)$ is the first-order approximation of the generalized linear model estimate, i.e. for $\mathcal{Q} = 0$. It was shown that, under some regularity conditions, this estimate is unbiased and asymptotic normal (Fahrmeir & Kaufmann, 1985). The corresponding

asymptotic variance is $\left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathsf{T}}}\mathcal{X}\right]^{-1}$. Consequently, the asymptotic variance, var_a , of \hat{B} is given by

$$var_{a}(\hat{B}) = \left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right]^{-1}\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X}\left[\mathcal{X}^{\mathsf{T}}\Psi_{\mathcal{X}B_{\mathrm{T}}}\mathcal{X} + \mathcal{Q}\right]^{-1}.$$

8.4 Signal patterns

Figure 12: Examplary vectors of *b* model coefficients generated as $b \sim \mathcal{N}(0, \sigma_b^2(Q^{true})^{-1})$, where Q^{true} is Laplacian matrix of \mathcal{A}^{true} graph adjacency matrix. Clearly, *b* coefficient values reflect the connectivity structure represented by \mathcal{A}^{true} matrices assumed in the simulation study; left plot: \mathcal{A}_1 "homologous regions", middle left plot: \mathcal{A}_2 "modularity", middle right plot: \mathcal{A}_3 "density of connections, masked", right plot: \mathcal{A}_4 "neighboring regions" (see: Fig. 2). In the left plot, vertical dashed line marks the separation between coefficients corresponding to left hemisphere brain regions and right remishpere brain regions assumed in \mathcal{A}_1 "homologous regions" construction. In the middle left plot, vertical dashed lines mark the separation between connectivity modules assumed in \mathcal{A}_2 "homologous regions" construction. In the middle right plot, vertical dashed lines mark the separation between connectivity modules assumed in \mathcal{A}_3 "homologous regions" construction. In the middle right plot, vertical dashed lines mark the separation between connectivity modules assumed in \mathcal{A}_3 "homologous regions" construction. In the middle right plot, vertical dashed lines mark the separation between connectivity modules assumed in \mathcal{A}_3 "homologous regions" construction.

Figure 13: \mathcal{A}^{true} connectivity graph adjacency matrices (1st column panels) and \mathcal{A}^{obs} connectivity graph adjacency matrices (2nd-4th column panels) used in Scenario 1. \mathcal{A}^{obs} matrix is constructed by randomizing \mathcal{A}^{true} until a desired dissimilarity, $diss(\mathcal{A}^{obs}, \mathcal{A}^{true})$, is achieved

Figure 14: \mathcal{A}^{true} connectivity graph adjacency matrices used in Scenario 2. \mathcal{A}^{true} matrix is constructed from $\mathcal{A}_1, ..., \mathcal{A}_4$ matrices (1st-4th row panels, respectively) by changing of $k, k \in \{1, 4, 7, 10\}$, columns (and corresponding rows) of this matrix into their negative values (such structure of \mathcal{A}^{true} yields the tendency that k coefficients of true signal will be separated from others.)

Figure 15: \mathcal{A}^{true} and \mathcal{A}^{obs} connectivity graph adjacency matrices used in Scenario 3. \mathcal{A}^{true} matrix is defined as one of $\mathcal{A}_1, ..., \mathcal{A}_4$ matrices (1st-4th row panels, respectively). Corresponding \mathcal{A}^{obs} is constructed by randomly removing or adding edges to the graph of connections represented by \mathcal{A}^{true} until desired density ratio, $dens(\mathcal{A}^{obs})/dens(\mathcal{A}^{true})$, is obtained (the ratio increases from 0.5 to 1.5 from left to right in each row plot panel).

Figure 16: MSEr for estimation of b as a function of dissimilarity between \mathcal{A}^{obs} and \mathcal{A}^{true} as measured by $diss(\mathcal{A}^{obs}, \mathcal{A}^{true})$ (Scenario 1). Results for griPEER (blue line) and logistic ridge (red line). Presented are the average values of MSEr from 100 runs for combinations of: $n \in \{100, 200, 400\}, p \in \{66, 198, 528\}$. Standard errors of the mean are shown.

Table 3: Regularization parameters and execution time of numerical experiments. Presented are median values out of 100 repetitions in each of the experiment's setting for all scenario index-specific parameter values (*Param*; scenario 1: dissimilarity, scenario 2: number of connectivity matrix columns with signs switched, scenario 3: density ratio). Experiment settings are summarized by experiment scenario index (*SC*; ranging 1-3), base connectivity matrix (\mathcal{A}), number of observations (n), and number of predictors (p).

	SC	\mathcal{A}	n	р	gri P λ_Q	gri P λ_R	rid λ	Exec $[s]$
1	1	A1	100	66	52.9	0.2	0.3	22.8
2	1	A1	100	198	271.7	0.9	2.0	60.4
3	1	A1	200	66	0.1	0.1	0.1	12.8
4	1	A1	200	528	737.7	1.3	3.1	707.0
5	1	A1	400	528	434.7	0.5	1.2	958.5
6	1	A2	100	66	0.4	0.0	0.2	12.0
$\overline{7}$	1	A2	100	198	2.7	0.0	1.6	25.4
8	1	A2	200	66	0.1	0.0	0.1	11.2
9	1	A2	200	528	4.3	0.1	2.4	1277.0
10	1	A2	400	528	1.8	0.0	1.0	288.0
11	1	A3	100	66	0.6	0.0	0.4	8.0
12	1	A3	100	198	2.1	0.1	1.8	21.6
13	1	A3	200	66	0.4	0.0	0.2	6.7
14	1	A3	200	528	3.1	0.1	2.5	258.5
15	1	A3	400	528	1.4	0.0	1.1	120.0
16	1	A4	100	66	2.2	0.0	0.2	24.5
17	1	A4	100	198	2.5	0.0	1.3	34.1
18	1	A4	200	66	0.9	0.0	0.1	10.3
19	1	A4	200	528	3.9	0.0	2.0	541.0
20	1	A4	400	528	1.4	0.0	0.9	354.5
21	2	A1	100	66	0.7	0.2	0.3	20.5
22	2	A2	100	66	0.4	0.0	0.2	9.7
23	2	A3	100	66	0.4	0.0	0.3	6.0
24	2	A4	100	66	1.1	0.0	0.2	3.8
25	3	A1	100	66	0.8	0.1	0.3	13.0
26	3	A2	100	66	0.8	0.0	0.3	12.0
27	3	A3	100	66	1.4	0.0	0.4	10.2
28	3	A4	100	66	0.5	0.0	0.2	13.8