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Materials and Methods 29 

Preparation of the three dimensional structures of mAb-S protein and ACE2-S 30 

protein complexes 31 

The Omicron spike trimer was modelled by SWISS-MODEL Server in Alignment 32 

mode.1 The Omicron homology model with the RBD up was chosen for further analysis. 33 

The Omicron spike were superimposed to a spike/ACE2 complex (PDB ID: 6VW12) 34 

to create an Omicron-ACE2 complex structure. For the RBD-ACE2 system, zinc ion in 35 

the structure was retained. We retrieved 5 structures of marketed or clinical RBD-36 

specific antibodies bound to S protein from the Protein Data Bank. The Omicron RBD 37 

domain containing residue 334-526 were truncated from the full-length S protein. In 38 

order to get the intact structures for WT/Delta RBDs and antibodies, missing residues 39 

in flexible loops were modeled using SWISS-MODEL. Delta RBD model was created 40 

by PyMOL2.53 to yield K417N and E484K on the basis of 7VVS.4 The Delta model in 41 

our simulations have 4 mutations: K417N, L452R, T478K, and E484K. 42 

 43 

System preparation 44 

Protonation states were assessed using H++ 3.25,6
 at pH 7.4. A cubic explicit water 45 

box described using the TIP3P model was used to solvated the complex system, which 46 

was extended by 10 Å from the solute. An atmosphere of 150 mM NaCl was also 47 

included in all simulations. The generated models were parametrized using amber 48 

ff14SB force fields7 for protein. Subsequently, the parameter files created by tleap in 49 

Amber188 were converted to gromacs format. 5000 steps of minimization including 50 

2500 steps of steepest descent minimization and 2500 steps of conjugate gradient 51 

minimization were performed to remove bad contacts during the energy minimization 52 

phase. Equilibration in NPT ensemble was run at 1.0 bar and 300 K for 500 000 steps 53 

at 2 fs/step. Gromacs2020.29,10 software package was used to run the minimization, 54 

equilibration simulations with position constraints (1 kcal/mol/Å2) on protein. 55 

 56 

Molecular dynamics (MD) simulations 57 

Mdrun module in Gromacs2020.2 was used to perform 200ns MD production 58 
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simulations in triplicate at 300 K, 1 bar for all complexes. Temperature and pressure 59 

were controlled by Langevin thermostat11 and a Nosé-Hoover Langevin barostat.12,13 60 

Bonds involving hydrogen atoms were fixed by the SHAKE algorithm.14 The cutoff 61 

distance applied for van der Waals interactions is 10 Å. In order to deal with the 62 

coordination effects between zinc and adjacent nitrogen atom of HIS or oxygen atom 63 

of GLU in the RBD-ACE2 systems, simple distance restraint method was used. The 64 

force constant for distance restraints and time constant for distance restraints running 65 

average were set to 1.0 kJ/mol/nm2 and 0.0 picosecond, respectively. All simulations 66 

were performed using particle-mesh Ewald (PME) for long-range electrostatic 67 

interactions.15 Mdconvert16 was used to convert the trajectories to amber format. 68 

Cpptraj module in Amber18 was used for trajectory processing and analysis.  69 

 70 

Binding free energy calculation 71 

Binding free energy (ΔG) of RBD-antibody or ACE2-RBD complexes was 72 

calculated by MM/GBSA17 method using GB OBC model (igb = 5) with a salt 73 

concentration of 150 mM. 750 snapshots evenly extracted from 50-200ns trajectories 74 

were used for binding free energy calculation. In this study, the internal and external 75 

dielectric constants were set to be 1.0 and 78.5 separately. The free energy 76 

decomposition analysis was carried out using an internal program with idecomp = 1. 77 

 78 

Binding ELISA 79 

To measure the affinity constant of SARS-CoV-2 Spike protein RBDWT (His Tag) 80 

(GenScript), SARS-CoV-2 Spike RBDDelta (K417N, L452R, T478K) protein (His Tag) 81 

(Sino Biological), and SARS-CoV-2 B.1.1.529 (Omicron) Spike RBD protein (His Tag) 82 

(Sino Biological) against the ACE2-Fc protein (GenScript), a non-competitive ELISA 83 

was performed.18 After being coated with 1, 2, and 4 μg/mL ACE2-Fc Tag protein 84 

overnight at 4°C, the 96-well plates were washed with 0.1% PBST, blocked with 3% 85 

BSA in PBS (Thermo Fisher Scientific, Waltham, MA, USA), and then incubated with 86 

4- fold serial dilutions of RBDs at 37 °C for 1 h. The tested concentrations were between 87 
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10 μg/mL and 38 pg/mL. Thereafter, His tag antibody (HRP) (Sino Biological) was 88 

added at 1:10000 dilution, and the plate was incubated at 37 °C for 1 h. After washing 89 

the plate thrice with 0.1% PBST, TMB substrate (SeraCare, Milford, MA, USA) was 90 

added and the reaction was stopped with 2 M H2SO4, and the absorbance was read at 91 

450 nm with Infinite F50 microplate reader (Tecan Trading AG, Zürich, Switzerland). 92 

The following formula for calculation of affinity constant (Kaff) in 1/mol (M-1) was used: 93 

𝐾𝑎𝑓𝑓 =
(𝑛 − 1)

2(𝑛[𝐴𝑏]1 − [𝐴𝑏]2)
 94 

where n represents the ratio between the highest and the lowest ACE2 concentration for 95 

the three possible comparisons. In a comparison between two ACE2 concentrations, 96 

[Ab]1 represents the molar RBD concentration calculated for OD-50 (half of maximum 97 

OD450 nm), corresponding to the lower ACE2 concentration. [Ab]2 represents the 98 

molar RBD concentration calculated for OD-50 measured at 450 nm, corresponding to 99 

the higher ACE2 concentration. The calculation of [Ab]1 and [Ab]2 was carried out by 100 

interpolating the value of OD-50 in the curve of OD450 nm vs. RBD concentration, 101 

fitting the curve to a four-parameters logistic regression by GraphPad Prism version 102 

9.1.1 (GraphPad Software, San Diego, California, USA). The Kaff value for each RBD 103 

represents the mean ± the standard deviation (SD) of the three calculated Kaff values. 104 

The ACE2 binding affinities of different RBDs by the ELISA method in this letter 105 

(Kaff=6.01±3.02×107 L/mol for RBDWT, 26.91±0.46×107 L/mol for RBDDelta) show the 106 

same decrease tendency to those determined by either SPR method with Biacore 3000 107 

(KD of RBDWT = 8.3 nM, KD of RBDDelta = 4.0 nM)19 (RBDDelta is stronger than RBDWT) 108 

or a BLI based method with Octet RED96E (Sartorius) (KD of RBDWT = 21.3 nM).20 In 109 

addition, the ELISA assay in this study is performed in same plate under the same assay 110 

condition, leading to lower variations and also high throughput capability. Furthermore, 111 

in comparison with other methods, such as SPR and BLI based methods, the ELISA 112 

method does not need to further derivatize the RBD molecules to be analyzed, which 113 

avoids the potential effect of derivatization on the affinity measurement of the 114 

molecules. Therefore, ELISA is employed for this study. 115 

 116 

Statistics analysis 117 

Homogeneity of variance was tested by F test. Subsequently, in order to analyze 118 
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whether there is significant difference between the binding affinities for either wild type, 119 

Delta or Omicron RBD to ACE2 or mAbs, the two-tailed unpaired Student's t-test with 120 

equal or unequal variance was used for every two groups. P values of less than 0.05 121 

were considered to be significant.  122 

 123 

Supplementary Text 124 

Effects of Omicron variant on the binding affinities to three marketed mAbs 125 

We performed a comprehensive literature survey and found that the 126 

experimentally determined binding affinity of all the 3 marketed mAbs (Etesevimab, 127 

Bamlanivimab and Regdanvimab) calculated in this letter to the Omicron RBD were 128 

reported in the literature reported on 14-12-2021,21 which indicate that all the binding 129 

affinities of the 3 mAbs to RBDOmicron decrease by 3 orders of magnitude in comparison 130 

with that of RBDWT. Our calculations show that RBDOmicron has much weaker binding 131 

affinities to the 2 marketed mAbs (Etesevimab and Bamlanivimab, ΔG=-37.95 and -132 

22.42 kcal/mol) in comparison with the RBDWT (-67.78 and -52.90 kcal/mol), 133 

demonstrating a good agreement with the experimental results of high immune evasion 134 

risk. The calculated binding affinity of RBDOmicron to Regdanvimab (-44.58 kcal/mol) 135 

also shows a decrease trend of binding affinity compared to RBDWT (-48.86 kcal/mol) 136 

but without significance.  137 

In addition, Xie and Ho reported their bioassay results of the binding affinity of 138 

RBDOmicron to the 2 marketed mAbs (Etesevimab and Bamlanivimab),22,23 also shows a 139 

good agreement with our prediction. In overall, the prediction in this letter is in 140 

agreement with conclusion from bioassay. 141 

 142 

Interaction between the RBDs and the ACE2 at molecular and atomic level 143 

The binding free energy decomposition of residues (Fig. 1e) shows that energy 144 

contribution of N501 in RBDWT is -2.12 ± 1.13 kcal/mol, while the energy contribution 145 

of Y501 in RBDOmicron is -6.97 ± 0.30 kcal/mol (a stronger attraction). By analyzing 146 

molecular dynamic trajectories, we found that Y501RBD and Y41ACE2 could form a 147 



S6 

 

strong π-π stacking interaction (Figure S5a). The center of mass distance between 148 

Y501RBD and Y41ACE2 is around 5.5 Å throughout the 200ns trajectory (Figure S5b). 149 

The common feature of Q493K and Q498R mutation is that both of them mutates 150 

from electrically neutral Q to positively charged amino acids (K and R). By binding 151 

free energy decomposition, the energy contributions of both K493 and R498 are 152 

decreased. Specifically, the energy contribution of K493 in RBDOmicron decreased about 153 

1.90 kcal/mol to Q493 in RBDWT, and the energy contribution of R498 in RBDOmicron 154 

decreased about 4.15 kcal/mol to Q498 in RBDWT. Q493 in RBDWT could form tight 155 

interactions with K31 and E35 in ACE2 (Figure S6). By calculating distances of 156 

K31ACE2-Q493RBD and K31ACE2-K493RBD (Figure S6a), we found that K31ACE2 moves 157 

away from K493RBD, which may be due to the repulsion of lysine with the same 158 

electrical properties. K353ACE2 also moves away from R498RBD (Figure S7c). Hence, 159 

we speculate that the repulsion between positively charged residues is the main cause 160 

of the decreased binding free energy in ACE2-RBDOmicron. K493RBD forms a tighter 161 

interaction with E35ACE2 (Figure S6b), which partly compensates for the effect of 162 

positively charge repulsion. While the lack of compensation effect in R498RBD (Figure 163 

S7a & S7b) leads to its severe decreased interactions with ACE2.  164 

We also performed the binding free energy decomposition for all the residues on 165 

different RBMs to human ACE2, which is depicted in Figure S8.  166 

 167 

 168 

 169 

170 
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Figure S1 171 

 172 

Figure S1. Time dependence of the heavy atom RMSD during 200 ns MD 173 

simulation. a, b and c for the systems formed by the different RBDs and ACE2. d, e 174 

and f for the systems formed by the different RBDs and Etesevimab (PDB ID: 7C01).  175 
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Figure S2 176 

 177 

Figure S2. Time dependence of the heavy atom RMSD during 200 ns MD 178 

simulation. a, b and c for the systems formed by the different RBDs and BD-368-2 179 

(PDB ID: 7CHH). d, e and f for the systems formed by the different RBDs and 180 

Bamlanivimab (PDB ID: 7L3N). 181 

  182 
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Figure S3 183 

 184 

Figure S3. Time dependence of the heavy atom RMSD during 200 ns MD 185 

simulation. a, b and c for the systems formed by the different RBDs and Bebtelovimab 186 

(PDB ID: 7MMO). d, e and f for the systems formed by the different RBDs and 187 

Regdanvimab (PDB ID: 7CM4). 188 

   189 
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Figure S4 190 

 191 

Figure S4. Experimental ELISA curves for three RBDs at different ACE2 coating 192 

concentrations. The calculated wild type RBD concentrations (ng/mL) at OD-50 were: 193 

351.0 (4 μg/mL), 411.0 (2 μg/mL), and 287.0 (1 μg/mL), Delta RBD concentrations 194 

(ng/mL) at OD-50 were: 145.7 (4 μg/mL), 106.9 (2 μg/mL), and 77.4 (1 μg/mL), and 195 

Omicron RBD concentrations (ng/mL) at OD-50 were: 831.7 (4 μg/mL), 1246.2 (2 196 

μg/mL), and 10146.6 (1 μg/mL).  197 

  198 
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Figure S5 199 

 200 

 201 

Figure S5. The interaction between Y501RBD and Y41ACE2. (a) Diagram of Y501RBD-202 

Y41ACE2 π-π stacking interaction. (b) The distance between the center of mass of 203 

Y501RBD and Y41ACE2. 204 

  205 



S12 

 

Figure S6 206 

 207 

Figure S6. The dependence of minimum distance during 200 ns MD simulation. (a) 208 

Minimum distance between K31ACE2 and Q/K493RBD. (b) Minimum distance between 209 

E35ACE2 and Q/K493RBD. 210 

  211 
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Figure S7 212 

 213 

Figure S7. The dependence of minimum distance during 200 ns MD simulation (a) 214 

Minimum distance between D38ACE2 and Q/R498RBD. (b) Minimum distance between 215 

Q42ACE2 and Q/R498RBD. (c) Minimum distance between K353ACE2 and Q/R498RBD.  216 

  217 
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Figure S8 218 

 219 

Figure S8. The binding free energy decomposition of ACE2 to RBM residues (437-220 

507) in the different RBDs. 221 

 222 
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Table S1 224 

Table S1. The initial pdb structures of the simulated systems.  225 

Name (.pdb) System Original PDB ID 

rbd_ace2_wt RBDWT-ACE2 6VW1 

rbd_ace2_delta RBDDelta-ACE2 7VVS, 6VW1 

rbd_ace2_omicron RBDOmicron-ACE2 7N1X, 6VW1 

7c01_wt RBDWT-Etesevimab 7C01 

7c01_delta RBDDelta-Etesevimab 7C01 

7c01_omicron RBDOmicron-Etesevimab 7C01 

7mmo_wt RBDWT-Bebtelovimab 7MMO 

7mmo_delta RBDDelta-Bebtelovimab 7MMO 

7mmo_omicron RBDOmicron-Bebtelovimab 7MMO 

7cm4_wt RBDWT-Regdanvimab 7CM4 

7cm4_delta RBDDelta-Regdanvimab 7CM4 

7cm4_omicron RBDOmicron-Regdanvimab 7CM4 

7chh_wt RBDWT-(BD-368-2) 7CHH 

7chh_delta RBDDelta-(BD-368-2) 7CHH 

7chh_omicron RBDOmicron-(BD-368-2) 7CHH 

7l3n_wt RBDWT-Bamlanivimab 7L3N 

7l3n_delta RBDDelta-Bamlanivimab 7L3N 

7l3n_omicron RBDOmicron-Bamlanivimab 7L3N 

  226 
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Table S2 227 

Table S2. The parameter files in gromacs format of the simulated systems.  228 

System PATH Original PDB ID File type 

RBDWT-ACE2 Data_S2\rbd_ace2\wt 6VW1 

Topology, 

structure, index 

files in 

gromacs 

format 

RBDDelta-ACE2 Data_S2\rbd_ace2\delta 7VVS, 6VW1 

RBDOmicron-ACE2 Data_S2\rbd_ace2\omicron 7N1X, 6VW1 

RBDWT-Etesevimab Data_S2\7c01\wt 7C01 

RBDDelta-Etesevimab Data_S2\7c01\delta 7C01 

RBDOmicron-Etesevimab Data_S2\7c01\omicron 7C01 

RBDWT-Bebtelovimab Data_S2\7mmo\wt 7MMO 

RBDDelta-Bebtelovimab Data_S2\7mmo\delta 7MMO 

RBDOmicron-Bebtelovimab Data_S2\7mmo\omicron 7MMO 

RBDWT-Regdanvimab Data_S2\7cm4\wt 7CM4 

RBDDelta-Regdanvimab Data_S2\7cm4\delta 7CM4 

RBDOmicron-Regdanvimab Data_S2\7cm4\omicron 7CM4 

RBDWT-(BD-368-2) Data_S2\7chh\wt 7CHH 

RBDDelta-(BD-368-2) Data_S2\7chh\delta 7CHH 

RBDOmicron-(BD-368-2) Data_S2\7chh\omicron 7CHH 

RBDWT-Bamlanivimab Data_S2\7l3n\wt 7L3N 

RBDDelta-Bamlanivimab Data_S2\7l3n\delta 7L3N 

RBDOmicron-Bamlanivimab Data_S2\7l3n\omicron 7L3N 

 229 
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 231 

Table S3 232 

Table S3. The predicted mAb-RBD binding free energy (kcal/mol) of WT, Delta 233 

and Omicron variants. 234 

Antibody PDB ID System Average 1 2 3 

Etesevimab 

CB-6 

(Launched) 

7C0124 

RBDWT -67.78 ± 2.12 -65.33 ± 0.34 -68.85 ± 0.33 -69.15 ± 0.34 

RBDDelta -42.34 ± 5.78 -37.64 ± 0.29 -40.6 ± 0.33 -48.79 ± 0.34 

RBDOmicron -39.75 ± 1.63 -36.28 ± 0.43 -38.04 ± 0.45 -39.54 ± 0.39 

Bebtelovimab 

LY-CoV-1404 

(Launched) 

7MMO25 

RBDWT -58.77 ± 2.97 -56.52 ± 0.32 -57.66 ± 0.40 -62.14 ± 0.58 

RBDDelta -53.96 ± 2.27 -51.49 ± 0.28 -54.45 ± 0.26 -55.95 ± 0.34 

RBDOmicron -59.09 ± 4.37 -54.76 ± 0.34 -59.02 ± 0.28 -63.50 ± 0.35 

Regdanvimab 

CT-P59 

(Launched) 

7CM426 

RBDWT -48.86 ± 5.69 -43.94 ± 0.32 -47.55 ± 0.28 -55.10 ± 0.27 

RBDDelta -34.01 ± 10.39 -22.06 ± 0.33 -39.03 ± 0.33 -40.94 ± 0.37 

RBDOmicron -44.58 ± 4.39 -45.21 ± 0.53 -39.91 ± 0.32 -48.63 ± 0.34 

BD-368-2 

(Clinical) 
7CHH27 

RBDWT -28.30 ± 5.96 -22.42 ± 0.32 -28.14 ± 0.33 -34.33 ± 0.26 

RBDDelta -11.09 ± 5.86 -7.08 ± 0.24 -8.37 ± 0.26 -17.82 ± 0.33 

RBDOmicron -13.31 ± 6.81 -7.64 ± 0.21 -11.42 ± 0.40 -20.86 ± 0.29 

Bamlanivimab 

LY-CoV-555 

(Launched) 

7L3N28 

RBDWT -52.90 ± 0.29 -52.69 ± 0.24 -52.78 ± 0.25 -53.23 ± 0.27 

RBDDelta -21.84 ± 6.92 -17.43 ± 0.20 -18.28 ± 0.23 -29.81 ± 0.33 

RBDOmicron -22.42 ± 1.61 -20.78 ± 0.21 -22.49 ± 0.38 -23.99 ± 0.27 

 235 
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Movie S1. 237 

The interaction modes between ACE2 and 3 different RBDs. The movie shows the 238 

molecular dynamics simulations of three RBDs (i.e. RBD in WT, Delta and Omicron) 239 

interacting with ACE2. For illustrative purposes, RBD is shown as blue cartoon, and 240 

ACE2 in transparent green cartoon. Mutations are labeled and shown as purple sticks 241 

on RBDDelta and yellow sticks on RBDOmicron. Only one 200ns MD trajectory was shown.  242 

 243 
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