Supplementary Materials For "Linkage disequilibrium 1

under polysomic inheritance" 2

Appendix A. Expansion of Δ_{AB} in triploids 3

In triploids, the value of Δ_{AB} is given by $\Delta_{AB} = D_s^{AB} + 2D_d^{AB}$, where D_s^{AB} and $2D_d^{AB}$ can 4 5 be respectively expanded as

6
$$D_s^{AB} = \frac{1}{3} (D_{B^{..}}^{A^{..}} + D_{\cdot B^{.}}^{\cdot A^{..}} + D_{\cdot B^{..}}^{\cdot \cdot A}),$$

1

7
$$2D_{d}^{AB} = \frac{1}{3} (D_{\cdot B}^{A \cdot \cdot} + D_{\cdot B}^{A \cdot \cdot} + D_{B \cdot \cdot}^{\cdot A \cdot} + D_{\cdot B}^{\cdot A \cdot} + D_{\cdot B}^{\cdot \cdot A \cdot} + D_{B \cdot \cdot}^{\cdot \cdot A \cdot} + D_{B \cdot \cdot}^{\cdot \cdot A \cdot}),$$

8 in which the superscripts (or the subscripts) of D on the right side of the equals sign denote 9 the phased genotype at the first (or the second) locus, and the dot \cdot denotes any allele.

Each term on the right side can be further expanded as follows (the terms with the 10 11 same two-locus unphased genotypes in the expansion are combined):

$$12 \qquad \frac{1}{3}D_{B..}^{A..} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{AAX} + D_{BBB}^{AAA} + D_{BBX}^{AAA} + D_{BXB}^{AAA} + D_{BXX}^{AAX} + D_{BXX}^{AXX} + D_{BXB}^{AXA} + D_{BXB}^{AXA} + D_{BXB}^{AXA} + D_{BXB}^{AXA} + D_{BXB}^{AXX} + D_{BXX}^{AXA} + D_{BXX}^{AXX} + D_{BXX}^$$

$$\begin{array}{ll}
14 & \frac{1}{3}D_{\cdot B^{\cdot}}^{\cdot A^{\cdot}} = \frac{1}{3}\left(D_{BBB}^{AAA} + D_{BBB}^{AAX} + D_{BBB}^{XAA} + D_{BBX}^{AAA} + D_{XBB}^{AAA} + D_{XBB}^{AAX} + D_{XBB}^{AAX} + D_{XBB}^{XAA} + D_{XB}^{XAA} + D_{XB$$

$$\begin{array}{ll}
16 & \frac{1}{3}D_{\cdot\cdot B}^{\cdot\cdot A} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{XAA} + D_{BBB}^{AXA} + D_{XBB}^{AAA} + D_{BXB}^{AAA} + D_{XBB}^{XAA} + D_{BXB}^{XAA} + D_{XBB}^{XAA} + D_{BXB}^{AXA} + D_{BXB}^{AXA} + D_{BXB}^{XXA} +$$

$$18 \qquad \frac{1}{3}D_{B}^{A} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{AAX} + D_{BBB}^{AXA} + D_{BBX}^{AAA} + D_{XBB}^{AAA} + D_{BBX}^{AAX} + D_{XBB}^{AAX} + D_{BBX}^{AXA} + D_{AXX}^{AXA} + D_{AXX}^{AX} + D_{AXX}^{AXA} + D_{AXX}^{AX} + D_{AXX}^{AXA} + D_{AXX}^{AXA} + D_{AXX}^{AXA} + D_{AXX}^{AXA} + D_{AXX}^{AXA} + D_{AXX}^{AXA}$$

20
$$\frac{1}{3}D_{\cdot\cdot B}^{A\cdot\cdot} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{AAX} + D_{BBB}^{AAA} + D_{BXB}^{AAA} + D_{BXB}^{AAX} + D_{BXB}^{AAX} + D_{BXB}^{AXX} + D_{BXB}^{AXA} + D_{AXA}^{AXA} + D_{AXA}^{$$

22
$$\frac{1}{3}D_{B}^{A} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{AAX} + D_{BBB}^{AAA} + D_{BBX}^{AAA} + D_{BXB}^{AAA} + D_{BBX}^{AAX} + D_{BXB}^{AAX} + D_{BXB}^{XAA} + D_{BXB}^{XAA}$$

$$24 \qquad \frac{1}{3}D_{\cdot \cdot B}^{\cdot A \cdot} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{AAX} + D_{BBB}^{XAA} + D_{XBB}^{AAA} + D_{BXB}^{AAA} + D_{XBB}^{AAX} + D_{BXB}^{XAA} + D_{XBB}^{XAA} + D_{BXB}^{XAA} + D_{XXB}^{XAA} + D_{X$$

26
$$\frac{1}{3}D_{.B.}^{..A} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{XAA} + D_{BBB}^{AXA} + D_{BBX}^{AAA} + D_{XBB}^{XAA} + D_{XBB}^{XAA} + D_{XBB}^{XAA} + D_{BBX}^{AXA} + D_{XBB}^{AXA} + D_{XBB}^{AXA} + D_{BBB}^{XXA} + D_{BBB}^{XXA} + D_{BBB}^{XXA} + D_{BBB}^{XAA} + D_{AB}^{XAA} + D_{A}^{XAA} + D_$$

28
$$\frac{1}{3}D_{B}^{AA} = \frac{1}{3}(D_{BBB}^{AAA} + D_{BBB}^{XAA} + D_{BBB}^{AXA} + D_{BBX}^{AAA} + D_{BXB}^{AAA} + D_{BBX}^{XAA} + D_{BXB}^{XAA} + D_{BXB}^{AXA} + D_{BXB}^{AXA}$$

30 By summing all terms of the same two-locus unphased genotypes on the right sides of the equals signs, we obtain the following equalities: 31

 $3D_{BBB}^{AAA} = 3G_{BBB}^{AAA} - 3p_A^3 q_B^3,$ 32

33
$$2(D_{BBB}^{AAX} + D_{BBB}^{AXA} + D_{BBB}^{XAA}) = 2G_{BBB}^{AAX} - 6p_A^2 p_X q_B^3,$$

34
$$2(D_{BBX}^{AAA} + D_{BXB}^{AAA} + D_{XBB}^{AAA}) = 2G_{BBX}^{AAA} - 6p_A^3 q_B^2 q_X,$$

$$\begin{array}{rcl} 35 & & \frac{4}{3} \left(D_{BBX}^{AAX} + D_{BXB}^{AAX} + D_{BBX}^{AXA} + D_{BXB}^{AXA} + D_{XBB}^{AAX} \right. \\ 36 & & + D_{BBX}^{XAA} + D_{XBB}^{XAA} + D_{BXB}^{XAA} + D_{XBB}^{AXA} \right) = \frac{4}{3} G_{BBX}^{AAX} - 12 p_A^2 p_X q_B^2 q_X, \\ 37 & & D_{BBB}^{AXX} + D_{BBB}^{XAX} + D_{BBB}^{XBA} + D_{BBB}^{XBA} = G_{BBB}^{AXX} - 3 p_A p_X^2 q_B^3, \\ 38 & & D_{BXX}^{AAA} + D_{XBX}^{AAA} + D_{XXB}^{AAA} = G_{BXX}^{AAA} - 3 p_A^3 q_B q_X^2, \end{array}$$

$$\begin{array}{l} 39 \qquad \qquad \frac{2}{3} (D_{BXB}^{AXX} + D_{BBX}^{AXX} + D_{XBB}^{XAX} + D_{BBX}^{XAX} + D_{BXB}^{XXA} \\ 40 \qquad \qquad + D_{XBB}^{XXA} + D_{XBB}^{XXX} + D_{BXB}^{XAX} + D_{BBX}^{XXA}) = \frac{2}{3} G_{BBX}^{AXX} - 6 p_A p_X^2 q_B^2 q_X, \end{array}$$

41
$$\frac{2}{3}(D_{BXX}^{AAX} + D_{BXX}^{AXA} + D_{XBX}^{AAX} + D_{XBX}^{XAA} + D_{XXB}^{XAA}) = {}^{2}C_{AXX}^{AXX} - 6n n^{2}$$

42
$$+D_{XXB}^{AXA} + D_{XBX}^{AXA} + D_{XXB}^{AAX} + D_{BXX}^{XAA}) = \frac{2}{3}G_{BBX}^{AXX} - 6p_A p_X^2 q_B^2 q_X,$$

43
$$\frac{1}{3} (D_{BXX}^{AXX} + D_{XBX}^{XAX} + D_{XXB}^{XXA} + D_{XBX}^{AXX} + D_{XXB}^{AXX} + D_{XXB}^{AXX} + D_{BXX}^{AXX} + D_{BXX}^{XAX} + D_{BXX}^{XXA} + D_{BXX}^{XXA} + D_{BXX}^{XXA} + D_{BXX}^{XXA} - 3p_A p_X^2 q_B q_X^2,$$

where each G.... denotes a two-locus unphased genotypic frequency, whose superscript and 45 subscript represent two unphased genotypes. Each expression on the right sides of the 46 47 above equalities is one of the following:

48
$$\frac{ij}{v}G_{B^{j}X^{\nu-j}}^{A^{i}X^{\nu-i}} - v\binom{\nu-1}{\nu-i}\binom{\nu-1}{\nu-j}p_{A}^{i}p_{X}^{\nu-i}q_{B}^{j}q_{X}^{\nu-j}, \quad i, j = 1, 2, 3 \text{ and } \nu = 3, 3$$

in which $A^{i}X^{\nu-i}$ denotes an unphased genotype containing exactly *i* copies of *A*, and the 49 meaning of $B^{j}X^{\nu-j}$ is similar. Because Δ_{AB} is the sum of these expressions, it follows 50

51
$$\Delta_{AB} = \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \left[\frac{ij}{\nu} G_{B^{j} X^{\nu-j}}^{A^{i} X^{\nu-i}} - \nu {\binom{\nu-1}{\nu-i}} {\binom{\nu-1}{\nu-j}} p_{A}^{i} p_{X}^{\nu-i} q_{B}^{j} q_{X}^{\nu-j} \right],$$

52 Note that

53
$$\sum_{i=1}^{\nu} \sum_{j=1}^{\nu} {\binom{\nu-1}{\nu-i} \binom{\nu-1}{\nu-j} p_A^i p_X^{\nu-i} q_B^j q_X^{\nu-j}} = \left[\sum_{i=1}^{\nu} {\binom{\nu-1}{\nu-i} p_A^i p_X^{\nu-i}} \right] \left[\sum_{j=1}^{\nu} {\binom{\nu-1}{\nu-j} q_B^j q_X^{\nu-j}} \right]$$

54
$$= \left[p_A \sum_{k=0}^{\nu-1} p_X^k p_A^{(\nu-1)-k} \right] \left[q_B \sum_{l=0}^{\nu-1} q_X^l q_B^{(\nu-1)-l} \right]$$

55
$$= p_A q_B (p_A + p_X)^{\nu-1} (q_B + q_X)^{\nu-1} = p_A q_B.$$

$$\Delta_{AB} = \left(\sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \frac{ij}{\nu} G_{B^j X^{\nu-i}}^{A^i X^{\nu-i}}\right) - \nu p_A q_B$$

58 Appendix B. Non-identity coefficients

57

The single non-identity coefficient is defined as the probability that the two alleles of an allele pair are not IBD. There are two configurations for two such alleles: (i) they are sampled from the same individual, or (ii) they are sampled from different individuals. We denote the single non-identity coefficient by *P* for (i), or by Π for (ii). Then, *P* and Π can be described by symbols as follows:

64
$$P \stackrel{\text{def}}{=} 1 - \mathcal{F} \text{ and } \Pi \stackrel{\text{def}}{=} 1 - \bar{\theta},$$

65 where $\bar{\theta}$ is the average kinship coefficient between all individuals in a population, i.e., the 66 probability that two alleles (each randomly sampled from a separate individual) are IBD.

The double non-identity coefficient is defined as the probability that neither of two 67 68 allele pairs are IBD. There are multiple configurations for these two allele pairs. Based on 69 Weir & Hill (1980), we established 3 digenic, 6 trigenic and 13 quadgenic two-locus allele 70 configurations for different polysomic inheritances, including four novel allele configurations (9th, 15th, 21st and 22nd) that have more than two haplotypes within 71 72 individuals. These allele configurations along with the notations of the corresponding 73 frequencies, double non-identity coefficients, and expectations are presented in Table 1, 74 where the first nine allele configurations do not have corresponding double non-identity 75 coefficients because they share the same alleles.

For example, the 10th allele configuration $Z_{BB...}^{AA...}$ in Table 1 means that these two allele pairs are from two haplotypes within the same individual, the first *A* and first *B* are in one haplotype, and the second *A* and second *B* are in another haplotype. Moreover, the corresponding frequency, double non-identity coefficient and the expectation of frequency are denoted by P_{10} , Θ_1 and E_{10} , respectively.

The expectation E_i of each frequency P_i in Table 1 is derived by assuming no initial 81 82 LD, which is a linear combination of $p_A q_B$, $p_A q_B (p_X + q_X)$ and $p_A p_X q_B q_X$, whose combination coefficients are listed in the three cells before E_i in Table 1. For example, the 83 84 combination coefficients of E_{18} are 1, $-\Pi$ and Δ_3 . The allele pair AA or BB in the 18th allele configuration $Z_{B,\dots|\dots|B,\dots}^{A^{+},\dots|A^{-}|}$ consists of the alleles from different individuals, then the single 85 non-identity coefficient of each allele pair is Π and the double non-identity coefficient is Δ_3 . 86 Hence the identity states of these two allele pairs can be described by the following three 87 aspects: (i) both pairs are non-IBD with probability Δ_3 , (ii) only one pair is IBD with 88 89 probability $\Pi - \Delta_3$ or (iii) both pairs are IBD with probability $1 - 2\Pi + \Delta_3$. Therefore, the 90 expectation E_{18} is the following linear combination with 1, $-\Pi$ and Δ_3 as the combination 91 coefficients:

92
$$E_{18} = \Delta_3 p_A^2 q_B^2 + (\Pi - \Delta_3) (p_A q_B^2 + p_A^2 q_B) + (1 - 2\Pi + \Delta_3) p_A q_B$$

93
$$= p_A q_B - \Pi p_A q_B (p_X + q_X) + \Delta_3 p_A p_X q_B q_X.$$

94 Appendix C. Derivation of moments of LD

95 measurements

96 In the process of deriving the moments of LD measurements, we need to use the 97 frequencies P_1, P_2, \dots, P_{22} listed in Table 1, and so we first discuss P_1 to P_{22} , and then derive 98 various moments.

99 P_1 to P_{22}

100 Denote x_{ij} for the state indicator of allele *A* related to the *j*th haplotype within the *i*th 101 individual at the first locus, and y_{ij} for that of *B* at the second locus, where $x_{ij} = 1$ if the 102 allele copy at the first locus is *A*, otherwise $x_{ij} = 0$; the meaning of y_{ij} is similar. Moreover, 103 we let the number of the sampled individuals be *n* (the sample size), and let the number 104 of haplotypes within each individual be *v* (the ploidy level). Then P_1 to P_{22} can be 105 expressed as follows.

106 Digenic:

107
$$P_1 = \hat{P}_{B...}^{A...} = \frac{1}{nv} \sum_i \sum_j x_{ij} y_{ij}$$

108
$$P_2 = \hat{P}_{\cdot B...}^{A...} = \frac{1}{nv(v-1)} \sum_i \sum_{j \neq j'} x_{ij} y_{ij'}$$

109
$$P_3 = \hat{P}_{\cdot \dots | B \dots}^{A \dots | \cdot \dots} = \frac{1}{n(n-1)\nu^2} \sum_{i \neq i'} \sum_{j,j'} x_{ij} y_{i'j'}$$

110 **Trigenic**:

111
$$P_4 = \hat{P}_{B \dots}^{AA\dots} + \hat{P}_{BB\dots}^{A\dots} = \frac{1}{nv(v-1)} \sum_i \sum_{j \neq j'} (x_{ij} y_{ij} x_{ij'} + x_{ij} y_{ij} y_{ij'})$$

112
$$P_{5} = \hat{P}_{\cdots \dots | B_{\cdots}}^{AA \dots | \cdots} + \hat{P}_{BB \dots | \cdots}^{BB \dots | \cdots} = \frac{1}{n(n-1)v^{2}(v-1)} \sum_{i \neq i'} \sum_{j \neq j'} \sum_{j''} \left(x_{ij} x_{ij'} y_{i'j''} + y_{ij} y_{ij'} x_{i'j''} \right)$$

113
$$P_6 = \hat{P}_{B...|\cdot...}^{A...|A...} + \hat{P}_{B...|B...}^{A...|\cdot...} = \frac{1}{n(n-1)v^2} \sum_{i \neq i'} \sum_{j,j'} \left(x_{ij} y_{ij} x_{i'j'} + x_{ij} y_{ij} y_{i'j'} \right)$$

114
$$P_{7} = \hat{P}_{\cdot B \dots | \cdot \dots}^{A \cdot \dots | A \dots} + \hat{P}_{\cdot B \dots | B \dots}^{A \cdot \dots | \cdot \dots} = \frac{1}{n(n-1)v^{2}(v-1)} \sum_{i \neq i'} \sum_{j \neq j'} \sum_{j''} \left(x_{ij} y_{ij'} x_{i'j''} + x_{ij} y_{ij'} y_{i'j''} \right)$$

115
$$P_{8} = \hat{P}_{\cdot ...|\cdot ...|B...}^{A...|A...|\cdot ...|\cdot ...|\cdot ...|\cdot ...|\cdot ...|\cdot ...|\cdot ...|\cdot ...|} = \frac{1}{n(n-1)(n-2)v^{3}} \sum_{\substack{i,i',i'' \\ \text{are distinct}}} \sum_{j,j',j''} (x_{ij}x_{i'j'}y_{i''j''} + x_{ij}y_{i'j'}y_{i''j''})$$

117
$$P_{9} = \hat{P}_{\cdot \cdot B \dots}^{AA \cdot \dots} + \hat{P}_{\cdot BB \dots}^{A \cdot \dots} = \frac{1}{nv(v-1)(v-2)} \sum_{i} \sum_{\substack{j,j',j'' \\ \text{are distinct}}} \left(x_{ij} x_{ij'} y_{ij''} + x_{ij} y_{ij'} y_{ij''} \right)$$

118 Quadgenic:

119 Dihaplotypic:

120
$$P_{10} = \hat{P}_{BB...}^{AA...} = \frac{1}{nv(v-1)} \sum_{i} \sum_{j \neq j'} x_{ij} x_{ij'} y_{ij} y_{ij'}$$

121
$$P_{11} = \hat{P}_{B\dots|B\dots}^{A\dots|A\dots} = \frac{1}{n(n-1)\nu^2} \sum_{i \neq i'} \sum_{j,j'} x_{ij} y_{ij} x_{i'j'} y_{i'j'}$$

122 Trihaplotypic:

123
$$P_{12} = \hat{P}_{B...|\cdot B...}^{A...|A\cdot...} = \frac{1}{n(n-1)\nu^2(\nu-1)} \sum_{i \neq i'} \sum_{j,j' \neq j''} x_{ij} y_{ij} x_{i'j'} y_{i'j''}$$

124
$$P_{13} = \hat{P}_{B \cdot \dots \mid B \dots}^{AA \dots \mid \cdot \dots} + \hat{P}_{BB \dots \mid \cdot \dots}^{A \cdot \dots \mid A \dots} = \frac{1}{n(n-1)v^2(v-1)} \sum_{i \neq i'} \sum_{j \neq j'} \sum_{j''} (x_{ij} y_{ij} x_{ij'} y_{i'j''} + x_{ij} y_{ij} y_{ij'} x_{i'j''})$$

125
$$P_{14} = \hat{P}_{B...|\cdot...|B...}^{A...|A...|\cdot...} = \frac{1}{n(n-1)(n-2)v^3} \sum_{\substack{i,i',i''\\\text{are distinct}}} \sum_{j,j',j''} x_{ij} y_{ij} x_{i'j'} y_{i''j''}$$

126
$$P_{15} = \hat{P}_{B \cdot B \dots}^{AA \cdot \dots} = \frac{1}{nv(v-1)(v-2)} \sum_{i} \sum_{\substack{j,j',j'' \\ \text{are distinct}}} x_{ij} y_{ij} x_{ij'} y_{ij''}$$

127 Quadhaplotypic:

128
$$P_{16} = \hat{P}_{\cdot B \dots | \cdot B \dots}^{A \cdot \dots | A \cdot \dots} = \frac{1}{n(n-1)v^2(v-1)^2} \sum_{i \neq i'} \sum_{\substack{j \neq j' \\ j'' \neq j'''}} x_{ij} y_{ij'} x_{i'j''} y_{i'j'''}$$

129
$$P_{17} = \hat{P}_{\cdots \dots |BB \dots}^{AA \dots |\cdots \dots} = \frac{1}{n(n-1)v^2(v-1)^2} \sum_{i \neq i'} \sum_{\substack{j \neq j' \\ j'' \neq j'''}} x_{ij} x_{ij'} y_{i'j''} y_{i'j''} y_{i'j'''}$$

130
$$P_{18} = \hat{P}_{\cdot B \dots | \cdot \dots | B \dots}^{A \dots | A \dots | \dots | B \dots} = \frac{1}{n(n-1)(n-2)v^3(v-1)} \sum_{\substack{i,i',i'' \\ \text{are distinct}}} \sum_{j \neq j'} \sum_{j'',j'''} x_{ij} y_{ij'} x_{i'j''} y_{i''j'''}$$

131
$$P_{19} = \hat{P}_{...,|B...|B...}^{AA...|...|A...} + \hat{P}_{BB...|...|A...}^{A...|A...} = \frac{1}{n(n-1)(n-2)v^3(v-1)}$$

132
$$\sum_{\substack{i,i',i'' \\ \text{are distinct}}} \sum_{j \neq j'} \sum_{j'',j'''} (x_{ij} x_{ij'} y_{i'j''} y_{i''j'''} + y_{ij} y_{ij'} x_{i'j''} x_{i''j'''})$$

$\mathbf{E}(\widehat{\boldsymbol{D}}_w)$ and $\mathbf{E}(\widehat{\boldsymbol{D}}_w^2)$ 137

 $\widehat{D}_w = \widehat{P}_{B...}^{A...} - \widehat{P}_{\cdot B...}^{A...} = P_1 - P_2$ by the definition of D_w , in which 138 139

$$P_1 = \frac{1}{nv} \sum_i \sum_j x_{ij} y_{ij}$$
 and $P_2 = \frac{1}{nv(v-1)} \sum_i \sum_{j \neq j'} x_{ij} y_{ij'}$

140
$$E(\widehat{D}_w) = E(P_1) - E(P_2) = E_1 - E_2$$

$$\begin{array}{ll} 141 \qquad \widehat{D}_{w}^{2} = (P_{1} - P_{2})^{2} \\ 142 \qquad \qquad = \frac{1}{n^{2}v^{2}} \sum_{i,i'} \sum_{j,j'} x_{ij} y_{ij} x_{i'j'} y_{i'j'} - \frac{2}{n^{2}v^{2}(v-1)} \sum_{i,i'} \sum_{j,j' \neq j''} x_{ij} y_{ij} x_{i'j'} y_{i'j''} \\ 143 \qquad \qquad \qquad + \frac{1}{n^{2}v^{2}(v-1)^{2}} \sum_{i,i'} \sum_{j \neq j',j'' \neq j'''} x_{ij} y_{ij'} x_{i'j''} y_{i'j'''} \\ \end{array}$$

144
$$= \frac{1}{n^2 v^2} [C_1 P_1 + C_{10} P_{10} + C_{11} P_{11}] - \frac{2}{n^2 v^2 (v-1)} [C_4 P_4 + C_{12} P_{12} + C_{15} P_{15}]$$

145
$$+ \frac{1}{n^2 v^2 (v-1)^2} [C_2 P_2 + C_9 P_9 + C_{10} P_{10} + 2C_{15} P_{15} + C_{16} P_{16} + C_{21} P_{21}]$$

146
$$E(\hat{D}_w^2) = \frac{1}{n^2 v^2} [C_1 E_1 + C_{10} E_{10} + C_{11} E_{11}] - \frac{2}{n^2 v^2 (v-1)} [C_4 E_4 + C_{12} E_{12} + C_{15} E_{15}]$$

147
$$+ \frac{1}{n^2 v^2 (v-1)^2} [C_2 E_2 + C_9 E_9 + C_{10} E_{10} + 2C_{15} E_{15} + C_{16} E_{16} + C_{21} E_{21}]$$

148 where the coefficient C_i is the reciprocal of coefficient before the summation sign in the expression of P_i , e.g., the final coefficient C_{21} is nv(v-1)(v-2)(v-3). 149

- $\mathbf{E}(\widehat{D}_b)$ and $\mathbf{E}(\widehat{D}_b^2)$ 150
- $\hat{D}_b = \hat{P}^{A_{+,...}}_{B_{+,...}} \hat{p}\hat{q} = P_2 \hat{p}\hat{q}$ by the definition of D_b , in which 151

152
$$P_2 = \frac{1}{nv(v-1)} \sum_i \sum_{j \neq j'} x_{ij} y_{ij'} \quad \hat{p}_A = \frac{1}{nv} \sum_i \sum_j x_{ij} \text{ and } \hat{q}_B = \frac{1}{nv} \sum_i \sum_j y_{ij}$$

153
$$\widehat{D}_{b} = \frac{1}{nv(v-1)} \sum_{i} \sum_{j \neq j'} x_{ij} y_{ij'} - \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{j,j'} x_{ij} y_{i'j'}$$

154
$$= P_2 - \frac{1}{n^2 v^2} [nvP_1 + nv(v-1)P_2 + n(n-1)v^2P_3]$$

155
$$E(\widehat{D}_b) = E_2 - \frac{1}{n^2 v^2} [C_1 E_1 + C_2 E_2 + C_3 E_3]$$

156
$$\widehat{D}_{b}^{2} = \frac{1}{n^{2}v^{2}(v-1)^{2}} \sum_{i,i'} \sum_{\substack{j\neq j'\\j''\neq j'''}} x_{ij} y_{ij'} x_{i'j''} y_{i'j'''}$$

157
$$-\frac{2}{n^3 v^3 (v-1)} \sum_{i,i',i''} \sum_{j \neq j'} \sum_{j'',j'''} x_{ij} y_{ij'} x_{i'j''} y_{i''j'''}$$

158
$$+ \frac{1}{n^4 v^4} \sum_{i,i',i'',i'''} \sum_{j,j',j'',j'''} x_{ij} y_{i'j'} x_{i''j''} y_{i'''j'''}$$

159
$$E(\widehat{D}_b^2) = \frac{1}{n^2 v^2 (v-1)^2} [C_2 E_2 + C_9 E_9 + C_{10} E_{10} + 2C_{15} E_{15} + C_{16} E_{16} + C_{21} E_{21}]$$

160
$$-\frac{2}{n^3 v^3 (v-1)} [C_2 E_2 + C_4 E_4 + C_7 E_7 + C_9 E_9 + C_{10} E_{10} + C_{12} E_{12} + C_{13} E_{13} + 3C_{15} E_{15} + C_{16} E_{16} + C_{18} E_{18} + C_{21} E_{21} + C_{22} E_{22}]$$

162
$$+ \frac{1}{n^4 v^4} [C_1 E_1 + C_2 E_2 + C_3 E_3 + 2C_4 E_4 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8 + C_7 E_7 + C_8 E_8 + C_7 E_7 + C_8 E_8 + C_8 +$$

$$\begin{array}{rcl} 163 & + C_9 E_9 + 2C_{10} E_{10} + 2C_{11} E_{11} + 4C_{12} E_{12} + 4C_{13} E_{13} + 4C_{14} E_{14} + 4C_{15} E_{15} \\ + 2C_{16} E_{16} + C_{17} E_{17} + 4C_{18} E_{18} + C_{19} E_{19} + C_{20} E_{20} + C_{21} E_{21} + 2C_{22} E_{22} \end{array}$$

 $\mathbf{E}(\widehat{\boldsymbol{D}}_{w}\widehat{\boldsymbol{D}}_{b})$ 165

166
$$\widehat{D}_{w}\widehat{D}_{b} = \left(\frac{1}{nv}\sum_{i}\sum_{j}x_{ij}y_{ij} - \frac{1}{nv(v-1)}\sum_{i}\sum_{j\neq j'}x_{ij}y_{ij'}\right) \left(\frac{1}{nv(v-1)}\sum_{i}\sum_{j\neq j'}x_{ij}y_{ij'} - \frac{1}{n^{2}v^{2}}\sum_{i,i'}\sum_{j,j'}x_{ij}y_{i'j'}\right)$$

167
$$= \frac{1}{n^2 v^2 (v-1)} \sum_{i,i'} \sum_j \sum_{j' \neq j''} x_{ij} y_{ij} x_{i'j'} y_{i'j''} - \frac{1}{n^3 v^3} \sum_{i,i',i''} \sum_{j,j',j''} x_{ij} y_{ij} x_{i'j'} y_{i''j''}$$

$$168 \qquad -\frac{1}{n^2 v^2 (v-1)^2} \sum_{i,i'} \sum_{\substack{j \neq j' \\ j'' \neq j'''}} x_{ij} y_{ij'} x_{i'j''} y_{i'j'''} + \frac{1}{n^3 v^3 (v-1)} \sum_{i,i',i''} \sum_{j \neq j'} \sum_{j'',j'''} x_{ij} y_{ij'} x_{i'j''} y_{i''j'''}$$

169
$$E(\widehat{D}_{w}\widehat{D}_{b}) = \frac{1}{n^{2}v^{2}(v-1)}[C_{4}E_{4} + C_{12}E_{12} + C_{15}E_{15}]$$

170
$$-\frac{1}{n^{3}v_{-}^{3}}[C_{1}E_{1} + C_{4}E_{4} + C_{6}E_{6} + C_{10}E_{10} + C_{11}E_{11} + C_{12}E_{12} + C_{13}E_{13} + C_{14}E_{14}]$$

171
$$+ C_{15}E_{15}]$$
172
$$- \frac{1}{n^2 n^2 (n-1)^2} [C_2 E_2 + C_9 E_9 + C_{10}E_{10} + 2C_{15}E_{15} + C_{16}E_{16} + C_{21}E_{21}]$$

173
$$+ \frac{1}{n^3 v^3 (v-1)} [C_2 E_2 + C_4 E_4 + C_7 E_7 + C_9 E_9 + C_{10} E_{10} + C_{12} E_{12} + C_{13} E_{13}]$$

174
$$+ 3C_{15}E_{15} + C_{16}E_{16} + C_{18}E_{18} + C_{21}E_{21} + C_{22}E_{22}$$
]

$\mathrm{E}(\widehat{D})$ and $\mathrm{E}(\widehat{D}^2)$ 175

 $\widehat{D} = \widehat{D}_w + \widehat{D}_b$ by the definition of *D*, then 176

177
$$E(\widehat{D}) = E(\widehat{D}_w) + E(\widehat{D}_b) = E_1 - \frac{1}{n^2 v^2} [C_1 E_1 + C_2 E_2 + C_3 E_3]$$

178
$$\hat{D}^2 = (\hat{D}_w + \hat{D}_b)^2 = \hat{D}_w^2 + 2\hat{D}_w\hat{D}_b + \hat{D}_b^2$$

179
$$\mathbf{E}(\widehat{D}^2) = \mathbf{E}(\widehat{D}_w^2) + 2\mathbf{E}(\widehat{D}_w\widehat{D}_b) + \mathbf{E}(\widehat{D}_b^2)$$

180
$$= \frac{1}{n^2 v^2} [C_1 E_1 + C_{10} E_{10} + C_{11} E_{11}] - \frac{2}{n^2 v^2 (v-1)} [C_4 E_4 + C_{12} E_{12} + C_{15} E_{15}]$$

181
$$+ \frac{1}{n^4 v^4} [C_1 E_1 + C_2 E_2 + C_3 E_3 + 2C_4 E_4 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8]$$

182
$$+ C_9 E_9 + 2C_{10} E_{10} + 2C_{11} E_{11} + 4C_{12} E_{12} + 4C_{13} E_{13} + 4C_{14} E_{14} + 4C_{15} E_{15}$$

183
183
184

$$+ 2C_{16}E_{16} + C_{17}E_{17} + 4C_{18}E_{18} + C_{19}E_{19} + C_{20}E_{20} + C_{21}E_{21} + 2C_{22}E_{22}] + \frac{2}{n^2\nu^2(\nu-1)}[C_4E_4 + C_{12}E_{12} + C_{15}E_{15}]$$

184
$$+ \frac{2}{n^2 v^2 (v-1)} [C_4 E_4]$$

185
$$-\frac{2}{n^3 v^3} [C_1 E_1 + C_4 E_4 + C_6 E_6 + C_{10} E_{10} + C_{11} E_{11} + C_{12} E_{12} + C_{13} E_{13} + C_{14} E_{14} + C_{15} E_{15}]$$

- $E(\hat{\Delta})$ and $E(\hat{\Delta}^2)$ 187
- $\hat{\Delta} = \widehat{D}_w + v \widehat{D}_b$ by the definition of Δ , then 188

189
$$E(\hat{\Delta}) = E(\hat{D}_w) + \nu E(\hat{D}_b) = E_1 - \frac{1}{n^2 \nu} [C_1 E_1 + C_2 E_2 + C_3 E_3]$$

190
$$\hat{\Delta}^2 = \left(\hat{D}_w + v\hat{D}_b\right)^2 = \hat{D}_w^2 + 2v\hat{D}_w\hat{D}_b + v^2\hat{D}_b^2$$

191
$$E(\hat{\Delta}^2) = E(\hat{D}_w^2) + 2vE(\hat{D}_w\hat{D}_b) + v^2E(\hat{D}_b^2)$$

$$192 = \frac{1}{n^2 v^2} [C_1 E_1 + C_{10} E_{10} + C_{11} E_{11}] - \frac{2}{n^2 v^2 (v-1)} [C_4 E_4 + C_{12} E_{12} + C_{15} E_{15}] + \frac{1}{n^2 v^2} [C_2 E_2 + C_9 E_9 + C_{10} E_{10} + 2C_{15} E_{15} + C_{16} E_{16} + C_{21} E_{21}]$$

$$+\frac{1}{n^2 v^2} [C_2 E_2 + C_9 E_9 + C_{10} E_{10} + 2C_{15} E_{15} + C_{16} E_{16} + C_{21} E_{21}]$$

194
$$-\frac{2}{n^3 v^2} [C_2 E_2 + C_4 E_4 + C_7 E_7 + C_9 E_9 + C_{10} E_{10} + C_{12} E_{12} + C_{13} E_{13} + 3C_{15} E_{15} + C_{15} + C_{15} E_{15} + C_{15} + C_{$$

195
$$+ C_{16}E_{16} + C_{18}E_{18} + C_{21}E_{21} + C_{22}E_{22}]$$

196
$$+ \frac{1}{n^4 v^2} [C_1 E_1 + C_2 E_2 + C_3 E_3 + 2C_4 E_4 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8]$$

197
$$+ C_9 E_9 + 2C_{10} E_{10} + 2C_{11} E_{11} + 4C_{12} E_{12} + 4C_{13} E_{13} + 4C_{14} E_{14} + 4C_{15} E_{15}$$

198
$$+ 2C_{16}E_{16} + C_{17}E_{17} + 4C_{18}E_{18} + C_{19}E_{19} + C_{20}E_{20} + C_{21}E_{21} + 2C_{22}E_{22}]$$

199
$$+ \frac{2}{n^2 v (v-1)} [C_4 E_4 + C_{12} E_{12} + C_{15} E_{15}]$$

200
$$-\frac{2}{n^{3}v^{2}}[C_{1}E_{1} + C_{4}E_{4} + C_{6}E_{6} + C_{10}E_{10} + C_{11}E_{11} + C_{12}E_{12} + C_{13}E_{13} + C_{14}E_{14} + C_{15}E_{15}]$$

202
$$\mathbf{E}(\widehat{oldsymbol{Q}})$$

203
$$\hat{Q} = \hat{p}_A \hat{p}_X \hat{q}_B \hat{q}_X = (\hat{p}_A - \hat{p}_A^2)(\hat{q}_B - \hat{q}_B^2) \text{ by } Q = p_A p_X q_B q_X, \text{ in which}$$
204
$$\hat{p}_A = \frac{1}{nv} \sum_i \sum_j x_{ij} \text{ and } \hat{q}_B = \frac{1}{nv} \sum_i \sum_j y_{ij}.$$

$$\begin{aligned} 205 \qquad \hat{Q} &= \left(\frac{1}{nv} \sum_{i} \sum_{j} x_{ij} - \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{j,j'} x_{ij} x_{i'j'}\right) \left(\frac{1}{nv} \sum_{i} \sum_{j} y_{ij} - \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{j,j'} y_{ij} y_{i'j'}\right) \\ 206 \qquad &= \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{j,j'} x_{ij} y_{i'j'} - \frac{1}{n^3 v^3} \sum_{i,i',i''} \sum_{j,j',j''} (x_{ij} y_{i'j'} y_{i''j''} + x_{ij} x_{i'j'} y_{i''j''}) \\ 207 \qquad &+ \frac{1}{n^4 v^4} \sum_{i,i',i''',i'''} \sum_{j,j',j'',j'''} x_{ij} x_{i'j'} y_{i''j''} y_{i''j'''} y_{i''j'''} \\ \end{aligned}$$

208
$$E(\hat{Q}) = \frac{1}{n^2 v^2} [C_1 E_1 + C_2 E_2 + C_3 E_3]$$

209
$$-\frac{1}{n^3 v^3} [2C_1 E_1 + 2C_2 E_2 + 2C_3 E_3 + 2C_4 E_4 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8]$$

210
$$+ C_9 E_9$$
]

211
$$+ \frac{1}{1444} [C_1E_1 + C_2E_2 + C_3E_3 + 2C_4E_4 + C_5E_5 + 2C_6E_6 + 2C_7E_7 + C_8E_8]$$

212
$$+ C_{9}E_{9} + 2C_{10}E_{10} + 2C_{11}E_{11} + 4C_{12}E_{12} + 4C_{13}E_{13} + 4C_{14}E_{14} + 4C_{15}E_{15}$$

213
$$+ 2C_{16}E_{16} + C_{17}E_{17} + 4C_{18}E_{18} + C_{19}E_{19} + C_{20}E_{20} + C_{21}E_{21} + 2C_{22}E_{22}$$

 $\mathbf{E}(\widehat{\mathbf{R}})$

215
$$\hat{P}_{AA} = \frac{1}{nv(v-1)} \sum_{i} \sum_{j \neq j'} x_{ij} x_{ij'} \text{ and } \hat{P}_{BB} = \frac{1}{nv(v-1)} \sum_{i} \sum_{j \neq j'} y_{ij} y_{ij'} \text{ by the definition of } P_{AA}.$$

216
$$\hat{R} = [\hat{p}_A - v\hat{p}_A^2 + (v-1)\hat{P}_{AA}][\hat{q}_B - v\hat{q}_B^2 + (v-1)\hat{P}_{BB}]]$$
 by Equation (2).

217
$$\hat{R} = \left(\frac{1}{nv} \sum_{i} \sum_{j} x_{ij} - \frac{1}{n^2 v} \sum_{i,i'} \sum_{j,j'} x_{ij} x_{i'j'} + \frac{1}{nv} \sum_{i} \sum_{j \neq j'} x_{ij} x_{ij'}\right) \left(\frac{1}{nv} \sum_{i} \sum_{j} y_{ij} - \frac{1}{nv} \sum_{i} \sum_{j \neq j'} x_{ij} x_{ij} x_{ij'}\right)$$

218
$$-\frac{1}{n^2 v} \sum_{i,i'} \sum_{j,j'} y_{ij} y_{i'j'} + \frac{1}{n v} \sum_i \sum_{j \neq j'} y_{ij} y_{ij'} \right)$$

219
$$= \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{j,j'} x_{ij} y_{i'j'} - \frac{1}{n^3 v^2} \sum_{i,i',i''} \sum_{j,j',j''} (x_{ij} y_{i'j'} y_{i''j''} + x_{ij} x_{i'j'} y_{i''j''})$$

220
$$+ \frac{1}{n^4 v^2} \sum_{i,i',i'',i'''} \sum_{j,j',j'',j'''} x_{ij} x_{i'j'} y_{i''j''} y_{i''j''}$$

221
$$+ \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{j} \sum_{j' \neq j''} (x_{ij} y_{i'j'} y_{i'j''} + y_{ij} x_{i'j'} x_{i'j''})$$

222
$$-\frac{1}{n^{3}v^{2}}\sum_{i,i',i''}\sum_{j,j'}\sum_{j''\neq j'''}(x_{ij}x_{i'j'}y_{i''j''}y_{i''j''}+y_{ij}y_{i'j'}x_{i''j''}x_{i''j''})$$

223
$$+\frac{1}{2\pi^{2}}\sum_{i,i',i''}\sum_{x_{ij}x_{ij'}y_{i'j'}y_{i''j''}y_{i''j''}}(x_{ij}x_{i'j'}y_{i''j''})$$

223
$$+ \frac{1}{n^2 v^2} \sum_{i,i'} \sum_{\substack{j \neq j' \\ j'' \neq j'''}} x_{ij} x_{ij'} y_{i'j''} y_{i'j'''}$$

224
$$E(\hat{R}) = \frac{1}{n^2 v^2} [C_1 E_1 + C_2 E_2 + C_3 E_3]$$
225
$$-\frac{1}{n^3 v^2} [2C_1 E_1 + 2C_2 E_2 + 2C_3 E_3 + 2C_4 E_4 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8$$
226
$$+ C_9 E_9]$$
227
$$+\frac{1}{n^4 v^2} [C_1 E_1 + C_2 E_2 + C_3 E_3 + 2C_4 E_4 + C_5 E_5 + 2C_6 E_6 + 2C_7 E_7 + C_8 E_8$$

228
$$n^{2}v^{2}$$

+ $C_{0}E_{0} + 2C_{10}E_{10} + 2C_{11}E_{11} + 4C_{12}E_{12} + 4C_{13}E_{13} + 4C_{14}E_{14} + 4C_{15}E_{15}$

229
$$+ 2C_{16}E_{16} + C_{17}E_{17} + 4C_{18}E_{18} + C_{19}E_{19} + C_{20}E_{20} + C_{21}E_{21} + 2C_{22}E_{22}]$$

230
$$+ \frac{1}{n^2 v^2} [2C_4 E_4 + C_5 E_5 + C_9 E_9] - \frac{1}{n^3 v^2} [2C_4 E_4 + C_5 E_5 + C_9 E_9 + 4C_{10} E_{10}]$$

231
$$n^{2}v^{2} + 4C_{13}E_{13} + 8C_{15}E_{15} + 2C_{17}E_{17} + C_{19}E_{19} + 2C_{21}E_{21} + 2C_{22}E_{22}]$$

232
$$+ \frac{1}{n^2 v^2} [2C_{10}E_{10} + 4C_{15}E_{15} + C_{17}E_{17} + C_{21}E_{21}]$$

Appendix D. HS mating system 233

234 The double non-identity coefficients are closely related to the haplotypes that are used to detect the specific alleles. In this appendix, we consider such relationships in the 235 236 haplotype sampling (HS) mating system. The effective population size N_e in this system is assumed to be the same as the population size N. We will adopt N_e instead of N in our 237 238 discussion in order to accommodate other mating systems, and we will also write the 239 double non-identity coefficient as the dni-coefficient for brevity.

240 For the case of dni-coefficients Θ_1 and Θ_2 , it can be seen from Table 1 that only two 241 haplotypes (say H_1 and H_2) are sampled, and both alleles in each haplotype need to be 242 detected. These two haplotypes can be copied from either the same haplotype (written as 243 $H_1 \equiv H_2$), or different haplotypes in the same individual (written as $H_1 \approx H_2$), or different haplotypes in different individuals (written as $H_1 \sim H_2$). For this case, we will divide into 244 245 three situations (named HS01, HS02 and HS03) to carry out our discussion.

246 HS01 $H_1 \equiv H_2$, weight 1, dni-coefficient 0;

247 HS02 $H_1 \simeq H_2$, weight v - 1,

(a) none recombined, probability $(1 - c)^2$, dni-coefficient Θ_1 ; 248

249

(b) one recombined, probability 2c(1-c), dni-coefficient $\frac{v-2}{v-1}\Gamma_4$; (c) both recombined, prob. c^2 , dni-coefficient $\frac{1}{(v-1)^2}\Theta_1 + \frac{2(v-2)}{(v-1)^2}\Gamma_4 + \frac{(v-2)(v-3)}{(v-1)^2}\Delta_6$; 250

251 HS03 $H_1 \sim H_2$, weight $(N_e - 1)v_1$

(a) none recombined, probability $(1 - c)^2$, dni-coefficient Θ_2 ;

- (b) one recombined, probability 2c(1 c), dni-coefficient Γ_1 ;
- (c) both recombined, probability c^2 , dni-coefficient Δ_1 . 254

255 Now, the expression of dni-coefficients Θ'_1 or Θ'_2 in the next generation can be written out. In fact, let $\mathbf{W}_{\theta} = [w_{1\theta}, w_{2\theta}, w_{3\theta}]$ be the vector consisting of those weights, i.e. $\mathbf{W}_{\theta} =$ 256 $[1, v - 1, (N_e - 1)v]$, and let $\Theta = [\theta_1, \theta_2, \theta_3]$, where each θ_i is the weighted sum of dni-257 258 coefficients in HS0i, with the corresponding recombination probabilities as their weights 259 (if the recombination probability does not occur, θ_i is set as the dni-coefficient in HS θ_i), *i* = 1, 2, 3, that is 260

261 $\theta_1 = 0$,

262
$$\theta_2 = (1-c)^2 \Theta_1 + 2c(1-c) \frac{v-2}{v-1} \Gamma_4 + c^2 \left[\frac{1}{(v-1)^2} \Theta_1 + \frac{2(v-2)}{(v-1)^2} \Gamma_4 + \frac{(v-2)(v-3)}{(v-1)^2} \Delta_6 \right],$$

263

252 253

$$\theta_3 = (1-c)^2 \Theta_2 + 2c(1-c)\Gamma_1 + c^2 \Delta_1.$$
 (v-1)²

Then $\Theta'_1 = \Theta'_2 = \mathbf{W}_{\theta} \mathbf{\Theta}^T / \mathbf{W}_{\theta} \mathbf{1} = \frac{w_{1\theta}\theta_1 + w_{2\theta}\theta_2 + w_{3\theta}\theta_3}{w_{1\theta} + w_{2\theta} + w_{3\theta}}$, where **1** is the column vector $[1, 1, 1]^T$. 264 265 This is a linear combination of dni-coefficients in the current generation, and the products 266 of combination coefficients times $N_e v(v-1)$ are listed in the second column of Table S3.

267 For the case of Γ_1 to Γ_4 , it can be seen from Table 1 that three haplotypes are sampled, 268 in which one is the haplotype that both alleles need to be detected, denoted by H_1 , another 269 is that only the allele at the first locus needs to be detected, denoted by H_2 , and the third is 270 that only the allele at the second locus needs to be detected, denoted by H_3 . Because H_2 271 and H_3 are only detected the allele at a single locus, it is unnecessary to model their 272 recombination. For this case, the combinations among three relations \equiv , \asymp and \sim can be 273 divided into nine situations (named HSF1 to HSF9).

274 HS
$$\Gamma$$
1 $H_1 \equiv H_2 \equiv H_3$, weight 1, dni-coefficient 0;

HSF2 $H_1 \equiv H_2 \approx H_3$ or $H_1 \equiv H_3 \approx H_2$, weight 2(v-1), 275 276 (a) not recombined, probability 1 - c, dni-coefficient 0; (b) recombined, probability *c*, dni-coefficient $\frac{1}{2(\nu-1)}\Theta_1 + \frac{\nu-2}{2(\nu-1)}\Gamma_4$; 277 HSΓ3 $H_1 \simeq H_2 \equiv H_3$, weight v - 1, 278 (a) not recombined, probability 1 - c, dni-coefficient Θ_1 ; 279 280 (b) recombined, probability *c*, dni-coefficient $\frac{v-2}{v-1}\Gamma_4$; HSF4 $H_1 \approx H_2 \approx H_3$, weight (v - 1)(v - 2), 281 (a) not recombined, probability 1 - c, dni-coefficient Γ_4 ; 282 (b) recombined, probability *c*, dni-coefficient $\frac{1}{\nu-1}\Gamma_4 + \frac{\nu-3}{\nu-1}\Delta_6$; 283 HSF5 $H_1 \equiv H_2 \sim H_3$ or $H_1 \equiv H_3 \sim H_2$, weight $2(N_e - 1)v$, 284 285 (a) not recombined, probability 1 - c, dni-coefficient 0; 286 (b) recombined, probability *c*, dni-coefficient $\Gamma_2/2$; 287 HSr6 $H_2 \equiv H_3 \sim H_1$, weight $(N_e - 1)v$, (a) not recombined, probability 1 - c, dni-coefficient Θ_2 ; 288 (b) recombined, probability c, dni-coefficient Γ_1 ; 289 HSF7 $H_1 \simeq H_2 \sim H_3$ or $H_1 \simeq H_3 \sim H_2$, weight $2(N_e - 1)v(v - 1)$, 290 (a) not recombined, probability 1 - c, dni-coefficient Γ_2 ; 291 (b) recombined, probability *c*, dni-coefficient $\frac{1}{2(\nu-1)}\Gamma_2 + \frac{\nu-2}{\nu-1}\Delta_7$; 292 HSF8 $H_1 \sim H_2 \simeq H_3$, weight $(N_e - 1)v(v - 1)$, 293 (a) not recombined, probability 1 - c, dni-coefficient Γ_1 ; 294 (b) recombined, probability *c*, dni- coefficient Δ_1 ; 295 HSΓ9 $H_1 \sim H_2 \sim H_3$, weight $(N_e - 1)(NN_e - 2)v^2$, 296 (a) not recombined, probability 1 - c, dni-coefficient Γ_3 ; 297 298 (b) recombined, probability *c*, dni-coefficient Δ_3 .

299 Now, let $\mathbf{W}_{\gamma} = [w_{1\gamma}, w_{2\gamma}, \dots, w_{9\gamma}]$ and $\mathbf{\Gamma} = [\gamma_1, \gamma_2, \dots, \gamma_9]$, where the definitions of \mathbf{W}_{γ} 300 and $\mathbf{\Gamma}$ are similar to those of \mathbf{W}_{θ} and $\mathbf{\Theta}$. Then

301
$$\Gamma_1' = \Gamma_2' = \Gamma_3' = \Gamma_4' = \frac{\mathbf{W}_{\gamma} \mathbf{\Gamma}^T}{\mathbf{W}_{\gamma} \mathbf{1}} = \frac{w_{1\gamma} \gamma_1 + w_{2\gamma} \gamma_2 + \dots + w_{9\gamma} \gamma_9}{w_{1\gamma} + w_{2\gamma} + \dots + w_{9\gamma}}.$$

302 This is also a linear combination, and the products of combination coefficients times $N_e^2 v^2$ 303 are listed in the third column of Table S3.

For the case of Δ_1 to Δ_7 , we see from Table 1 that four haplotypes are sampled, in which two are the haplotypes that the allele at the first locus is detected, denoted by H_1 and H_2 , and the other two are that the allele at the second locus is detected, denoted by H_3 and H_4 . Because there is only the allele at a single locus to be detected, the recombination of these four haplotypes need not be modelled. For this case, the combinations of three relations can be divided into 22 situations (named HS Δ 1 to HS Δ 22).

- HS $\Delta 1$ $H_1 \equiv H_2 \equiv H_3 \equiv H_4$, weight 1, dni-coefficient 0; 310 HS $\Delta 2$ $H_1 \equiv H_2 \approx H_3 \equiv H_4$, weight v - 1, dni-coefficient 0; 311 HS∆3 $H_1 \equiv H_2 \sim H_3 \equiv H_4$, weight $(N_e - 1)v$, dni-coefficient 0; 312 $\mathrm{HS}\Delta4\ H_1 \equiv H_2 \equiv H_3 \asymp H_4 \text{ or } H_1 \equiv H_2 \equiv H_4 \asymp H_3 \text{ or } H_1 \asymp H_2 \equiv H_3 \equiv H_4 \text{ or } \quad H_2 \asymp H_1 \equiv H_2 \asymp H_2 \equiv H_3 \equiv H_4 \text{ or } \quad H_2 \asymp H_2 \equiv H_3 \equiv H_4 \text{ or } \quad H_2 \asymp H_2 \equiv H_3 \equiv H_4 \text{ or } \quad H_2 \asymp H_3 \equiv H_4 \text{ or } \quad H_2 \asymp H_3 \equiv H_4 \text{ or } \quad H_4 \equiv H_3 \equiv H_4 \text{ or } \quad H_4 \equiv H_5 \equiv H_5 \text{ or } \quad H_5 \equiv H_5 \equiv H_5 \text{ or } \quad H_5 \equiv H_5 \equiv H_5 \text{ or } \quad H_5 \equiv H_5 \equiv H_5 \text{ or } \quad H_5 \equiv H_5 \equiv H_5 \equiv H_5 \text{ or } \quad H_5 \equiv H_5 \equiv H_5 \equiv H_5 \equiv H_5 \text{ or } \quad H_5 \equiv H$ 313 $H_3 \equiv H_4$, weight 4(v - 1), dni-coefficient 0; 314 HS $\Delta 5$ $H_1 \equiv H_2 \sim H_3 \approx H_4$ or $H_1 \approx H_2 \sim H_3 \equiv H_4$, weight $2(N_e - 1)v(v - 1)$, 315 dni-coefficient 0; 316 HS $\Delta 6$ $H_1 \equiv H_3 \equiv H_4 \sim H_2$ or $H_2 \equiv H_3 \equiv H_4 \sim H_1$ or $H_1 \equiv H_2 \equiv H_3 \sim H_4$ or $H_2 \equiv H_3 \simeq H_4 \sim H_1$ or $H_2 \equiv H_3 \simeq H_2 \sim H_3 \simeq H_4$ or $H_2 \simeq H_3 \simeq H_3 \sim H_4$ or $H_2 \equiv H_3 \simeq H_4 \sim H_1$ or $H_2 \equiv H_3 \simeq H_2 \simeq H_3 \simeq H_4$ or $H_2 \simeq H_3 \simeq H_4 \sim H_1$ or $H_2 \simeq H_2 \simeq H_3 \simeq H_2$ 317
- 318 $H_4 \sim H_3$, weight $4(N_e 1)v$, dni-coefficient 0;

319	$HS\Delta7 \ H_1 \sim H_2 \asymp H_3 \equiv H_4 \text{ or } H_2 \sim H_1 \asymp H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_3 \sim H_4 \text{ or } H_1 \equiv H_2 \asymp$
320	$H_4 \sim H_3$, weight $4(N_e - 1)v(v - 1)$, dni-coefficient 0;
321	HS∆8 $H_1 \sim H_2 \sim H_3 \equiv H_4$ or $H_1 \equiv H_2 \sim H_3 \sim H_4$, weight $2(N_e - 1)(N_e - 2)v^2$, dni-
322	coefficient 0;
323	HS $\Delta 9 \ H_1 \approx H_2 \approx H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \approx H_3 \approx H_4, \text{ weight } 2(v-1)(v-2),$
324	dni-coefficient 0;
325	HS $\Delta 10$ $H_1 \equiv H_3 \approx H_2 \equiv H_4$ or $H_1 \equiv H_4 \approx H_2 \equiv H_3$, weight $2(v-1)$,
326	dni-coefficient Θ_1 ;
327	HS $\Delta 11 H_1 \equiv H_3 \sim H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight $2(N_e - 1)v$,
328	dni-coefficient Θ_2 ;
329	$\text{HS}\Delta 12 \ H_1 \equiv H_3 \sim H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \approx H_2 \approx H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \approx H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \approx H_2 \text{ or } H_2 \approx H_3 \approx H_2 \approx H_3 \text{ or } H_2 \approx H_3 \approx $
330	$H_1 \approx H_3$, weight $4(N_e - 1)v(v - 1)$, dni-coefficient Γ_1 ;
331	$\text{HS}\Delta 13 \ H_1 \equiv H_3 \asymp H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \asymp H_2 \approx H_$
332	$H_1 \sim H_3 \text{ or } H_1 \equiv H_3 \asymp H_4 \sim H_2 \text{ or } H_1 \equiv H_4 \asymp H_3 \sim H_2 \text{ or } H_2 \equiv H_3 \asymp H_4 \sim H_1$
333	or $H_2 \equiv H_4 \simeq H_3 \sim H_1$, weight $8(N_e - 1)v(v - 1)$,
334	dni-coefficient Γ_2 ;
335	$HS\Delta 14 \ H_1 \equiv H_3 \sim H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_2 \sim H_3 \sim H_1 \sim H_2 = H_1 \sim H_2 \sim H$
336	$H_1 \sim H_3$, weight $4(N_e - 1)(N_e - 2)v^2$, dni-coefficient Γ_3 ;
337	$\text{HS}\Delta 15 \ H_1 \equiv H_3 \asymp H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \asymp H_4 \text{ or } H_2 \equiv H_4 \asymp H_4 \asymp H_4 \text{ or } H_2 \equiv H_4 \text{ or } H_4 \equiv H_4 = H_4 \text{ or } H_4 = H_4 \text{ or } H_4 = H_4 \text{ or } H_4 = H_4 = H_4 \text{ or } H_4 = H_4 = H_4 \text{ or } H_4 = H_4 $
338	$H_1 \approx H_3$, weight $4(v-1)(v-2)$, dni-coefficient Γ_4 ;
339	HS $\Delta 16$ $H_1 \approx H_3 \sim H_2 \approx H_4$ or $H_1 \approx H_4 \sim H_2 \approx H_3$, weight $2(N_e - 1)v(v - 1)^2$,
340	dni-coefficient Δ_1 ;
341	HS $\Delta 17 \ H_1 \approx H_2 \sim H_3 \approx H_4$, weight $(N_e - 1)v(v - 1)^2$, dni-coefficient Δ_2 ;
342	$\text{HS}\Delta 18 \ H_1 \cong H_3 \sim H_2 \sim H_4 \text{ or } H_1 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4 \text{ or } H_2 \cong H_4 \sim H_2 \simeq H_3 \sim H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_2 \simeq H_3 \sim H_1 \sim H_3 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_2 \sim H_3 = H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_2 \simeq H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_2 \simeq H_4 \sim H_2 \simeq H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_2 \simeq H_4 \sim H_2 \simeq H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_2 \simeq H_4 \simeq H_2 \simeq H_4 \sim H_2 \simeq H_4 \simeq H_4 \simeq H_2 \simeq H_4 $
343	$H_1 \sim H_3$, weight $4(N_e - 1)(N_e - 2)v^2(v - 1)$, dni-coefficient Δ_3 ;
344	HS $\Delta 19$ $H_1 \approx H_2 \sim H_3 \sim H_4$ or $H_1 \sim H_2 \sim H_3 \approx H_{4\prime}$
345	weight $2(N_e - 1)(N_e - 2)v^2(v - 1)$, dni-coefficient Δ_4 ;
346	HS $\Delta 20$ $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $(N_e - 1)(N_e - 2)(N_e - 3)v^3$, dni-coefficient Δ_5 ;
347	HS $\Delta 21$ $H_1 \approx H_2 \approx H_3 \approx H_4$, weight $(v-1)(v-2)(v-3)$, dni-coefficient Δ_6 ;
348	$HS\Delta 22 \ H_1 \approx H_2 \approx H_3 \sim H_4 \text{ or } H_1 \approx H_2 \approx H_4 \sim H_3 \text{ or } H_1 \approx H_3 \approx H_4 \sim H_2 \text{ or } H_2 \approx H_3 \approx$
349	$H_4 \sim H_1$ weight $4(N_e - 1)v(v - 1)(v - 2)$, dni-coefficient Δ_7 .
350	Now, let \mathbf{W}_{δ} and $\boldsymbol{\Delta}$ be the row vectors consisting of 22 weights and 22 dni-coefficients
351	in HS Δ 1 to HS Δ 22, respectively. Then

352
$$\Delta'_1 = \Delta'_2 = \dots = \Delta'_7 = \mathbf{W}_{\delta} \mathbf{\Delta}^T / \mathbf{W}_{\delta} \mathbf{1}.$$

This is still a linear combination, and the products of combination coefficients times $N_e^3 v^3$ are listed in the final column of Table S3.

355 The expressions in Table S3 are the essential factors to form Ω^T of the transition matrix 356 Ω for the HS mating system. Moreover, the matrices **T** and **S** in the principal part of Ω are 357 listed in Appendix I.

358 Appendix E. Corrections for finite sample size

359 Matrix **A** can be decomposed as the following combination:

360
$$\mathbf{A} = \mathbf{A}_1 + n^{-1}\mathbf{A}_2 + n^{-2}\mathbf{A}_3 + n^{-3}\mathbf{A}_4 + \mathcal{O}(n^{-4}),$$

361 where *n* is the sample size, and the principal parts can be calculated by:

$$\mathbf{A}_1 = \lim_{n \to \infty} \mathbf{A},$$

$$\mathbf{A}_2 = \lim_{n \to \infty} n(\mathbf{A} - \mathbf{A}_1),$$

364
$$\mathbf{A}_3 = \lim_{n \to \infty} n^2 (\mathbf{A} - \mathbf{A}_1 - \mathbf{A}_2/n),$$

365
$$\mathbf{A}_4 = \lim_{n \to \infty} n^3 (\mathbf{A} - \mathbf{A}_1 - \mathbf{A}_2/n - \mathbf{A}_3/n^2).$$

366 The elements in A_1 and A_2 are listed in Tables S1 and S2, respectively.

367 It is clear from $\mathbf{M}_{\boldsymbol{\omega}} = \boldsymbol{\omega}^T \mathbf{A}$ that the next formula is valid:

368
$$\mathbf{M}_{\boldsymbol{\omega}} = \boldsymbol{\omega}^{T} \mathbf{A}_{1} + n^{-1} \boldsymbol{\omega}^{T} \mathbf{A}_{2} + n^{-2} \boldsymbol{\omega}^{T} \mathbf{A}_{3} + n^{-3} \boldsymbol{\omega}^{T} \mathbf{A}_{4} + \boldsymbol{\omega}^{T} \boldsymbol{\mathcal{O}}(n^{-4}).$$
(S1)

When the sample size *n* is large enough, the principal part of $\mathbf{M}_{\boldsymbol{\omega}}$ is $\boldsymbol{\omega}^T \mathbf{A}_1$, and the remainder can be neglected, then $\mathbf{M}_{\boldsymbol{\omega}} \approx \boldsymbol{\omega}^T \mathbf{A}_1 = \mathbf{M}_{\boldsymbol{\omega}\mathbf{1}}$, indicating that the matrix \mathbf{A}_1 can be used to approximate the moments of LD measurements. We will use HS mating system as an example to illustrate, using the fourth and the sixth column elements in \mathbf{A}_1 (Table S1) and the approximated $\boldsymbol{\omega}$ in Section 'Approximations',

374
$$\boldsymbol{\omega} \approx \left[1 + \frac{2c + c_1^2 v - 1}{c_2 c v_1 v N_e}, 1 + \frac{2c + c_1^2 v - 1}{c_2 c v_1 v N_e}, 1, 1, \cdots, 1\right]^T,$$

375 we have

376
$$d_{\rm HS}^2 = \frac{{\rm E}(\widehat{D}^2)}{{\rm E}(\widehat{Q})} \approx \frac{\boldsymbol{\omega}^T {\bf A}_1^{(4)}}{\boldsymbol{\omega}^T {\bf A}_1^{(6)}} = \frac{c^2 v + (1-2c)v_1}{(2-c)cN_e v_1 v} = d_{\rm HS1}^2$$

377 where $\mathbf{A}_{i}^{(i)}$ denotes the *i*th column of \mathbf{A}_{i} . Similarly, δ^{2} can be approximately expressed as

378
$$\delta_{\rm HS}^2 = \frac{{\rm E}(\widehat{\Delta}^2)}{{\rm E}(\widehat{R})} \approx \frac{\omega^T {\bf A}_1^{(5)}}{\omega^T {\bf A}_1^{(7)}} = \frac{c^2 v + (1-2c)v_1}{(2-c)cN_e v_1 v} = \delta_{\rm HS1}^2.$$

In real studies, the finite sample size *n* will influence the estimation of \hat{r}^2 and \hat{r}_{Δ}^2 . For example, if the two loci are unlinked, $r^2 = r_{\Delta}^2 = 0$ while \hat{r}^2 and \hat{r}_{Δ}^2 are greater than zero. To avoid such an error, higher-order terms in Equation (S1) should be considered. To accommodate this effect, we use the following approximates to include more higher-order terms:

384
$$\mathbf{M}_{\boldsymbol{\omega}} \approx \boldsymbol{\omega}^T \mathbf{A}_1 + n^{-1} \boldsymbol{\omega}^T \mathbf{A}_2 = \mathbf{M}_{\boldsymbol{\omega} 2},$$

385
$$\mathbf{M}_{\boldsymbol{\omega}} \approx \boldsymbol{\omega}^T \mathbf{A}_1 + n^{-1} \boldsymbol{\omega}^T \mathbf{A}_2 + n^{-2} \boldsymbol{\omega}^T \mathbf{A}_3 = \mathbf{M}_{\boldsymbol{\omega}3},$$

386
$$\mathbf{M}_{\boldsymbol{\omega}} \approx \boldsymbol{\omega}^T \mathbf{A}_1 + n^{-1} \boldsymbol{\omega}^T \mathbf{A}_2 + n^{-2} \boldsymbol{\omega}^T \mathbf{A}_3 + n^{-3} \boldsymbol{\omega}^T \mathbf{A}_4 = \mathbf{M}_{\boldsymbol{\omega} 4}.$$

The resulting approximations of
$$d_{\text{HS}}^2$$
 and δ_{HS}^2 are respectively d_{HS2}^2 , d_{HS3}^2 , d_{HS4}^2 , δ_{HS2}^2 ,
 δ_{HS3}^2 and δ_{HS4}^2 . For example,

389
$$d_{\text{HS2}}^2 = \frac{c^2 v (N_e v_1 - nv + 3) - v_1 (nv - 3) + 2c v_1 (N_e v - nv + 3)}{c_2 c N_e v_1 v (nv - 2)}$$

390 The difference
$$d_2^2 - d_1^2$$
 can be expanded as

391
$$d_{\text{HS2}}^2 - d_{\text{HS1}}^2 = \frac{1}{nv - 2} + \frac{1}{c_2 v_1 N_e (nv - 2)} \left(\frac{1}{c} + c_2 + \frac{2}{v} - \frac{1}{cv}\right)$$

The rightmost term is tiny and can be ignored. The net effect for d_{HS}^2 caused by including A₂ is approximately $\frac{1}{nv-2}$. This can be written as

394
$$\lim_{N_e \to \infty} (d_{\text{HS2}}^2 - d_{\text{HS1}}^2) = \frac{1}{nv - 2}.$$

395 We use the same way and derived the following differences

396
$$\lim_{N_e \to \infty} (d_{\text{HS3}}^2 - d_{\text{HS1}}^2) = \frac{1}{nv - 1}$$
397
$$\lim_{N_e \to \infty} (d_{\text{HS3}}^2 - d_{\text{HS1}}^2) = \frac{1}{nv - 1}$$

397
$$\lim_{N_e \to \infty} (u_{\text{HS4}} - u_{\text{HS1}}) - \frac{1}{nv - 1}$$

398 It can be found the sequence of differences is converged to $\frac{1}{nv-1}$. Similarly, for δ^2 , the

399 sequence is

400
$$\lim_{N_e \to \infty} (\delta_{\text{HS2}}^2 - \delta_{\text{HS1}}^2) = \frac{1}{n - 2}$$

401
402

$$\lim_{N_e \to \infty} (\delta_{HS3}^2 - \delta_{HS1}^2) = \frac{1}{n-1}$$
402

$$\lim_{N_e \to \infty} (\delta_{HS4}^2 - \delta_{HS1}^2) = \frac{1}{n-1}$$

2
$$\lim_{N_e \to \infty} (\delta_{\text{HS4}}^2 - \delta_{\text{HS1}}^2) = \frac{1}{n-1}.$$

403 Thus, the approximate expressions of d^2 and δ^2 considered the effect of sample size 404 *n* on sampling are

405
$$d_{\rm HS}^2 \approx \frac{c^2 v + (1 - 2c)v_1}{(2 - c)cN_e v_1 v} + \frac{1}{vn - 1},$$

406
$$\delta_{\text{HS}}^2 \approx \frac{c^2 v + (1 - 2c)v_1}{(2 - c)cN_e v_1 v} + \frac{1}{n}$$

407 For the remaining mating systems, the same method can be used, and the compensate408 term is the same.

1

Appendix F. MS and ME mating systems

The method to derive the expression of each element in Ω for the monoecious mating systems is the same as that for the HS mating system. It is noteworthy that unlike the HS mating system, two haplotypes sampled within the same individual need to be detected whether they are from the same gamete: (i) if they are from the same gamete, the probability is $\frac{v/2-1}{v-1}$; (ii) otherwise, the probability is $\frac{v/2}{v-1}$. We will denote (*H*, *H'*, …) for which those haplotypes within brackets are from the same gamete.

For (i), it is assumed that the chromosomes form bivalents during meiosis, and the double-reduction will never happen, then the paired chromosomes will segregate into different oocytes, which means that two haplotypes *H* and *H'* within the same gamete are copied from different haplotypes. However, this is not strictly equivalent to $H \approx H'$. This is because the paired chromosomes will segregate into different oocytes. In order to avoid repetition, we first discuss nine situations similar to HSF1 to HSF9 in Appendix D, named MOF1 to MOF9 in turn.

423 MOF1 $H_1 \equiv H_2 \equiv H_3$, weight 1, dni-coefficient 0; 424 MOF2 $H_1 \equiv H_2 \approx H_3$ or $H_1 \equiv H_3 \approx H_2$, weight 2(v - 1), 425 (a) not recombined, probability 1 - c, dni-coefficient 0; 426 (b) recombined, probability *c*, dni-coefficient $\Gamma_4/2$; 427 MOF3 $H_1 \approx H_2 \equiv H_3$, weight v - 1, 428 (a) not recombined, probability 1 - c, dni-coefficient Θ_1 ;

429 (b) recombined, probability *c*, dni-coefficient Γ_4 ;

430	ΜΟΓ4	$H_1 \simeq H_2 \simeq H_3$, weight $(v-1)(v-2)$,
431	(a)	not recombined, probability $1 - c$, dni-coefficient Γ_4 ;
432	(b)	recombined, probability <i>c</i> , dni-coefficient $\frac{1}{2\nu-4}\Gamma_4 + \frac{\nu-3}{\nu-2}\Delta_6$;
433	ΜΟΓ5	$H_1 \equiv H_2 \sim H_3$ or $H_1 \equiv H_3 \sim H_2$, weight $2(N_e - 1)v$,
434	(a)	not recombined, probability $1 - c$, dni-coefficient 0;
435	(b)	recombined, probability c , dni-coefficient $\Gamma_2/2$;
436	ΜΟΓ6	$H_2 \equiv H_3 \sim H_1$, weight $(N_e - 1)v$,
437	(a)	not recombined, probability $1 - c$, dni-coefficient Θ_2 ;
438	(b)	recombined, probability c , dni-coefficient Γ_1 ;
439	ΜΟΓ7	$H_1 \simeq H_2 \sim H_3$ or $H_1 \simeq H_3 \sim H_2$, weight $2(N_e - 1)v(v - 1)$,
440	(a)	not recombined, probability $1 - c$, dni-coefficient Γ_2 ;
441	(b)	recombined, probability c , dni-coefficient Δ_7 ;
442	ΜΟΓ8	$H_1 \sim H_2 \asymp H_3$, weight $(N_e - 1)v(v - 1)$,
443	(a)	not recombined, probability $1 - c$, dni-coefficient Γ_1 ;
444	(b)	recombined, probability c , dni-coefficient Δ_1 ;
445	МОГ9	$H_1 \sim H_2 \sim H_3$, weight $(N_e - 1)(N_e - 2)v^2$,
446	(a)	not recombined, probability $1 - c$, dni-coefficient Γ_3 ;
447	(b)	recombined, probability c , dni-coefficient Δ_3 .

For (ii), if the mating system is MS, because selfing is allowed, two haplotypes H and 448 449 *H'* from different gametes can be copied from either the same haplotype $(H \equiv H')$, or 450 different haplotypes in the same individual ($H \approx H'$), or different haplotypes in different individuals $(H \sim H')$. These relationships are obviously equivalent to those in the HS 451 452 mating system. If the mating system is ME, because selfing is excluded, two haplotypes from different gametes must be from different individuals ($H \sim H'$). 453

454 There may be more than one situation of HS Θ (HS Γ , HS Δ or MO Γ) appearing in an item, and we will use some symbols to denote this phenomenon. For example, the symbol 455 $(MO\Gamma 2/2,3,4,7/2)$ in the item (1) of Γ'_2 below denotes that there are four situations (i.e., 456 MOF2/2, MOF3, MOF4 and MOF7/2) appearing in this item, in which MOF2/2 represents 457 458 that the number of expressions describing the relations among the haplotypes is half of that for MOF2. This is because H_1 and H_2 are in the same gamete in the item (1) of Γ'_2 , thus 459 only the second expression in the two expressions in MOF2 ($H_1 \equiv H_2 \approx H_3$ and $H_1 \equiv H_3 \approx$ 460 H_2) can hold. The weight for MOF2/2 is also half of the weight for MOF2, and the meaning 461 of MOF7/2 is analogous. It is noteworthy that MOF2 and MOF2/2 are the same except their 462 463 number of expressions and weights, as are MOF7 and MOF7/2.

464 We next discuss the dni-coefficients in the next generation one by one.

- 465 Θ'_1 :
- (1) 466

$$(H_1, H_2)$$
, probability –

(a) none recombined, probability
$$(1 - c)^2$$
, dni-coefficient Θ_1 ;
(b) one recombined, probability $2c(1 - c)$, dni-coefficient Γ_4 ;

469 (c) both recombined, probability
$$c^2$$
, dni-coefficient Δ_6 ;

v/2 470 (2) $(H_1), (H_2)$ probability (HS Θ MS; 471 others identical 1-3)for to others identical to (HSO3) for ME; 472

473 then
$$\Theta'_1 = m_\theta + \frac{\nu/2}{\nu-1} \mathbf{W}_\theta \mathbf{\Theta}^T / \mathbf{W}_\theta \mathbf{1}$$
 for MS, or $\Theta'_1 = m_\theta + \frac{\nu/2}{\nu-1} (w_{3\theta} \theta_3 / \mathbf{W}_\theta \mathbf{1})$ for ME, where

474
$$m_{\theta} = \frac{v/2-1}{v-1} [(1-c)^2 \Theta_1 + 2c(1-c)\Gamma_4 + c^2 \Delta_6].$$

475 476	The expr whose co	ession of Θ'_1 is a linear combination of dni-coefficients in the current generation, mbination coefficients are the first row of $\mathbf{\Omega}$ for the MS or the ME mating system.
477	Θ ₂ ': i	dentical to (HS01-3), and thus $\Theta'_2 = \mathbf{W}_{\theta} \mathbf{\Theta}^T / \mathbf{W}_{\theta} 1$ for MS or ME.
478	Γ_1' :	
479	(1)	H_1 , (H_2, H_3) , probability $\frac{\nu/2-1}{\nu-1}$, others identical to (HSF2,4,8);
480	(2)	$H_1, (H_2), (H_3)$, probability $\frac{\nu/2}{\nu-1}$,
481		others identical to (HS Γ 1-9) for MS;
482	/	others identical to (HSF5,7,9) for ME; $\frac{v/2}{2}$ we v_{12} we v_{22} we v_{23} w
483	then $\Gamma_1' =$	$m_{\gamma} + \frac{\gamma}{\nu-1} \mathbf{W}_{\gamma} \mathbf{\Gamma}^{T} / \mathbf{W}_{\gamma} 1$ for MS or $\Gamma_{1}^{\gamma} = m_{\gamma} + \frac{\gamma}{\nu-1} \frac{-\gamma}{\mathbf{W}_{\gamma} 1}$ for ME, where
484		$m_{\gamma} = \frac{\nu/2 - 1}{\nu - 1} \frac{w_{2\gamma}\gamma_2 + w_{4\gamma}\gamma_4 + w_{8\gamma}\gamma_8}{W_{\gamma}1}.$
485 486 487	In th down, so explanati	is way, the expressions of other double non-identity coefficients can be written o can the elements in the corresponding rows of Ω . We will omit these lengthy ons from the following discussion.
488	Γ_2' :	
489	(1)	$(H_1, H_2), H_3$, probability $\frac{\nu/2-1}{\nu-1}$, others identical to (MOF2/2,3,4,7/2);
490	(2)	$(H_1), (H_2), H_3$, probability $\frac{\nu/2}{\nu-1}$,
491		MS: identical to (HS Γ 1-9);
492		ME: identical to (HSΓ5/2,6,7/2,8,9).
493	Here	<i>`others'</i> is omitted for brevity, the same below.
494	Γ <u></u> 3: ic	lentical to (HSΓ1-9).
495	Γ'_4 :	
496	(1)	(H_1, H_2, H_3) , probability $\frac{(\nu/2-1)(\nu/2-2)}{(\nu-1)(\nu-2)}$,
497		(a) not recombined, probability $1 - c$, dni-coefficient Γ_4 ;
498		(b) recombined, probability c, dni-coefficient Δ_6 ;
499	(2)	$(H_1, H_2), (H_3)$ or $(H_1, H_3), (H_2)$, probability $(v-1)(v-2)$,
500 501		MS: identical to (MO I $2/2,3,4,7/2$); ME: identical to (MO Γ 7/2):
502	(3)	$(H_1), (H_2, H_2)$, probability $\frac{(v/2-1)(v/2)}{v/2}$
503		MS: identical to (HS Γ 2.4.8)
504		ME: identical to (HSF8).
505	Δ'_1 :	
506	(1)	$(H_1, H_3), (H_2, H_4),$ probability $\frac{(\nu/2-1)^2}{(\nu-1)^2}$, identical to (HS $\Delta 2, 9, 10/2, 15/2, 16/2, 21$);
507	(2)	$(H_1, H_3), (H_2)(H_4)$ or $(H_1), (H_3), (H_2, H_4)$, probability $\frac{2(\nu/2-1)(\nu/2)}{(\nu/2)}$
508		MS: identical to (HS Δ 2,4/2,7/2,9,10/2,12/4,13/4,15*3/4,16/2,18/4,21,22/2);
509		ME: identical to $(HS\Delta7/2,13/4,18/4,22/2);$
510	(3)	$(H_1), (H_3), (H_2), (H_4)$, probability $\frac{(\nu/2)^2}{(\nu-1)^2}$,
511		MS: identical to (HS Δ 1-22);
512		ME: identical to (HSΔ3,5,8,11/2,12/2,14/2,16/2,17,18/2,19,20).

513	Δ'_2 :	
514	(1)	$(H_1, H_2), (H_3, H_4),$ probability $\frac{(v/2-1)^2}{(v-1)^2}$, identical to (HS Δ 10,15,17,21);
515	(2)	$(H_1, H_2), (H_3), (H_4)$ or $(H_1), (H_2), (H_3, H_4)$, probability $\frac{2(\nu/2-1)(\nu/2)}{(\nu-1)^2}$,
516 517		MS: identical to (HS Δ 4/2,5/2,9/2,10,13/2,15,17,19/2,21,22/2); ME: identical to (HSΔ13/2,19/2,22/2);
518	(3)	$(H_1), (H_2), (H_3), (H_4)$, probability $\frac{(v/2)^2}{(v-1)^2}$,
519		MS: identical to (HS Δ 1-22);
520		ME: identical to (HSΔ11,12,14,16,18,20).
521	Δ'_3 :	
522	(1)	(H_1, H_3) , probability $\frac{\nu/2-1}{\nu-1}$,
523		identical to (HSΔ2,4/2,7/2,9,10/2,12/4,13/4,15*3/4,16/2,18/4,21,22/2);
524	(2)	$(H_1), (H_3)$, probability $\frac{\nu/2}{\nu-1}$,
525		MS: identical to (HS Δ 1-22);
526		ME: identical to (HS Δ 3,5,6/2,7/2,8,11/2,12/2,13/2,14*3/4,16/2,17,18*3/4,19,20,
527		22/2).
528	Δ'_4 :	n/2 1
529	(1)	(H_1, H_2) , probability $\frac{v/2-1}{v-1}$,
530		identical to (HSΔ4/2,5/2,9/2,10,13/2,15,17,19/2,21,22/2);
531	(2)	$(H_1), (H_2)$, probability $\frac{\nu/2}{\nu-1}$,
532		MS: identical to (HS Δ 1-22);
533		ME: identical to (HS $\Delta 6/2$, $7/2$, $8/2$, 11 , 12 , $13/2$, 14 , 16 , 18 , $19/2$, 20 , $22/2$).
534	Δ'_5 : id	lentical to (HS Δ 1-22).
535	Δ' ₆ :	
536	(1)	(H_1, H_2, H_3, H_4) , probability $\frac{(v-4)(v-6)}{8(v-1)(v-3)'}$ identical to (HS $\Delta 21$);
537	(2)	$(H_1), (H_2, H_3, H_4)$ or $(H_2), (H_1, H_3, H_4)$ or $(H_3), (H_1, H_2, H_4)$
538		or $(H_4), (H_1, H_2, H_3)$, probability $\frac{v(v-4)}{2(v-1)(v-3)}$,
539		MS: identical to (HS Δ 9/2,15/2,21,22/4);
540		ME: identical to (HS Δ 22/4);
541	(3)	$(H_1, H_2), (H_3, H_4)$, probability $\frac{\nu(\nu-2)}{8(\nu-1)(\nu-3)}$,
542		MS: identical to (HS Δ 10,15,17,21);
543		ME: identical to (HS Δ 17);
544	(4)	$(H_1, H_3), (H_2, H_4)$ or $(H_1, H_4), (H_2, H_3)$ probability $\frac{v(v-2)}{4(v-1)(v-3)}$,
545		MS: identical to (HS Δ 2,9,10/2,15/2,16/2,21);
546		ME: identical to (HS Δ 16/2).
547	Δ_7' :	
548	(1)	(H_1, H_2, H_3) , probability $\frac{\nu - 4}{4(\nu - 1)}$, identical to (HS $\Delta 9/2, 15/2, 21, 22/4$);
549	(2)	$(H_1, H_3), (H_2)$ or $(H_1), (H_2, H_3)$, probability $\frac{2v}{4(v-1)}$,
550		MS: identical to (HS Δ 2,4/2,7/2,9,10/2,12/4,13/4,15*3/4,16/2,18/4,21,22/2);
551		ME: identical to (HSΔ7/4,12/4,13/8,16/2,18/4,22/4);
552	(3)	$(H_1, H_2), (H_3)$, probability $\frac{v}{4(v-1)}$,
553		MS: identical to (HSΔ4/2,5/2,9/2,10,13/2,15,17,19/2,21,22/2);

554 ME: identical to (HSΔ5/2,13/4,17,19/2,22/4).

555 The transition matrix $\boldsymbol{\Omega}$ for the MS or the ME mating system is not shown, but the 556 matrices **T** and **S** in the principal part of $\boldsymbol{\Omega}$ are listed in Appendix I.

558 Appendix G. DR mating system

In the dioecious mating systems, no matter whether it is DR or DH, each individual is formed by a sperm and an egg that are independently sampled from the sperm and the egg pools, respectively. We will discuss the double non-identity coefficients one by one for the DR mating system in this appendix.

For simplicity, we will use the symbol $\{ * \}$ to be the identifier of an item, e.g., the item (HS02) means that its contents are the same as those in HS02 except for the weight, and we also use the symbol ME0₁ to represent 0₁ in ME, and so on.

566 Θ'_1 : identical to ME Θ'_1 .

567 Θ'_2 : identical to ME Θ'_2 .

568 Γ'_1 : identical to ME Γ'_1 .

569 Γ'_2 : identical to ME Γ'_2 .

 Γ'_3 :

570

571 {HS Γ 1} $H_1 \equiv H_2 \equiv H_3$, weight $2(1 + f^2)$;

572 {HSF2} $H_1 \equiv H_2 \approx H_3 \text{ or } H_1 \equiv H_3 \approx H_2$, weight $4(1 + f^2)(v - 1)$;

573 {HSF3} $H_1 \simeq H_2 \equiv H_3$, weight $2(1 + f^2)(v - 1)$;

574 {HSF4} $H_1 \approx H_2 \approx H_3$, weight $2(1 + f^2)(v - 1)(v - 2);$

575 {HSF5} $H_1 \equiv H_2 \sim H_3 \text{ or } H_1 \equiv H_3 \sim H_2$, weight $2(1+f)^2 v N_e - 4(1+f^2)v$;

576 {HSF6} $H_2 \equiv H_3 \sim H_1$, weight $(1+f)^2 v N_e - 2(1+f^2)v$;

577 {HS\Gamma7}
$$H_1 \simeq H_2 \sim H_3 \text{ or } H_1 \simeq H_3 \sim H_2$$

578 weight $2(1+f)^2(v-1)vN_e - 4(1+f^2)(v-1)v;$

579 {HSF8} $H_1 \sim H_2 \simeq H_3$, weight $(1+f)^2(v-1)vN_e - 2(1+f^2)(v-1)v$;

580 {HSG}
$$H_1 \sim H_2 \sim H_3$$
, weight $(1+f)^2 v^2 N_e^2 - 3(1+f)^2 v^2 N_e + 4(1+f^2) v^2$;

581 then $\Gamma'_3 = \mathbf{W}^*_{\gamma} \mathbf{\Gamma}^T / \mathbf{W}^*_{\gamma} \mathbf{1}$, where \mathbf{W}^*_{γ} is the row vector consisting of the above nine weights.

582 Γ'_4 : identical to ME Γ'_4 .

 Δ'_1 :

```
583
```

	-	
584	(1)	$(H_1, H_3), (H_2, H_4)$, probability $\frac{(\nu/2-1)^2}{(\nu-1)^2}$, identical to (HS $\Delta 2, 9, 10/2, 15/2, 16/2, 21$);
585	(2)	$(H_1, H_3), (H_2)(H_4)$ or $(H_1), (H_3), (H_2, H_4)$, probability $\frac{2(\nu/2-1)(\nu/2)}{(\nu-1)^2}$,
586		identical to (HSΔ7/2,13/4,18/4,22/2);
587	(3)	$(H_1), (H_3), (H_2), (H_4),$ probability $\frac{(\nu/2)^2}{(\nu-1)^{2'}}$
588	{HS∆	3} $H_1 \equiv H_2 \sim H_3 \equiv H_4$, weight 8 <i>f</i> ;
589	{HS∆	5} $H_1 \equiv H_2 \sim H_3 \asymp H_4$ or $H_1 \asymp H_2 \sim H_3 \equiv H_4$, weight $16f(v-1)$;
590	{HS∆	8) $H_1 \sim H_2 \sim H_3 \equiv H_4$ or $H_1 \equiv H_2 \sim H_3 \sim H_4$, weight $2(1+f)^2 v N_e - 16fv$;

591 {HS Δ 11/2} $H_1 \equiv H_4 \sim H_2 \equiv H_{3,i}$ weight 8*f*;

⁵⁵⁷

592	{HS} $\Delta 12/2$ } $H_1 \equiv H_4 \sim H_2 \approx H_3$ or $H_2 \equiv H_3 \sim H_1 \approx H_4$, weight $16f(v-1)$;
593	$\{\text{HS}\Delta 14/2\} \ H_1 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4,$
594	weight $2(1+f)^2 v N_e - 16f v;$
595	{HS $\Delta 16/2$ } $H_1 \approx H_4 \sim H_2 \approx H_3$, weight $8f(v-1)^2$;
596	{HS} $\Lambda_1 \cong H_2 \sim H_3 \cong H_4$, weight $8f(v-1)^2$;
597	$\{\text{HS}\Delta 18/2\} \ H_1 \simeq H_4 \sim H_2 \sim H_3 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4,$
598	weight $2(1+f)^2(v-1)vN_e - 16f(v-1)v;$
599	$\{\text{HS}\Delta 19\} \ H_1 \cong H_2 \sim H_3 \sim H_4 \text{ or } H_1 \sim H_2 \sim H_3 \cong H_4,$
600	weight $2(1+f)^2(v-1)vN_e - 16f(v-1)v;$
601	{HS}{\Delta20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $(1+f)^2 v^2 N_e^2 - 4(1+f)^2 v^2 N_e + 16f v^2$.
602	Δ_2' :
603	(1) $(H_1, H_2), (H_3, H_4),$ probability $\frac{(\nu/2-1)^2}{(\nu-1)^2}$, identical to (HS Δ 10,15,17,21);
604	(2) $(H_1, H_2), (H_3), (H_4)$ or $(H_1), (H_2), (H_3, H_4)$, probability $\frac{2(\nu/2 - 1)(\nu/2)}{(\nu - 1)^2}$,
605	identical to (HS Δ 13/2,19/2,22/2);
606	(3) $(H_1), (H_2), (H_3), (H_4)$, probability $\frac{(v/2)^2}{(v-1)^{2'}}$
607	{HS Δ 11} $H_1 \equiv H_3 \sim H_2 \equiv H_4$ or $H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight 16 <i>f</i> ;
608	$\{\text{HS}\Delta 12\} \ H_1 \equiv H_3 \sim H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4$
609	or $H_2 \equiv H_4 \sim H_1 \approx H_3$, weight $32f(v-1)$;
610	$\{\text{HS}\Delta 14\} \ H_1 \equiv H_3 \sim H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4$
611	or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $4(1+f)^2 v N_e - 32f v$;
612	{HS\Delta16} $H_1 \simeq H_3 \sim H_2 \simeq H_4$ or $H_1 \simeq H_4 \sim H_2 \simeq H_3$, weight $16f(v-1)^2$;
613	$\{\text{HS}\Delta 18\} \ H_1 \cong H_3 \sim H_2 \sim H_4 \text{ or } H_1 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4$
614	or $H_2 \simeq H_4 \sim H_1 \sim H_3$, weight $4(1+f)^2(v-1)vN_e - 32f(v-1)v$;
615	{HS} $\Delta 20$ } $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $(1+f)^2 v^2 N_e^2 - 4(1+f)^2 v^2 N_e + 16f v^2$;
616	Δ'_3 :
617	(1) (H_1, H_3) , probability $\frac{\nu/2-1}{\nu-1}$,
618	{HS}2} $H_1 \equiv H_2 \approx H_3 \equiv H_4$, weight 2(1 + f^2);
619	{HS $\Delta 4/2$ } $H_1 \equiv H_2 \equiv H_4 \approx H_3$ or $H_1 \approx H_2 \equiv H_3 \equiv H_4$, weight $4(1 + f^2)$;
620	$\{\text{HS}\Delta7/2\} \ H_2 \sim H_1 \asymp H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_3 \sim H_4 \ ,$
621	weight $2(1+f)^2 v N_e - 4(1+f^2)v$;
622	{HS} $A9$ } $H_1 \simeq H_2 \simeq H_3 \equiv H_4$ or $H_1 \equiv H_2 \simeq H_3 \simeq H_4$, weight $4(1 + f^2)(v - 2)$;
623	{HS $\Delta 10/2$ } $H_1 \equiv H_4 \approx H_2 \equiv H_3$, weight $2(1 + f^2)$;
624	{HS $\Delta 12/4$ } $H_2 \equiv H_4 \sim H_1 \approx H_3$, weight $(1+f)^2 v N_e - 2(1+f^2)v$;
625	$\{\text{HS}\Delta 13/4\} \ H_2 \equiv H_3 \asymp H_1 \sim H_4 \text{ or } H_1 \equiv H_4 \asymp H_3 \sim H_2,$
626	weight $2(1+f)^2 v N_e - 4(1+f^2)v;$
627	$\{\text{HS}\Delta 15^*3/4\} \ H_1 \equiv H_4 \asymp H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \asymp H_4 \text{ or } H_2 \equiv H_4 \asymp H_1 \asymp H_3,$
628	weight $6(1 + f^2)(v - 2)$;
629	{HS} $\Lambda_1 \approx H_3 \approx H_2 \approx H_4$, weight $(1+f)^2(v-1)vN_e - 2(1+f^2)(v-1)v$;
630	$\{\text{HS}\Delta 18/4\} \ H_1 \simeq H_3 \sim H_2 \sim H_4,$
631	weight $(1+f)^2 v^2 N_e^2 - 3(1+f)^2 v^2 N_e + 4(1+f^2)v^2;$
632	{HS} $\Delta 21$ } $H_1 \approx H_2 \approx H_3 \approx H_4$, weight $2(1+f^2)(v-2)(v-3)$;
633	$\{\text{HS}\Delta 22/2\} \ H_1 \cong H_2 \cong H_3 \sim H_4 \text{ or } H_1 \cong H_3 \cong H_4 \sim H_2,$
634	weight $2(1+f)^2(v-2)vN_e - 4(1+f^2)(v-2)v;$
635	(2) $(H_1), (H_3), \text{ probability } \frac{v_1 z}{v_1 - 1}$
636	{HS}3} $H_1 \equiv H_2 \sim H_3 \equiv H_4$, weight 4 <i>f</i> ;
637	{HS}5} $H_1 \equiv H_2 \sim H_3 \approx H_4$ or $H_1 \approx H_2 \sim H_3 \equiv H_4$, weight $8f(v-1)$;

638	{HS} $\Delta 6/2$ } $H_2 \equiv H_3 \equiv H_4 \sim H_1 \text{ or } H_1 \equiv H_2 \equiv H_4 \sim H_3$, weight $4(1 + f^2)$;
639	{HS}{\Delta7/2} $H_1 \sim H_2 \approx H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \approx H_4 \sim H_3$, weight $4(1 + f^2)(v - 1)$;
640	$\{\text{HS}\Delta 8\} \ H_1 \sim H_2 \sim H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \sim H_3 \sim H_4,$
641	weight $2(1+f)^2 v N_e - 4(1+f)^2 v;$
642	{HS Δ 11/2} $H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight 4 <i>f</i> ;
643	{HS}\Delta 12/2} $H_1 \equiv H_4 \sim H_2 \approx H_3$ or $H_2 \equiv H_3 \sim H_1 \approx H_4$, weight $8f(v-1)$;
644	{HS}{13}/2} $H_1 \equiv H_4 \asymp H_2 \sim H_3$ or $H_2 \equiv H_4 \asymp H_1 \sim H_3$ or $H_2 \equiv H_3 \asymp H_4 \sim H_1$
645	or $H_2 \equiv H_4 \approx H_3 \sim H_1$, weight $8(1 + f^2)(v - 1)$;
646	$\{\text{HS}\Delta 14^*3/4\} \ H_1 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4 \text{ or } H_2 \equiv H_4 \sim H_1 \sim H_3,$
647	weight $3(1+f)^2 v N_e - 8(1+f+f^2)v$;
648	{HS Δ 16/2} $H_1 \simeq H_4 \sim H_2 \simeq H_3$, weight $4f(v-1)^2$;
649	{HS Δ 17} $H_1 \simeq H_2 \sim H_3 \simeq H_4$, weight $4f(v-1)^2$;
650	$\{\text{HS}\Delta 18^*3/4\} \ H_1 \asymp H_4 \sim H_2 \sim H_3 \text{ or } H_2 \asymp H_3 \sim H_1 \sim H_4 \text{ or } H_2 \asymp H_4 \sim H_1 \sim H_3,$
651	weight $3(1+f)^2(v-1)vN_e - 8(1+f+f^2)(v-1)v;$
652	{HS Δ 19} $H_1 \simeq H_2 \sim H_3 \sim H_4$ or $H_1 \sim H_2 \sim H_3 \simeq H_4$,
653	weight $2(1+f)^2(v-1)vN_e - 4(1+f)^2(v-1)v;$
654	$\{\text{HS}\Delta 20\} \ H_1 \sim H_2 \sim H_3 \sim H_{4\prime}$
655	weight $(1+f)^2 v^2 N_e^2 - 5(1+f)^2 v^2 N_e + 8(1+f+f^2)v^2$;
656	{HS} $\Delta 22/2$ } $H_1 \simeq H_2 \simeq H_4 \sim H_3$ or $H_2 \simeq H_3 \simeq H_4 \sim H_1$,
657	weight $4(1 + f^2)(v - 1)(v - 2);$
658	Δ'_4 :
659	(1) (H_1, H_2) , probability $\frac{\nu/2-1}{\nu-1}$,
660	{HS} $\Delta 4/2$ } $H_1 \approx H_2 \equiv H_3 \equiv H_4$ or $H_2 \approx H_1 \equiv H_3 \equiv H_4$, weight $4(1 + f^2)$;
661	{HS} $\Delta 5/2$ } $H_1 \approx H_2 \sim H_3 \equiv H_4$, weight $(1+f)^2 v N_e - 2(1+f^2)v$;
662	{HS $\Delta 9/2$ } $H_1 \approx H_2 \approx H_3 \equiv H_4$, weight $2(1 + f^2)(v - 2)$;
663	{HS} 10} $H_1 \equiv H_3 \approx H_2 \equiv H_4$ or $H_1 \equiv H_4 \approx H_2 \equiv H_3$, weight $4(1 + f^2)$;
664	{HS}{13}/2} $H_1 \equiv H_3 \asymp H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \sim H_4$
665	or $H_2 \equiv H_4 \approx H_1 \sim H_3$, weight $4(1+f)^2 v N_e - 8(1+f^2)v$;
666	$\{\text{HS}\Delta 15\} \ H_1 \equiv H_3 \asymp H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \asymp H_4$
667	or $H_2 \equiv H_4 \approx H_1 \approx H_3$, weight $8(1 + f^2)(v - 2)$;
668	{HS}{17} $H_1 \simeq H_2 \sim H_3 \simeq H_4$, weight $(1+f)^2(v-1)vN_e - 2(1+f^2)(v-1)v$;
669	$\{\text{HS}\Delta 19/2\} \ H_1 \asymp H_2 \sim H_3 \sim H_4,$
670	weight $(1+f)^2 v^2 N_e^2 - 3(1+f)^2 v^2 N_e + 4(1+f^2)v^2$;
671	{HSΔ21} $H_1 \approx H_2 \approx H_3 \approx H_4$, weight $2(1 + f^2)(v - 2)(v - 3)$;
672	$\{\text{HS}\Delta 22/2\} \ H_1 \asymp H_2 \asymp H_3 \sim H_4 \text{ or } H_1 \asymp H_2 \asymp H_4 \sim H_3,$
673	weight $2(1+f)^2(v-2)vN_e - 4(1+f^2)(v-2)v;$
674	(2) $(H_1), (H_2), \text{ probability } \frac{\nu/2}{\nu-1},$
675	{HS}[]{6/2} $H_1 \equiv H_3 \equiv H_4 \sim H_2 \text{ or } H_2 \equiv H_3 \equiv H_4 \sim H_1$, weight $4(1 + f^2)$;
676	{HS}{\Delta7/2} $H_1 \sim H_2 \approx H_3 \equiv H_4 \text{ or } H_2 \sim H_1 \approx H_3 \equiv H_4, \text{ weight } 4(1+f^2)(v-1);$
677	{HS $\Delta 8/2$ } $H_1 \sim H_2 \sim H_3 \equiv H_4$, weight $(1+f)^2 v N_e - 4(1+f^2)v$;
678	{HS Δ 11} $H_1 \equiv H_3 \sim H_2 \equiv H_4$ or $H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight 8 <i>f</i> ;
679	$\{\text{HS}\Delta 12\} \ H_1 \equiv H_3 \sim H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4$
680	or $H_2 \equiv H_4 \sim H_1 \asymp H_3$, weight $16f(v-1)$;
681	$\{\text{HS}\Delta 13/2\} \ H_1 \equiv H_3 \asymp H_4 \sim H_2 \text{ or } H_1 \equiv H_4 \asymp H_3 \sim H_2 \text{ or } H_2 \equiv H_3 \asymp H_4 \sim H_1$
682	or $H_2 \equiv H_4 \approx H_3 \sim H_1$, weight $8(1 + f^2)(v - 1)$;
683	{HS Δ 14} $H_1 \equiv H_3 \sim H_2 \sim H_4$ or $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$
684	or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $4(1+f)^2 v N_e - 8(1+f)^2 v$;

685	{HS Δ 16} $H_1 \cong H_3 \sim H_2 \cong H_4$ or $H_1 \cong H_4 \sim H_2 \cong H_3$, weight $8f(v-1)^2$;
686	{HS\Delta18} $H_1 \simeq H_3 \sim H_2 \sim H_4$ or $H_1 \simeq H_4 \sim H_2 \sim H_3$ or $H_2 \simeq H_3 \sim H_1 \sim H_4$
687	or $H_2 \approx H_4 \sim H_1 \sim H_3$, weight $4(1+f)^2(v-1)vN_e - 8(1+f)^2(v-1)v$;
688	{HS $\Delta 19/2$ } $H_1 \sim H_2 \sim H_3 \approx H_4$, weight $(1+f)^2(v-1)vN_e - 4(1+f^2)(v-1)v$;
689	$\{\text{HS}\Delta 20\} \ H_1 \sim H_2 \sim H_3 \sim H_4,$
690	weight $(1+f)^2 v^2 N_e^2 - 5(1+f)^2 v^2 N_e + 8(1+f+f^2)v^2;$
691	{HS} $\Delta 22/2$ } $H_1 \approx H_3 \approx H_4 \sim H_2$ or $H_2 \approx H_3 \approx H_4 \sim H_{1'}$
692	weight $4(1 + f^2)(v - 1)(v - 2);$
693	Δ_5' :
694	{HS Δ 1} $H_1 \equiv H_2 \equiv H_3 \equiv H_4$, weight $4(1 - f + f^2)$;
695	{HS}{2} $H_1 \equiv H_2 \approx H_3 \equiv H_4$, weight $4(1 - f + f^2)(v - 1)$;
696	{HS} A_3 } $H_1 \equiv H_2 \sim H_3 \equiv H_4$, weight $(1+f)^2 v N_e - 4(1-f+f^2)v$;
697	{HS} $A_1 \equiv H_2 \equiv H_3 \approx H_4 \text{ or } H_1 \equiv H_2 \equiv H_4 \approx H_3 \text{ or } H_1 \approx H_2 \equiv H_3 \equiv H_4$
698	or $H_2 \approx H_1 \equiv H_3 \equiv H_{4'}$ weight $16(1 - f + f^2)(v - 1)$;
699	{HS} Δ 5} $H_1 \equiv H_2 \sim H_3 \asymp H_4$ or $H_1 \asymp H_2 \sim H_3 \equiv H_4$,
700	weight $2(1+f)^2 N_e(v-1)v - 8(1-f+f^2)(v-1)v;$
701	{HS} $A_1 \equiv H_3 \equiv H_4 \sim H_2 \text{ or } H_2 \equiv H_3 \equiv H_4 \sim H_1 \text{ or } H_1 \equiv H_2 \equiv H_3 \sim H_4$
702	or $H_1 \equiv H_2 \equiv H_4 \sim H_3$, weight $8(1 + f^2)N_ev - 16(1 - f + f^2)v$;
703	{HS}{7} $H_1 \sim H_2 \approx H_3 \equiv H_4 \text{ or } H_2 \sim H_1 \approx H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \approx H_3 \sim H_4 \text{ or}$
704	$H_1 \equiv H_2 \simeq H_4 \sim H_3$, weight $8(1+f^2)N_ev(v-1) - 16(1-f+f^2)v(v-1)$;
705	{HS $\Delta 8$ } $H_1 \sim H_2 \sim H_3 \equiv H_4$ or $H_1 \equiv H_2 \sim H_3 \sim H_4$,
706	weight $2(1+f)^2 N_e^2 v^2 - 2(5+2f+5f^2)N_e v^2 + 16(1-f+f^2)v^2$;
707	$\{\text{HS}\Delta9\} \ H_1 \asymp H_2 \asymp H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_3 \asymp H_4,$
708	weight $8(1 - f + f^2)(v - 1)(v - 2);$
709	{HS} $\Delta 10$ } $H_1 \equiv H_3 \approx H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \approx H_2 \equiv H_3$, weight $8(1 - f + f^2)(v - 1)$;
710	$\{\text{HS}\Delta 11\} \ H_1 \equiv H_3 \sim H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \equiv H_3,$
711	weight $2(1+f)^2 N_e v - 8(1-f+f^2)v$;
712	$\{\text{HS}\Delta 12\} H_1 \equiv H_3 \sim H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4 \text{ or}$
713	$H_2 \equiv H_4 \sim H_1 \approx H_3$, weight $4(1+f)^2 N_e(v-1)v - 16(1-f+f^2)(v-1)v$;
714	$\{\text{HS}\Delta 13\} \ H_1 \equiv H_3 \asymp H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \sim H_4$
715	or $H_2 \equiv H_4 \asymp H_1 \sim H_3$ or $H_1 \equiv H_3 \asymp H_4 \sim H_2$ or $H_1 \equiv H_4 \asymp H_3 \sim H_2$
716	or $H_2 \equiv H_3 \asymp H_4 \sim H_1$ or $H_2 \equiv H_4 \asymp H_3 \sim H_{1'}$
717	weight $16(1+f^2)N_e(v-1)v - 32(1-f+f^2)(v-1)v;$
718	$\{\text{HS}\Delta 14\} \ H_1 \equiv H_3 \sim H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4$
719	or $H_2 \equiv H_4 \sim H_1 \sim H_3$,
720	weight $4(1+f)^2 N_e^2 v^2 - 4(5+2f+5f^2) N_e v^2 + 32(1-f+f^2) v^2;$
721	$\{\text{HS}\Delta 15\} \ H_1 \equiv H_3 \asymp H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \asymp H_4$
722	or $H_2 \equiv H_4 \approx H_1 \approx H_3$, weight $16(1 - f + f^2)(v - 1)(v - 2)$;
723	$\{\text{HS}\Delta 16\} \ H_1 \cong H_3 \sim H_2 \cong H_4 \text{ or } H_1 \cong H_4 \sim H_2 \cong H_3,$
724	weight $2(1+f)^2 N_e (v-1)^2 v - 8(1-f+f^2)(v-1)^2 v;$
725	$\{HS\Delta I7\} H_1 \cong H_2 \sim H_3 \cong H_4,$
726	weight $(1+f)^2 N_e (v-1)^2 v - 4(1-f+f^2)(v-1)^2 v;$
727	$\{HS\Delta 18\} H_1 \cong H_3 \sim H_2 \sim H_4 \text{ or } H_1 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4$
728	or $H_2 \approx H_4 \sim H_1 \sim H_3$, weight $4(1+f)^2 N_e^2 v^2 (v-1) - 4(5+2f+$
129	$5f^{-}N_{e}v^{-}(v-1) + 52(1-f+f^{-})v^{-}(v-1);$ (11CA10) $H \to H = H = H = H = H = H = H = H = H = $
/ JU 701	$\{\Pi \supset \Delta \downarrow \} H_1 \cong H_2 \sim H_3 \sim H_4 \text{ or } H_1 \sim H_2 \sim H_3 \cong H_4, \text{ weight } 2(1+f)^2 N_e^2 (v-1)v^2$
/J⊥ 700	$-2(5+2j+5j^{-})N_{e}(v-1)v^{*} + 10(1-j+j^{*})(v-1)v^{*};$ (IICA20) II
132	{ $\Pi 5 \Delta 20$ } $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $(1 + f)^2 N_e^2 v^2 - 6(1 + f)^2 N_e^2 v^2 +$

733
$$(19+6f+19f^2)N_ev^3 - 24(1-f+f^2)v^3$$

734 {HS
$$\Delta 21$$
} $H_1 \approx H_2 \approx H_3 \approx H_4$, weight $4(1 - f + f^2)(v - 1)(v - 2)(v - 3)$;

735 {HS\Delta22}
$$H_1 \approx H_2 \approx H_3 \sim H_4 \text{ or } H_1 \approx H_2 \approx H_4 \sim H_3 \text{ or } H_1 \approx H_3 \approx H_4 \sim H_2$$

or $H_2 \simeq H_3 \simeq H_4 \sim H_{1/2}$ 736

737 weight
$$8(1+f^2)N_e(v-1)(v-2)v - 16(1-f+f^2)(v-1)(v-2)v$$
,

then $\Delta'_5 = \mathbf{W}^*_{\delta} \mathbf{\Delta}^T / \mathbf{W}^*_{\delta} \mathbf{1}$ where \mathbf{W}^*_{δ} is the row vector consisting of the above 22 weights. 738

 Δ_6' : identical to ME Δ_6' . 739

 Δ'_7 : identical to ME Δ'_7 . 740

The transition matrix Ω for the DR mating system is not shown, but the matrices T 741 742 and **S** in the principal part of Ω are listed in Appendix I.

Appendix H. DH mating system 743

744 For the DH mating system, because each individual remains in a reproductive unit for its entire lifetime, the offspring produced within each reproductive unit are either full- or 745 half-sibs. We will denote $[H, H', \cdots]$ for which those haplotypes within square brackets are 746 from the same reproductive unit. 747

 Θ'_1 : identical to ME Θ'_1 . 748

 Θ'_2 : identical to ME Θ'_2 . 749

 Γ_1' : identical to ME Γ_1' . 750

751 Γ_2' : identical to ME Γ_2' .

 Γ'_3 : 752

753

(1) $[H_1, H_2, H_3]$, probability $\frac{1}{M^{2'}}$ {HSF1} $H_1 \equiv H_2 \equiv H_3$, weight $\frac{1}{8v^2} + \frac{1}{8f^2v^2}$; 754

{HSF2} $H_1 \equiv H_2 \approx H_3$ or $H_1 \equiv H_3 \approx H_2$ weight $\frac{v-1}{4v^2} + \frac{v-1}{4f^2v^{2r}}$ 755

756

{HSF3} $H_1 \approx H_2 \equiv H_3$, weight $\frac{v-1}{8v^2} + \frac{v-1}{8f^2v^2}$; {HSF4} $H_1 \approx H_2 \approx H_3$, weight $\frac{(v-1)(v-2)}{8v^2} + \frac{(v-1)(v-2)}{8f^2v^2}$; 757

758 {HSF5}
$$H_1 \equiv H_2 \sim H_3 \text{ or } H_1 \equiv H_3 \sim H_2, \text{ weight } \frac{1}{4v} + \frac{1}{4fv} + \frac{j-1}{4f^2v'}$$

759 {HSF6}
$$H_2 \equiv H_3 \sim H_1$$
, weight $\frac{1}{8v} + \frac{1}{8fv} + \frac{1}{8f^2u}$

760 {HSF7}
$$H_1 \approx H_2 \sim H_3$$
 or $H_1 \approx H_3 \sim H_2$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv} + \frac{(v-1)(f-1)}{4f^2v}$;

761 {HSF8}
$$H_1 \sim H_2 \approx H_3$$
, weight $\frac{v-1}{8v} + \frac{v-1}{8fv} + \frac{(v-1)(f-1)}{8f^2v}$;

- {HS[79} $H_1 \sim H_2 \sim H_3$, weight $\frac{3(f-1)}{8f} + \frac{(f-1)(f-2)}{8f^2}$; 762
- 763
- (2) $[H_1, H_2], [H_3] \text{ or } [H_1, H_3], [H_2], \text{ probability } \frac{2(M-1)}{M^2},$ {HSF5/2} $H_1 \equiv H_2 \sim H_3 \text{ or } H_1 \equiv H_3 \sim H_2, \text{ weight } \frac{1}{4v} + \frac{1}{4fv};$ 764

765 {HSF7/2}
$$H_1 \simeq H_2 \sim H_3$$
 or $H_1 \simeq H_3 \sim H_2$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv'}$

766 {HSF9}
$$H_1 \sim H_2 \sim H_3$$
, weight $\frac{f-1}{4f} + \frac{1}{2}$;

(3) $[H_2, H_3], [H_1], \text{ probability } \frac{M-1}{M^2},$ 767

768	{HSF6} $H_2 \equiv H_2 \sim H_1$, weight $\frac{1}{2} + \frac{1}{2}$;
769	$\{\text{HSF8}\} H_1 \sim H_2 \asymp H_3, \text{ weight } \frac{v-1}{v} + \frac{v-1}{v};$
770	{HSF9} $H_1 \sim H_2 \sim H_3$, weight $\frac{f-1}{4v} + \frac{1}{4}$;
771	(4) $[H_1], [H_2], [H_3], \text{ probability } \frac{(M-1)(M-2)}{M^2}$, identical to (HSF9).
772	Γ_4' :
773	(1) (H_1, H_2, H_3) , probability $\frac{(\nu/2-1)(\nu/2-2)}{(\nu-1)(\nu-2)}$,
774	(a) not recombined, probability $1 - c$, double non-identity Γ_4 ;
776	(b) recombined, probability <i>c</i> , double non-identity Δ_6 ; (2) (H, H) (H) or (H, H) (H) probability $\frac{2(v/2-1)(v/2)}{v}$ identical to $(MO\Gamma7/2)$:
	(2) $(H_1, H_2), (H_3)$ of $(H_1, H_3), (H_2),$ probability $\frac{(v-1)(v-2)}{(v-1)(v-2)}$, identical to (MOT7/2),
///	(5) $(H_1), (H_2, H_3), \text{ probability } \frac{1}{(v-1)(v-2)}, \text{ Identical to (MOT8).}$
778	Δ'_1 :
779	(1) $[(H_1, H_3), (H_2, H_4)]$, probability $\frac{1}{M} \frac{(v/2-1)}{(v-1)^2}$,
780	{HS\Delta2} $H_1 \equiv H_2 \approx H_3 \equiv H_4$, weight $\frac{1}{4v(v-1)} + \frac{1}{4fv(v-1)}$;
781	$\{\text{HS}\Delta9\} \ H_1 \asymp H_2 \asymp H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_3 \asymp H_4, \text{ weight } \frac{\nu-2}{2\nu(\nu-1)} + \frac{\nu-2}{2f\nu(\nu-1)};$
782	{HS} $\Delta 10/2$ } $H_1 \equiv H_4 \approx H_2 \equiv H_3$, weight $\frac{1}{4v(v-1)} + \frac{1}{4fv(v-1)}$;
783	{HS}{15}{2} H_1 \equiv H_4 \approx H_2 \approx H_3 \text{ or } H_2 \equiv H_3 \approx H_1 \approx H_4, \text{ weight } \frac{v-2}{2v(v-1)} + \frac{v-2}{2fv(v-1)};
784	{HS $\Delta 16/2$ } $H_1 \approx H_3 \sim H_2 \approx H_{4'}$ weight $\frac{1}{2} + \frac{f-1}{4f}$;
785	{HSΔ21} $H_1 \simeq H_2 \simeq H_3 \simeq H_4$, weight $\frac{(v-2)(v-3)}{4v(v-1)} + \frac{(v-2)(v-3)}{4fv(v-1)}$;
786	(2) $[(H_1, H_3), (H_2), (H_4)]$ or $[(H_1), (H_3), (H_2, H_4)]$, probability $\frac{2}{M} \frac{(\nu/2-1)(\nu/2)}{(\nu-1)^2}$,
787	$\{\text{HS}\Delta7/2\} \ H_2 \sim H_1 \asymp H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_3 \sim H_4, \text{ weight } \frac{1}{2v} + \frac{1}{2fv'};$
788	{HS Δ 13/4} $H_2 \equiv H_3 \approx H_1 \sim H_4$ or $H_1 \equiv H_4 \approx H_3 \sim H_2$, weight $\frac{1}{2\nu} + \frac{1}{2f\nu}$;
789	{HS Δ 18/4} $H_1 \simeq H_3 \sim H_2 \sim H_4$, weight $\frac{f-1}{2f}$;
790	$\{\text{HS}\Delta 22/2\} \ H_1 \simeq H_2 \simeq H_3 \sim H_4 \text{ or } H_1 \simeq H_3 \simeq H_4 \sim H_2, \text{ weight } \frac{v-2}{2v} + \frac{v-2}{2fv'}$
791	(3) $[(H_1), (H_3), (H_2), (H_4)]$, probability $\frac{1}{M} \frac{(\nu/2)^2}{(\nu-1)^{2\prime}}$
792	{HS} $H_1 \equiv H_2 \sim H_3 \equiv H_4$, weight $\frac{1}{2fv^2}$;
793	$\{\text{HS}\Delta5\} \ H_1 \equiv H_2 \sim H_3 \asymp H_4 \text{ or } H_1 \asymp H_2 \sim H_3 \equiv H_4, \text{ weight } \frac{v-1}{fv^2};$
794	{HS} $H_1 \sim H_2 \sim H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \sim H_3 \sim H_4, \text{ weight } \frac{f-1}{2f\nu};$
795	{HS Δ 11/2} $H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight $\frac{1}{2fv^2}$;
796	{HS $\Delta 12/2$ } $H_1 \equiv H_4 \sim H_2 \approx H_3$ or $H_2 \equiv H_3 \sim H_1 \approx H_4$, weight $\frac{v-1}{fv^2}$;
797	{HS $\Delta 14/2$ } $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$, weight $\frac{f-1}{2fv'}$.
798	{HS $\Delta 16/2$ } $H_1 \approx H_4 \sim H_2 \approx H_3$, weight $\frac{(\nu-1)^2}{2f\nu^2}$;
799	{HS $\Delta 17$ } $H_1 \approx H_2 \sim H_3 \approx H_4$, weight $\frac{(\nu-1)^2}{2f\nu^2}$;
800	{HS\$\Delta18/2} $H_1 \simeq H_4 \sim H_2 \sim H_3 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4$, weight $\frac{(v-1)(f-1)}{2vf}$;
801	{HS\$\Delta19} $H_1 \simeq H_2 \sim H_3 \sim H_4 \text{ or } H_1 \sim H_2 \sim H_3 \simeq H_4, \text{ weight } \frac{(\nu-1)(f-1)}{2\nu f};$
802	(4) $[(H_1, H_3)], [(H_2, H_4)],$ probability $\frac{M-1}{M} \frac{(\nu/2-1)^2}{(\nu-1)^2}$, identical to (HS Δ 16/2);

803	(5) $[(H_1, H_3)], [(H_2), (H_4)]$ or $[(H_1), (H_3)], [(H_2, H_4)]$, probability $\frac{2(M-1)}{M} \frac{(\nu/2-1)(\nu/2)}{(\nu-1)^2}$,
804	identical to (HS Δ 18/4);
805	(6) $[(H_1), (H_3)], [(H_2), (H_4)],$ probability $\frac{M-1}{M} \frac{(\nu/2)^2}{(\nu-1)^{2'}}$ identical to (HS $\Delta 20$).
806	Δ_2' :
807	(1) $[(H_1, H_2), (H_3, H_4)]$, probability $\frac{1}{M} \frac{(\nu/2-1)^2}{(\nu-1)^2}$,
808	{HS}[] $H_1 \equiv H_3 \approx H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \approx H_2 \equiv H_3, \text{ weight } \frac{1}{2\nu(\nu-1)} + \frac{1}{2f\nu(\nu-1)};$
809	$\{\text{HS}\Delta 15\} \ H_1 \equiv H_3 \asymp H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \asymp H_4$
810	or $H_2 \equiv H_4 \approx H_1 \approx H_3$, weight $\frac{v-2}{v(v-1)} + \frac{v-2}{fv(v-1)}$;
811	{HS\$\Delta17} $H_1 \simeq H_2 \sim H_3 \simeq H_4$, weight $\frac{1}{2} + \frac{f-1}{4f}$;
812	{HS\Delta21} $H_1 \approx H_2 \approx H_3 \approx H_4$, weight $\frac{(v-2)(v-3)}{4v(v-1)} + \frac{(v-2)(v-3)}{4fv(v-1)}$;
813	(2) $[(H_1, H_2), (H_3), (H_4)]$ or $[(H_1), (H_2), (H_3, H_4)]$, probability $\frac{2}{M} \frac{(\nu/2-1)(\nu/2)}{(\nu-1)^2}$,
814	{HS $\Delta 13/2$ } $H_1 \equiv H_3 \approx H_2 \sim H_4$ or $H_1 \equiv H_4 \approx H_2 \sim H_3$ or $H_2 \equiv H_3 \approx H_1 \sim H_4$
815	or $H_2 \equiv H_4 \approx H_1 \sim H_3$, weight $\frac{1}{v} + \frac{1}{vf'}$
816	{HS Δ 19/2} $H_1 \simeq H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{2f}$;
817	$\{\text{HS}\Delta 22/2\} \ H_1 \simeq H_2 \simeq H_3 \sim H_4 \text{ or } H_1 \simeq H_2 \simeq H_4 \sim H_3, \text{ weight } \frac{v-2}{2v} + \frac{v-2}{2vf};$
818	(3) $[(H_1), (H_2), (H_3), (H_4)]$, probability $\frac{1}{M} \frac{(v/2)^2}{(v-1)^{2'}}$
819	{HS\Delta11} $H_1 \equiv H_3 \sim H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight $\frac{1}{fv^{2'}}$
820	{HS} $h_1 \equiv H_3 \sim H_2 \asymp H_4$ or $H_1 \equiv H_4 \sim H_2 \asymp H_3$ or $H_2 \equiv H_3 \sim H_1 \asymp H_4$
821	or $H_2 \equiv H_4 \sim H_1 \asymp H_3$, weight $\frac{2(v-1)}{fv^2}$;
822	{HS\Delta14} $H_1 \equiv H_3 \sim H_2 \sim H_4$ or $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$
823	or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{1}{fv}$;
824	$\{\text{HS}\Delta 16\} \ H_1 \cong H_3 \sim H_2 \cong H_4 \text{ or } H_1 \cong H_4 \sim H_2 \cong H_3, \text{ weight } \frac{(v-1)}{fv^2};$
825 826	$\{\text{HS}\Delta 18\} H_1 \cong H_3 \sim H_2 \sim H_4 \text{ or } H_1 \cong H_4 \sim H_2 \sim H_3 \text{ or } H_2 \cong H_3 \sim H_1 \sim H_4$ or $H_1 \cong H_1 \sim H_2 \sim H_1$ weight $\frac{(f-1)(v-1)}{v-1}$.
827	(4) $[(H_1, H_2)], [(H_2, H_4)], \text{ probability } \frac{M-1}{(v/2-1)^2}, \text{ identical to (HSA17)};$
828	(c) $[(H_1, H_2)], [(U_3, U_4)], PODELLAR, M_{M_1}(v-1)^2, PODELLAR, M_{M_2}(v-1)^2, PODELLAR, PODELLAR, M_{M_2}(v-1)^2, PODELLAR, PODE$
829	(b) $[(\Pi_1,\Pi_2)], [(\Pi_3), (\Pi_4)]$ of $[(\Pi_1), (\Pi_2)], [(\Pi_3,\Pi_4)], \text{ producting } M$ $(v-1)^2$ identical to (HSA19/2):
830	(6) $[(H_1), (H_2)], [(H_3), (H_4)], \text{ probability } \frac{M-1}{2} \frac{(v/2)^2}{(v/2)^2}$ identical to (HS $\Delta 20$).
0.01	Λ'
832	Δ_3 . (1) [(H, H_2) H_2 H_1] probability $\frac{1}{2} \frac{v/2-1}{2}$
833	{HSA2} $H_1 \equiv H_2 \simeq H_2 \equiv H_4$, weight $\frac{1}{M^2} + \frac{1}{M^2}$:
834	$\{\text{HSA4/2}\} H_1 \equiv H_2 \equiv H_4 \approx H_2 \text{ or } H_4 \approx H_2 \equiv H_2 \equiv H_4, \text{ weight } \frac{1}{1} + \frac{1}{1};$
835	$\{HSA7/2\} H_2 \sim H_1 \asymp H_2 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_2 \sim H_4, \text{ weight } \frac{1}{4v^2} + \frac{1}{4v^2} \frac{f^{-1}}{f^{-1}};$
836	$\{\text{HS}\Delta9\} H_1 \simeq H_2 \simeq H_2 \equiv H_4 \text{ or } H_1 \equiv H_2 \simeq H_2 \simeq H_4, \text{ weight } \frac{v-2}{v-2} + \frac{v-2}{v-2};$
837	$\{HSA10/2\} H_{4} \equiv H_{4} \approx H_{2} \equiv H_{2}, \text{ weight } \frac{1}{1} + \frac{1}{1}$
838	$(HSA12/4) H = H \sim H \sim H \text{ worden} \frac{1}{2} \pm \frac{1}{2} \pm \frac{f-1}{2}$
030	$\Pi_{110} \Pi_{2} = \Pi_{4} \sim \Pi_{1} \sim \Pi_{3}, \text{ weight } \frac{1}{8v} + \frac{1}{8fv} + \frac{1}{8f^{2}v'}$

839	{HS}{13}/4} $H_2 \equiv H_3 \approx H_1 \sim H_4 \text{ or } H_1 \equiv H_4 \approx H_3 \sim H_2, \text{ weight } \frac{1}{4v} + \frac{1}{4fv} + \frac{f^{-1}}{4f^2v};$
840	$\{\text{HS}\Delta 15^*3/4\} \ H_1 \equiv H_4 \asymp H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \asymp H_1 \asymp H_4 \text{ or } H_2 \equiv H_4 \asymp H_1 \asymp H_3,$
841	weight $\frac{3(v-2)}{8v^2} + \frac{3(v-2)}{8f^2v^2}$;
842	{HS\$\Delta16/2} $H_1 \simeq H_3 \sim H_2 \simeq H_4$, weight $\frac{v-1}{8v} + \frac{v-1}{8fv} + \frac{(f-1)(v-1)}{8f^2v}$;
843	{HS $\Delta 18/4$ } $H_1 \simeq H_3 \sim H_2 \sim H_4$, weight $\frac{3(f-1)}{8f} + \frac{(f-1)(f-2)}{8f^2}$;
844	{HSΔ21} $H_1 \simeq H_2 \simeq H_3 \simeq H_4$, weight $\frac{(v-2)(v-3)}{8v^2} + \frac{(v-2)(v-3)}{8f^2v^2}$;
845	{HS} $\Delta 22/2$ } $H_1 \simeq H_2 \simeq H_3 \sim H_4$ or $H_1 \simeq H_3 \simeq H_4 \sim H_2$,
846	weight $\frac{v-2}{4v} + \frac{v-2}{4fv} + \frac{(v-2)(f-1)}{4f^2v}$;
847	(2) $[(H_1), (H_3), H_2, H_4]$, probability $\frac{1}{M^2} \frac{v/2}{v-1'}$
848	{HS} $H_1 \equiv H_2 \sim H_3 \equiv H_4$, weight $\frac{1}{4fv^2}$;
849	{HS}{5} $H_1 \equiv H_2 \sim H_3 \approx H_4 \text{ or } H_1 \approx H_2 \sim H_3 \equiv H_4, \text{ weight } \frac{\nu - 1}{2f\nu^{2'}}$
850	{HS}[] $H_2 \equiv H_3 \equiv H_4 \sim H_1 \text{ or } H_1 \equiv H_2 \equiv H_4 \sim H_3, \text{ weight } \frac{1}{4v^2} + \frac{1}{4f^2v^2};$
851	{HS}{7/2} $H_1 \sim H_2 \approx H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \approx H_4 \sim H_3, \text{ weight } \frac{v-1}{4v^2} + \frac{v-1}{4f^2v^2};$
852	{HS}[] $H_1 \sim H_2 \sim H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \sim H_3 \sim H_4, \text{ weight } \frac{f-1}{4f\nu} + \frac{f-1}{4f^2\nu};$
853	{HS Δ 11/2} $H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight $\frac{1}{4fv^2}$;
854	{HS}{12/2} $H_1 \equiv H_4 \sim H_2 \approx H_3$ or $H_2 \equiv H_3 \sim H_1 \approx H_4$, weight $\frac{\nu - 1}{2f\nu^2}$;
855	{HS}{13/2} $H_1 \equiv H_4 \approx H_2 \sim H_3 \text{ or } H_2 \equiv H_4 \approx H_1 \sim H_3 \text{ or } H_2 \equiv H_3 \approx H_4 \sim H_1$
856	or $H_2 \equiv H_4 \approx H_3 \sim H_1$, weight $\frac{\nu - 1}{2\nu^2} + \frac{\nu - 1}{2f^2\nu^2}$;
857 858	{HS $\Delta 14^*3/4$ } $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$ or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{f-1}{4f_0} + \frac{f-1}{2f^2n'}$.
859	{HS $\Delta 16/2$ } $H_1 \simeq H_4 \sim H_2 \simeq H_3$, weight $\frac{(\nu-1)^2}{4 f_{12}^2}$;
860	{HS Δ 17} $H_1 \simeq H_2 \sim H_3 \simeq H_4$, weight $\frac{(v-1)^2}{4\pi^2}$;
861	$\{\text{HS}\Delta 18^*3/4\} \ H_1 \simeq H_4 \sim H_2 \sim H_3 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4 \text{ or } H_2 \simeq H_4 \sim H_1 \sim H_3,$
862	weight $\frac{(v-1)(f-1)}{4fv} + \frac{(v-1)(f-1)}{2f^2v};$
863	{HS}{19} $H_1 \simeq H_2 \sim H_3 \sim H_4 \text{ or } H_1 \sim H_2 \sim H_3 \simeq H_4, \text{ weight } \frac{(v-1)(f-1)}{4fv} + \frac{(v-1)(f-1)}{4f^2v};$
864	{HS $\Delta 20$ } $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{(f-1)(f-2)}{4f^2}$;
865	$\{\text{HS}\Delta 22/2\} H_1 \simeq H_2 \simeq H_4 \sim H_3 \text{ or } H_2 \simeq H_3 \simeq H_4 \sim H_1, \text{ weight } \frac{(v-1)(v-2)}{4v^2} + \frac{(v-1)(v-2)}{4f^2v^2};$
866	(3) $[(H_1, H_3)], [H_2, H_4],$ probability $\frac{M-1}{M^2} \frac{\nu/2-1}{\nu-1},$
867	{HS Δ 12/4} $H_2 \equiv H_4 \sim H_1 \approx H_3$, weight $\frac{1}{4v} + \frac{1}{4fv}$;
868	{HS\$\Delta16/2} $H_1 \approx H_3 \sim H_2 \approx H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv'}$.
869	{HS\$\Delta18/4} $H_1 \simeq H_3 \sim H_2 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2'}$.
870	(4) $[(H_1), (H_3)], [H_2, H_4], \text{ probability } \frac{M-1}{M^2} \frac{v/2}{v-1'}$
871	{HS Δ 14/4} $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{1}{4v} + \frac{1}{4fv'}$;
872	{HS Δ 18/4} $H_2 \approx H_4 \sim H_1 \sim H_3$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv}$;
873	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
874	(5) $[(H_1, H_3), H_2], [H_4], \text{ probability } \frac{M-1}{M^2} \frac{\nu/2-1}{\nu-1},$
875	{HS $\Delta7/4$ } $H_1 \equiv H_2 \approx H_3 \sim H_4$, weight $\frac{1}{4v} + \frac{1}{4fv'}$
	,

876	{HS $\Delta 13/8$ } $H_2 \equiv H_3 \approx H_1 \sim H_4$, weight $\frac{1}{4v} + \frac{1}{4fv'}$;
877	{HS\$\Delta18/4} $H_1 \approx H_3 \sim H_2 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
878	{HS} $\Delta 22/4$ } $H_1 \simeq H_2 \simeq H_3 \sim H_4$, weight $\frac{v^2}{4v} + \frac{v^2}{4v'}$
879	(6) $[(H_1), (H_3), H_2], [H_4], \text{ probability } \frac{M-1}{M^2} \frac{v/2}{v-1}$
880	{HS}[]{8/2} $H_1 \equiv H_2 \sim H_3 \sim H_4$, weight $\frac{1}{4v} + \frac{1}{4fv'}$
881	{HS $\Delta 14/4$ } $H_2 \equiv H_3 \sim H_1 \sim H_4$, weight $\frac{1}{4n} + \frac{1}{4n}$;
882	{HS\$\Delta18/4} $H_2 \simeq H_3 \sim H_1 \sim H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4v'}$;
883	{HS}{19/2} $H_1 \simeq H_2 \sim H_3 \sim H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4v'}$
884	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{2f}$;
885	(7) $[(H_1, H_3), H_4], [H_2], \text{ probability } \frac{\frac{M-1}{M^2}}{m^2} \frac{\nu/2 - 1}{\nu - 1},$
886	$\{\text{HS}\Delta7/4\}\ H_2 \sim H_1 \asymp H_3 \equiv H_4, \text{ weight } \frac{1}{4v} + \frac{1}{4v'};$
887	{HS\$\Delta13/8} $H_1 \equiv H_4 \approx H_3 \sim H_2$, weight $\frac{1}{4v} + \frac{1}{4tv}$;
888	{HS\$\Delta18/4} $H_1 \simeq H_3 \sim H_2 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
889	{HS} $\Delta 22/4$ } $H_1 \simeq H_3 \simeq H_4 \sim H_2$, weight $\frac{v^2}{4v} + \frac{v^2}{4v^2}$
890	(8) $[(H_1), (H_3), H_4], [H_2], \text{ probability } \frac{M-1}{M^2} \frac{\nu/2}{\nu-1'}$
891	{HS}[]{8/2} $H_1 \sim H_2 \sim H_3 \equiv H_4$, weight $\frac{1}{4\nu} + \frac{1}{4f\nu'}$
892	{HS $\Delta 14/4$ } $H_1 \equiv H_4 \sim H_2 \sim H_3$, weight $\frac{1}{4\nu} + \frac{1}{4\ell\nu}$;
893	{HS\$\Delta18/4} $H_1 \simeq H_4 \sim H_2 \sim H_3$, weight $\frac{v-1}{4v} + \frac{v-1}{4tv}$;
894	{HS\$\Delta19/2} $H_1 \sim H_2 \sim H_3 \approx H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4v}$;
895	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{2f}$;
896	(9) $[(H_1, H_3)], [H_2], [H_4], \text{ probability } \frac{(M-1)(M-2)}{M^2} \frac{v/2-1}{v-1}, \text{ identical to (HS\Delta 18/4)};$
897	(10) $[(H_1), (H_3)], [H_2], [H_4], \text{ probability } \frac{(M-1)(M-2)}{M^2} \frac{v/2}{v-1}, \text{ identical to (HS}\Delta 20).$
898	Δ_{4}^{\prime} :
899	(1) $[(H_1, H_2), H_3, H_4]$, probability $\frac{1}{M^2} \frac{v/2 - 1}{v - 1}$,
900	{HS}[] $H_1 \approx H_2 \equiv H_3 \equiv H_4 \text{ or } H_2 \approx H_1 \equiv H_3 \equiv H_4, \text{ weight } \frac{1}{4v^2} + \frac{1}{4f^2v^2};$
901	{HS} $\Delta 5/2$ } $H_1 \approx H_2 \sim H_3 \equiv H_4$, weight $\frac{1}{8\nu} + \frac{1}{8f\nu} + \frac{f-1}{8f^2\nu'}$
902	{HS} $\Delta 9/2$ } $H_1 \approx H_2 \approx H_3 \equiv H_4$, weight $\frac{v-2}{8v^2} + \frac{v-2}{8f^2v^2}$;
903	{HS}[] $H_1 \equiv H_3 \approx H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \approx H_2 \equiv H_3, \text{ weight } \frac{1}{4v^2} + \frac{1}{4f^2v^2};$
904	{HS $\Delta 13/2$ } $H_1 \equiv H_3 \approx H_2 \sim H_4$ or $H_1 \equiv H_4 \approx H_2 \sim H_3$ or $H_2 \equiv H_3 \approx H_1 \sim H_4$
905	or $H_2 \equiv H_4 \approx H_1 \sim H_3$, weight $\frac{1}{2v} + \frac{1}{2fv} + \frac{f-1}{2f^2v}$;
906	{HS\Delta15} $H_1 \equiv H_3 \approx H_2 \approx H_4$ or $H_1 \equiv H_4 \approx H_2 \approx H_3$ or $H_2 \equiv H_3 \approx H_1 \approx H_4$
907	or $H_2 \equiv H_4 \approx H_1 \approx H_3$, weight $\frac{1}{2v^2} + \frac{1}{2f^2v^2}$;
908	{HS}{17} $H_1 \simeq H_2 \sim H_3 \simeq H_4$, weight $\frac{v-1}{8v} + \frac{v-1}{8f^2v} + \frac{(J-1)(v-1)}{8f^2v}$;
909	{HS\$\Delta19/2} $H_1 \simeq H_2 \sim H_3 \sim H_4$, weight $\frac{3(j-1)}{8f} + \frac{(j-1)(j-2)}{8f^2}$;
910	{HS\Delta21} $H_1 \simeq H_2 \simeq H_3 \simeq H_4$, weight $\frac{(v-2)(v-3)}{8v^2} + \frac{(v-2)(v-3)}{8f^2v^2}$;
911	$\{\text{HS}\Delta 22/2\} \ H_1 \asymp H_2 \asymp H_3 \sim H_4 \text{ or } H_1 \asymp H_2 \asymp H_4 \sim H_3,$

912	weight $\frac{v-2}{4v} + \frac{v-2}{4fv} + \frac{(v-2)(f-1)}{4f^2v}$;
913	(2) $[(H_1), (H_2), H_3, H_4]$, probability $\frac{1}{M^2} \frac{v/2}{v-1}$
914	{HS} $\Delta 6/2$ } $H_1 \equiv H_3 \equiv H_4 \sim H_2 \text{ or } H_2 \equiv H_3 \equiv H_4 \sim H_1, \text{ weight } \frac{1}{4v^2} + \frac{1}{4f^2v^2};$
915	$\{\text{HS}\Delta 7/2\}$ $H_1 \sim H_2 \simeq H_3 \equiv H_4 \text{ or } H_2 \sim H_1 \simeq H_3 \equiv H_4, \text{ weight } \frac{v-1}{4n^2} + \frac{v-1}{4n^2n^2};$
916	{HS}[] $H_1 \sim H_2 \sim H_3 \equiv H_4$, weight $\frac{f-1}{4f^2 n'}$;
917	{HS Δ 11} $H_1 \equiv H_3 \sim H_2 \equiv H_4$ or $H_1 \equiv H_4 \sim H_2 \equiv H_3$, weight $\frac{1}{26\pi^2}$
918	$\{\text{HS}\Delta 12\} \ H_1 \equiv H_3 \sim H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4$
919	or $H_2 \equiv H_4 \sim H_1 \approx H_3$, weight $\frac{v-1}{fv^2}$;
920	{HS $\Delta 13/2$ } $H_1 \equiv H_3 \approx H_4 \sim H_2$ or $H_1 \equiv H_4 \approx H_3 \sim H_2$ or $H_2 \equiv H_3 \approx H_4 \sim H_1$
921	or $H_2 \equiv H_4 \approx H_3 \sim H_1$, weight $\frac{v-1}{2v^2} + \frac{v-1}{2f^2v^{2'}}$;
922	{HS}{14} $H_1 \equiv H_3 \sim H_2 \sim H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \sim H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \sim H_4$
923	or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{f-1}{2vf} + \frac{f-1}{2f^2v'}$.
924	{HS\Delta16} $H_1 \cong H_3 \sim H_2 \cong H_4$ or $H_1 \cong H_4 \sim H_2 \cong H_3$, weight $\frac{(v-1)^2}{2fv^2}$;
925	{HS\Delta18} $H_1 \simeq H_3 \sim H_2 \sim H_4$ or $H_1 \simeq H_4 \sim H_2 \sim H_3$ or $H_2 \simeq H_3 \sim H_1 \sim H_4$
926	or $H_2 \simeq H_4 \sim H_1 \sim H_3$, weight $\frac{(v-1)(f-1)}{2fv} + \frac{(v-1)(f-1)}{2f^2v}$;
927	{HS $\Delta 19/2$ } $H_1 \sim H_2 \sim H_3 \approx H_4$, weight $\frac{(f-1)(v-1)}{4f^2v}$;
928	{HS $\Delta 20$ } $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{(f-1)(f-2)}{4f^2}$;
929	$\{\text{HS}\Delta 22/2\} H_1 \approx H_3 \approx H_4 \sim H_2 \text{ or } H_2 \approx H_3 \approx H_4 \sim H_1, \text{ weight } \frac{(v-1)(v-2)}{4v^2} + \frac{(v-1)(v-2)}{4f^2v^2};$
930	(3) $[(H_1, H_2)], [H_3, H_4],$ probability $\frac{M-1}{M^2} \frac{v/2-1}{v-1}$
931	{HS $\Delta 5/2$ } $H_1 \simeq H_2 \sim H_3 \equiv H_4$, weight $\frac{1}{4v} + \frac{1}{4fv'}$
932	{HS Δ 17} $H_1 \approx H_2 \sim H_3 \approx H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4tv}$
933	{HS\$\Delta19/2} $H_1 = H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
934	(4) $[(H_1), (H_2)], [H_3, H_4],$ probability $\frac{M-1}{M^2} \frac{\nu/2}{\nu-1}$
935	$\{\text{HS}\Delta 8/2\}$ $H_1 \sim H_2 \sim H_3 \equiv H_{4'} \text{ weight } \frac{1}{4v} + \frac{1}{4fv'}$
936	{HS\$\Delta19/2} $H_1 \sim H_2 \sim H_3 \approx H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4v'}$;
937	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
938	(5) $[(H_1, H_2), H_3], [H_4], \text{ probability } \frac{M_1}{M_2} \frac{v/2-1}{v-1},$
939	{HS Δ 13/4} $H_1 \equiv H_3 \simeq H_2 \sim H_4$ or $H_2 \equiv H_3 \simeq H_1 \sim H_4$, weight $\frac{1}{2\nu} + \frac{1}{2f\nu}$;
940	{HS Δ 19/2} $H_1 \simeq H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
941	{HS} $\Delta 22/4$ } $H_1 \simeq H_2 \simeq H_3 \sim H_4$, weight $\frac{v^2}{4v} + \frac{v^2}{4t^2}$;
942	(6) $[(H_1), (H_2), H_3], [H_4], \text{ probability } \frac{M-1}{M^2} \frac{v/2}{v-1'}$
943	{HS $\Delta 14/2$ } $H_1 \equiv H_3 \sim H_2 \sim H_4$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$, weight $\frac{1}{4\nu} + \frac{1}{4\ell\nu'}$
944	{HS\$\Delta18/2} $H_1 \simeq H_3 \sim H_2 \sim H_4 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4v}$;
945	{HS $\Delta 20$ } $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
946	(7) $[(H_1, H_2), H_4], [H_3], \text{ probability } \frac{M-1}{M^2} \frac{\nu/2 - 1}{\nu - 1},$
947	{HS Δ 13/4} $H_1 \equiv H_4 \approx H_2 \sim H_3$ or $H_2 \equiv H_4 \approx H_1 \sim H_3$, weight $\frac{1}{2\nu} + \frac{1}{2f\nu}$;
948	{HS\$\Delta19/2} $H_1 \simeq H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{4f} + \frac{1}{2}$;
	-, –

949	{HS} $\Delta 22/4$ } $H_1 \simeq H_2 \simeq H_4 \sim H_3$, weight $\frac{v-2}{4v} + \frac{v-2}{4fv'}$
950	(8) $[(H_1), (H_2), H_4], [H_3], \text{ probability } \frac{M-1}{M^2} \frac{v/2}{v-1}$
951	{HS $\Delta 14/2$ } $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{1}{2\nu} + \frac{1}{2f\nu'}$
952	{HS\$\Delta18/2} $H_1 \approx H_4 \sim H_2 \sim H_3 \text{ or } H_2 \approx H_4 \sim H_1 \sim H_3, \text{ weight } \frac{v-1}{2v} + \frac{v-1}{2v'};$
953	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{2f}$;
954	(9) $[(H_1, H_2)], [H_3], [H_4], \text{ probability } \frac{(M-1)(M-2)}{M^2} \frac{\nu/2-1}{\nu-1}, \text{ identical to (HS\Delta 19/2);}$
955	(10) $[(H_1), (H_2)], [H_3], [H_4],$ probability $\frac{(M-1)(M-2)}{M^2} \frac{v/2}{v-1}$, identical to (HS $\Delta 20$).
956	Δ'_{ϵ} :
957	(1) $[H_1, H_2, H_3, H_4]$, probability $\frac{1}{M^3}$
958	{HS}\Delta1} H_1 \equiv H_2 \equiv H_3 \equiv H_{4'} weight $\frac{1}{1 + (1 + 1)^2} + \frac{1}{1 + (1 + 1)^2}$;
959	{HS}[] $H_1 \equiv H_2 \approx H_3 \equiv H_{4\ell}$ weight $\frac{v-1}{v-1} + \frac{v-1}{v-1}$;
960	{HS} Δ } $H_1 \equiv H_2 \sim H_2 \equiv H_4$, weight $\frac{1}{16t^3} + \frac{f^{-1}}{16t^3}$;
961	$\{HSA4\} H_1 \equiv H_2 \equiv H_4 \approx H_4 \text{ or } H_1 \equiv H_2 \equiv H_4 \approx H_2 \text{ or } H_4 \approx H_2 \equiv H_4$
962	or $H_2 \approx H_1 \equiv H_3 \equiv H_4$, weight $\frac{v-1}{4v^3} + \frac{v-1}{4v^3}$;
963	{HS}5} $H_1 \equiv H_2 \sim H_3 \approx H_4 \text{ or } H_1 \approx H_2 \sim H_3 \equiv H_4 \text{ weight } \frac{\nu - 1}{4 \int r^2} + \frac{(f - 1)(\nu - 1)}{2 \int r^2 r^2}$
964	$\{\text{HS}\Delta6\} \ H_1 \equiv H_3 \equiv H_4 \sim H_2 \text{ or } H_2 \equiv H_3 \equiv H_4 \sim H_1 \text{ or } H_1 \equiv H_2 \equiv H_3 \sim H_4$
965	or $H_1 \equiv H_2 \equiv H_4 \sim H_3$, weight $\frac{1}{4n^2} + \frac{1}{4f^2n^2} + \frac{f-1}{4f^3n^2}$;
966	$\{\text{HS}\Delta7\} \ H_1 \sim H_2 \asymp H_3 \equiv H_4 \text{ or } H_2 \sim H_1 \asymp H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \asymp H_3 \sim H_4$
967	or $H_1 \equiv H_2 \approx H_4 \sim H_3$, weight $\frac{v-1}{4v^2} + \frac{v-1}{4f^2v^2} + \frac{(f-1)(v-1)}{4f^3v^2}$;
968	$\{\text{HS}\Delta 8\} \ H_1 \sim H_2 \sim H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \sim H_3 \sim H_4, \text{ weight } \frac{f-1}{8fv} + \frac{f-1}{4f^2v} + \frac{(f-1)(f-2)}{8f^3v};$
969	{HS\Delta9} $H_1 \simeq H_2 \simeq H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \simeq H_3 \simeq H_4, \text{ weight } \frac{(v-1)(v-2)}{8v^3} + \frac{(v-1)(v-2)}{8t^3v^3};$
970	$ \{\text{HS}\Delta 10\} \ H_1 \equiv H_3 \asymp H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \asymp H_2 \equiv H_3, \text{ weight } \frac{v-1}{8v^3} + \frac{v-1}{8f^3v^3}; $
971	{HS}[1] $H_1 \equiv H_3 \sim H_2 \equiv H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \equiv H_3, \text{ weight } \frac{1}{4fv^2} + \frac{f-1}{8f^3v^2};$
972	$\{\text{HS}\Delta 12\} \ H_1 \equiv H_3 \sim H_2 \asymp H_4 \text{ or } H_1 \equiv H_4 \sim H_2 \asymp H_3 \text{ or } H_2 \equiv H_3 \sim H_1 \asymp H_4$
973	or $H_2 \equiv H_4 \sim H_1 \asymp H_3$, weight $\frac{v-1}{2fv^2} + \frac{(f-1)(v-1)}{4f^3v^2}$;
974	{HS\Delta13} $H_1 \equiv H_3 \approx H_2 \sim H_4$ or $H_1 \equiv H_4 \approx H_2 \sim H_3$ or $H_2 \equiv H_3 \approx H_1 \sim H_4$
975	or $H_2 \equiv H_4 \approx H_1 \sim H_3$ or $H_1 \equiv H_3 \approx H_4 \sim H_2$ or $H_1 \equiv H_4 \approx H_3 \sim H_2$
976	or $H_2 \equiv H_3 \approx H_4 \sim H_1$ or $H_2 \equiv H_4 \approx H_3 \sim H_1$,
977	weight $\frac{1}{2v^2} + \frac{1}{2f^2v^2} + \frac{1}{2f^3v^2};$
978	{HS\Delta14} $H_1 \equiv H_3 \sim H_2 \sim H_4$ or $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$
979	or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{f_1}{4fv} + \frac{f_1}{2f^2v} + \frac{(f_1)(f_2)}{4f^3v}$;
980	{HS\Delta15} $H_1 \equiv H_3 \approx H_2 \approx H_4$ or $H_1 \equiv H_4 \approx H_2 \approx H_3$ or $H_2 \equiv H_3 \approx H_1 \approx H_4$
981	or $H_2 \equiv H_4 \approx H_1 \approx H_3$, weight $\frac{(v-1)(v-2)}{4v^3} + \frac{(v-1)(v-2)}{4f^3v^3}$;
982	{HS\$\Delta16} $H_1 = H_3 \sim H_2 = H_4 \text{ or } H_1 = H_4 \sim H_2 = H_3, \text{ weight } \frac{(v-1)^2}{4fv^2} + \frac{(f-1)(v-1)^2}{8f^3v^2};$
983	{HS\$\Delta17} $H_1 \simeq H_2 \sim H_3 \simeq H_4$, weight $\frac{(v-1)^2}{8fv^2} + \frac{(f-1)(v-1)^2}{16f^3v^2}$;
984	$\{\text{HS}\Delta 18\} \ H_1 \simeq H_3 \sim H_2 \sim H_4 \text{ or } H_1 \simeq H_4 \sim H_2 \sim H_3 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4$
985	or $H_2 \simeq H_4 \sim H_1 \sim H_3$, weight $\frac{(f-1)(v-1)}{4fv} + \frac{(f-1)(v-1)}{2f^2v} + \frac{(f-1)(f-2)(v-1)}{4f^3v}$;
986	$\{\text{HS}\Delta 19\} \ H_1 \asymp H_2 \sim H_3 \sim H_4 \text{ or } H_1 \sim H_2 \sim H_3 \asymp H_4,$

1026	or $H_2 \simeq H_4 \sim H_1 \sim H_3$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv} + \frac{(f-1)(v-1)}{8fv} + \frac{(f-1)(v-1)}{8f^2v}$;
1027	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{1}{4} + \frac{f-1}{4f} + \frac{(f-1)^2}{16f^2}$;
1028	(5) $[H_1, H_2], [H_3], [H_4] \text{ or } [H_3, H_4], [H_1], [H_2], \text{ probability } \frac{2(M-1)(M-2)}{M^3},$
1029	{HS}[A8/2] $H_1 \sim H_2 \sim H_3 \equiv H_4 \text{ or } H_1 \equiv H_2 \sim H_3 \sim H_4, \text{ weight } \frac{1}{4\nu} + \frac{1}{4f\nu};$
1030	$\{\text{HS}\Delta 19/2\} \ H_1 \simeq H_2 \sim H_3 \sim H_4 \text{ or } H_1 \sim H_2 \sim H_3 \simeq H_4, \text{ weight } \frac{v-1}{4v} + \frac{v-1}{4tv'}$
1031	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{1}{2} + \frac{f-1}{4f}$;
1032	(6) $[H_1, H_3], [H_2], [H_4] \text{ or } [H_1, H_4], [H_2], [H_3] \text{ or } [H_2, H_3], [H_1], [H_4]$
1033	or $[H_2, H_4]$, $[H_1]$, $[H_3]$, probability $\frac{4(M-1)(M-2)}{M^3}$,
1034	{HS $\Delta 14/4$ } $H_1 \equiv H_3 \sim H_2 \sim H_4$ or $H_1 \equiv H_4 \sim H_2 \sim H_3$ or $H_2 \equiv H_3 \sim H_1 \sim H_4$
1035	or $H_2 \equiv H_4 \sim H_1 \sim H_3$, weight $\frac{1}{4v} + \frac{1}{4fv'}$
1036	$\{\text{HS}\Delta 18/4\} \ H_1 \simeq H_3 \sim H_2 \sim H_4 \text{ or } H_1 \simeq H_4 \sim H_2 \sim H_3 \text{ or } H_2 \simeq H_3 \sim H_1 \sim H_4$
1037	or $H_2 \simeq H_4 \sim H_1 \sim H_3$, weight $\frac{\nu - 1}{4\nu} + \frac{\nu - 1}{4f\nu}$;
1038	{HS}20} $H_1 \sim H_2 \sim H_3 \sim H_4$, weight $\frac{1}{2} + \frac{f-1}{4f}$;
1039	(7) $[H_1], [H_2], [H_3], [H_4],$ probability $\frac{(M-1)(M-2)(M-3)}{M^3}$, identical to (HS $\Delta 20$).
1040	Δ_6' :
1041	(1) (H_1, H_2, H_3, H_4) , probability $\frac{(\nu/2-1)(\nu/2-2)(\nu/2-3)}{(\nu-1)(\nu-2)(\nu-3)}$, identical to (HS $\Delta 21$);
1042	(2) $(H_1, H_2, H_3), (H_4)$ or $(H_1, H_2, H_4), (H_3)$ or $(H_1, H_3, H_4), (H_2)$
1043	or (H_2, H_3, H_4) , (H_1) , probability $\frac{4(\nu/2-1)(\nu/2-2)(\nu/2)}{(\nu-1)(\nu-2)(\nu-3)}$, identical to (HS $\Delta 22/4$);
1044	(3) $(H_1, H_2), (H_3, H_4)$, probability $\frac{(v/2-1)^2 (v/2)}{(v-1)(v-2)(v-3)}$, identical to (HS $\Delta 17$);
1045	(4) $(H_1, H_3), (H_2, H_4)$ or $(H_1, H_4), (H_2, H_3)$, probability $\frac{2(\nu/2-1)^2 (\nu/2)}{(\nu-1)(\nu-2)(\nu-3)'}$
1046	identical to (HS Δ 16/2).
1047	Δ_7' :
1048	(1) $[(H_1, H_2, H_3), H_4]$, probability $\frac{1}{M} \frac{(\nu/2 - 1)(\nu/2 - 2)}{(\nu - 1)(\nu - 2)}$,
1049	$\{\text{HS}\Delta 9/2\} \ H_1 \asymp H_2 \asymp H_3 \equiv H_4, \text{ weight } \frac{1}{4\nu} + \frac{1}{4f\nu'}$
1050	{HS}\Delta15/2} $H_1 \equiv H_4 \approx H_2 \approx H_3 \text{ or } H_2 \equiv H_4 \approx H_1 \approx H_3, \text{ weight } \frac{1}{2v} + \frac{1}{2fv'}$
1051	{HS}\Delta21} $H_1 \simeq H_2 \simeq H_3 \simeq H_4$, weight $\frac{v-3}{4v} + \frac{v-3}{4fv'}$
1052	{HS $\Delta 22/4$ } $H_1 \approx H_2 \approx H_3 \sim H_4$, weight $\frac{1}{2} + \frac{f-1}{4f}$;
1053	(2) $[(H_1, H_2, H_3)], [H_4],$ probability $\frac{M-1}{M} \frac{(\nu/2-1)(\nu/2-2)}{(\nu-1)(\nu-2)}$, identical to (HS $\Delta 22/4$);
1054	(3) $[(H_1, H_2), (H_3), H_4]$, probability $\frac{1}{M} \frac{(\nu/2 - 1)(\nu/2)}{(\nu - 1)(\nu - 2)}$,
1055	$\{\text{HS}\Delta 5/2\} H_1 \asymp H_2 \sim H_3 \equiv H_4, \text{ weight } \frac{1}{4\nu} + \frac{1}{4f\nu'}$
1056	{HS Δ 13/4} $H_1 \equiv H_4 \approx H_2 \sim H_3$ or $H_2 \equiv H_4 \approx H_1 \sim H_3$, weight $\frac{1}{2v} + \frac{1}{2fv'}$;
1057	{HS\$\Delta17} $H_1 = H_2 \sim H_3 = H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv'}$
1058	{HS\$\Delta19/2} $H_1 \simeq H_2 \sim H_3 \sim H_4$, weight $\frac{f-1}{2f}$;
1059	{HS $\Delta 22/4$ } $H_1 \approx H_2 \approx H_4 \sim H_3$, weight $\frac{v-2}{4v} + \frac{v-2}{4fv'}$.
1060	(4) $[(H_1, H_2), (H_3)], [H_4]$, probability $\frac{M-1}{M} \frac{(\nu/2-1)(\nu/2)}{(\nu-1)(\nu-2)}$, identical to (HS Δ 19/2);
1061	(5) $[(H_1, H_3), (H_2), H_4]$ or $[(H_2, H_3), (H_1), H_4]$, probability $\frac{2}{M} \frac{(\nu/2 - 1)(\nu/2)}{(\nu - 1)(\nu - 2)}$,

1062	$\{\text{HS}\Delta7/4\} \ H_2 \sim H_1 \asymp H_3 \equiv H_4, \text{ weight } \frac{1}{4\nu} + \frac{1}{4f\nu'}$
1063	$\{\text{HS}\Delta 12/4\} \ H_2 \equiv H_4 \sim H_1 \asymp H_3, \text{ weight } \frac{1}{4v} + \frac{1}{4fv};$
1064	{HS Δ 13/8} $H_1 \equiv H_4 \approx H_3 \sim H_2$, weight $\frac{1}{4v} + \frac{1}{4fv}$;
1065	{HS $\Delta 16/2$ } $H_1 \approx H_3 \sim H_2 \approx H_4$, weight $\frac{v-1}{4v} + \frac{v-1}{4fv'}$
1066	{HS Δ 18/4} $H_1 \simeq H_3 \sim H_2 \sim H_4$, weight $\frac{f-1}{2f}$;
1067	$\{\text{HS}\Delta 22/4\} H_1 \approx H_3 \approx H_4 \sim H_2, \text{ weight } \frac{v-2}{4v} + \frac{v-2}{4fv'}$
1068	(6) $[(H_1, H_3), (H_2)], [H_4] \text{ or } [(H_2, H_3), (H_1)], [H_4], \text{ probability } \frac{2(M-1)}{M} \frac{(\nu/2-1)(\nu/2)}{(\nu-1)(\nu-2)},$
1069	identical to (HS Δ 18/4).

1070 The transition matrix $\boldsymbol{\Omega}$ for the DH mating system is not shown, but the matrices **T** 1071 and **S** in the principal part of $\boldsymbol{\Omega}$ are listed in Appendix I.

1073 Appendix I. T and S for various mating systems

1074 HS mating system

1075

1079 \mathbf{S}_{HS} $\begin{bmatrix} \frac{1}{2} + \frac{c}{2} \left(c_2 + \frac{c}{v_1^2} \right) & -\frac{v c_1^2}{2v_1} & \frac{c v c_1}{v_1} & 0 \\ c_1^2 - \frac{1 + 2c c_1}{v} + \frac{c^2}{v_1} & -c_1^2 & 2c c_1 & 0 \end{bmatrix}$ $\frac{cv_2(v_1-cv_2)}{v_1^2}$ $\frac{c^2 v_2 v_3}{2 v_1^2}$ $-\frac{c^2v}{2v_1}$ 0 0 0 0 0 0 0 $\frac{2cv_2(v_1-cv_2)}{vv_1}$ $\frac{c^2 v_2 v_3}{v v_1}$ $-c^2$ 0 0 0 0 0 $\frac{cv_2}{2vv_1^2} - \frac{c_1}{2v_1} \frac{1}{2v_1} - \frac{c_1}{2v_1} \frac{1}{2v_1} - \frac{c_1v_2}{2v_1} - \frac{c_1}{2v_1} \frac{v_1 - cv_2}{2v_1} - \frac{c_1}{2v_1} \frac{v_1 - cv_2}{2v_1} - \frac{c_1}{v} \frac{v_1 - cv_2}{v} + \frac{c_1 - cv_2}{v} - \frac{c_1}{v} \frac{v_1 - cv_2}{v} + \frac{c_1 - cv_2}{v} + \frac{$ $\frac{1}{2v_{1}} \qquad \frac{c - c_{1}v_{1}}{v_{1}}$ $\frac{v_{1} - cv_{2}}{2v_{1}} \qquad \frac{v - cv_{2}}{2v_{1}}$ $\frac{v_{1} - cv_{2}}{v} \qquad \frac{2v_{1} - 2cv_{2}}{v}$ $\frac{v_2^2(v_1 - cv_3)}{2vv_1^2}$ $\frac{\frac{3vc_1}{2v_1}}{\frac{3vc_1}{2v_1}}$ $\frac{c}{2v_1}\\\frac{c}{2}$ $\frac{cv_2^2v_3}{2vv_1^2}$ $\frac{-3cv}{2v_1}$ $\frac{cv_2}{v_1}$ 0 0 0 $\frac{-3cv}{2v_1}$ $\frac{(v_2 - cv_4)v_2}{2v_1v}$ $\frac{cv_2v_3}{2v_1v}$ $\frac{cv_2}{2v_1}$ 0 0 0 $\frac{cv_1}{v}$ $\frac{2cv_2}{v}$ 3*c*₁ -3c 0 0 0 0 0 $\frac{\frac{3c+2v_1-2cv}{4v_1^2}}{\frac{v_2^2}{4vv_1^3}}\\ \frac{\frac{v_2^2}{2vv_1^3}}{\frac{2}{2vv_1^3}}$ $\frac{vc_1}{4v_1}$ $\frac{vc_1}{2v_1}$ $\frac{3v_1v_2 - c(3v_5v + 14)}{4v_1^2}$ $-\frac{cv}{4v_1}$ $\frac{cv_3(3v-4)}{4v_1^2}$ $\frac{cv}{2v_1}$ 0 0 0 0 0 0 $\frac{\frac{v_{2}^{2}}{v_{1}^{2}}}{\frac{v_{2}^{2}}{v_{1}^{2}}}$ $\frac{\frac{v_{2}^{2}}{v_{1}^{2}}}{\frac{v_{1}^{2}}{v_{1}^{2}}}$ $1 - \frac{4}{v} + \frac{1}{v_{1}}$ $1 - \frac{4}{v} + \frac{1}{v_{1}}$ $\frac{v_2^3}{2vv_1^3} \\
\frac{v_2^3}{vv_1^3}$ $\frac{v_2^3 v_3}{4v v_1^3}$ $-\frac{3v^2}{2v_1^2}$ $\frac{v_2}{2v_1^2}$ $-\frac{vv_4}{2v_1^2}$ $\frac{\frac{v_2}{v_1^2}}{\frac{2v_2}{v_1^2}}$ $\frac{\frac{2v_2}{v_1^2}}{\frac{v_2}{vv_1}}$ $\frac{vv_2}{4v_1^2}$ $\frac{v}{2v_1}$ $\frac{v}{v_1^2} \frac{v}{v_1^2} \frac{v}{v_1^2} \frac{v}{v_1} \frac{2}{v_1} \frac{v}{v_1} \frac{2}{v_1} \frac{v}{v_1} \frac{4}{v}$ 1080 0 0 = 0 $\frac{v}{v_1}$ $\frac{(5-2v)v}{2v_1^2}$ $\frac{3v^2}{2v_1^2}$ $\frac{v_2^3v_3}{4vv_1^3}$ $\frac{vv_2}{4v_1^2}$ 0 0 $-\frac{3v}{v_1}\\-\frac{3v}{v_1}\\-\frac{3v}{v_1}$ $\frac{2+v}{2v_1}$ $\frac{1}{v} - \frac{1}{2v_1}$ 0 $\frac{1}{2} - \frac{1}{v}$ 0 $\frac{1}{-\frac{v_4}{2v_1}}$ 0 0 0 $\frac{2v_2}{vv_1}$ $\frac{1}{2} - \frac{1}{v}$ 2 0 0 0 0 0 0 $4-\frac{4}{v}$ $2-\frac{2}{v}$ -6 0 0 0 0 0 0 0 0 0 $\begin{array}{c} 0 & \frac{28 + v(7v - 32)}{8v_1^2} \\ 0 & \frac{5 + v}{4v_1} - \frac{3}{v} \end{array}$ $\frac{8 + v(2v - 9)}{v_1^2 v_3}$ $-\frac{vv_2}{8v_1v_3}$ $\frac{v_2}{2v_1^2v_3}$ $-rac{vv_2}{4v_1v_3}$ $\frac{vv_4}{2v_1v_3}$ 0 0 0 0 0 0 $-\frac{3v}{4v_1}$ $\frac{8-5v}{4-4v}$ $\frac{1}{2v_1}$ $\frac{2}{v_1}$ $\frac{1}{2}$ $\frac{1}{4}$ $-\frac{3v}{2v_1}$ $\frac{v_4}{2vv_1}$ 0 0 0

1082 MS mating system

1089 ME and DR mating systems

		$\frac{c_1^2 v_2}{2 v_1}$	$\frac{vc_1^2}{2v_1}$	$-\frac{cvc_1}{v_1}$	0	0	$-\frac{cc_1v_2}{v_1}$	$\frac{c^2 v}{2v_1}$	0	0	0	0	$\frac{c^2 v_2}{2 v_1}$	0
		0	c_{1}^{2}	$-2cc_1$	0	0	0	c^2	0	0	0	0	0	0
		0	0	$-\frac{c_1v_2}{2v_1}$	0	$-\frac{vc_1}{2v_1}$	0	$\frac{cv_2}{2v_1}$	0	$\frac{cv}{2v_1}$	0	0	0	0
		0	0	0	$-\frac{c_1v_2}{2v_1}$	$-\frac{vc_1}{2v_1}$	0	0	0	$\frac{cv}{2v_1}$	0	0	0	$\frac{cv_2}{2v_1}$
		0	0	0	0	$-c_1$	0	0	0	С	0	0	0	0
		0	0	$-\frac{vc_1}{4v_1}$	$-\frac{vc_1}{2v_1}$	0	$-\frac{c_1v_4}{4v_1}$	$\frac{cv}{4v_1}$	0	0	0	0	$\frac{cv_4}{4v_1}$	$\frac{cv}{2v_1}$
1091	$\mathbf{T}_{\mathrm{ME/DR}} =$	0	0	0	0	0	0	$\frac{v_2^2}{4v_1^2}$	0	$\frac{vv_2}{2v_1^2}$	0	$\frac{v^2}{4v_1^2}$	0	0
		0	0	0	0	0	0	0	$\frac{v_2^2}{4v_1^2}$	0	$\frac{vv_2}{2v_1^2}$	$\frac{v^2}{4v_1^2}$	0	0
		0	0	0	0	0	0	0	0	$\frac{v_2}{2v_1}$	0	$\frac{v}{2v_1}$	0	0
		0	0	0	0	0	0	0	0	0	$\frac{v_2}{2v_1}$	$\frac{v}{2v_1}$	0	0
		0	0	0	0	0	0	0	0	0	0	1	0	0
		0	0	0	0	0	0	$\frac{vv_2}{4v_1v_3}$	$\frac{vv_2}{8v_1v_3}$	0	0	0	$\frac{v_4v_6}{8v_1v_3}$	$\frac{vv_4}{2v_1v_3}$
		0	0	0	0	0	0	0	0	$\frac{v}{2v_1}$	$\frac{v}{4v_1}$	0	0	$\left[\frac{v_4}{4v_1}\right]$

1096 DH mating system

Appendix J. Approximations of d^2 and δ^2 1104

The equality T1 = 1 still holds for all five mating systems. Therefore, the 1105 approximations of d^2 and δ^2 can be derived with the same method. The following matrix 1106 equation holds if N_e is large enough: 1107

$$(\mathbf{S} - r\mathbf{I})\mathbf{1} = (\mathbf{I} - \mathbf{T})\mathbf{x},$$

where $\mathbf{x} = [x_1, x_2, \dots, x_{13}]^T$. From Appendix I, we show that the elements in the 11th row of 1109 I - T are all zero, and the 11th element in the vector $(S - rI)\mathbf{1}$ is $-\frac{v}{2} - r$ for all five mating 1110 systems. Therefore, the 11th equation in this matrix equation is $-\frac{2}{2}r = 0$, and thus r = 11111 -2/v. For the other 13 unknowns x_1, x_2, \dots, x_{13} , the 13 differences 1112

1113
$$x_1 - x_{11}, x_2 - x_{11}, \cdots, x_{13} - x_{11}$$

1114 can be solved for each mating system. The appropriate expressions are listed in Table S4.

1115 Let $a_i = x_i - x_{11}$, then $x_i = a_i + x_{11}$, $i = 1, 2, \dots, 13$. The solutions of the matrix equation for each mating system can be expressed as 1116

1117
$$r = -2/\nu, x_1 = a_1 + \zeta, x_2 = a_2 + \zeta, \dots, x_{13} = a_{13} + \zeta,$$

1118 where ζ is any number. Now, if we let ζ be 0, we obtain a special solution as follows:

1119
$$r = -2/v$$
 and $\mathbf{x} = [a_1, a_2, \cdots, a_{13}]^T$.

In addition, $v = 1 + N_e^{-1}r + \mathcal{O}(N^{-2})$ and $\omega = 1 + N_e^{-1}\mathbf{x} + \mathcal{O}(N^{-2})$, it follows 1120

1121
$$\nu \approx \frac{N_e \nu - 2}{N_e \nu}$$
 and $\boldsymbol{\omega} \approx \left[\frac{N_e + a_1}{N_e}, \frac{N_e + a_2}{N_e}, \cdots, \frac{N_e + a_{13}}{N_e}\right]^T$.

Similarly, by substituting the approximation of $\boldsymbol{\omega}$ into Equation (4), we can calculate the 1122 1123 approximations of various moments.

Appendix K. LD moments under pair sampling of 1124

clones 1125

Denoting p_{ij} as the probability of there are *j* pairs of clones in *i* individuals. Such that 1126

1127
$$p_{ij} = \frac{2^{i-2j} \binom{n/2}{j} \binom{n/2-j}{i-2j}}{\binom{n}{i}} \quad (i \ge 2j)$$

In the following example, we will use stars to denote the symbols under non-random 1128 1129 sampling. The observed expectation of each allele configuration under pair sampling of clones are: 1130

Digenic: 1131

1132

 $E_1^* = E_1$ $E_2^* = E_2$ 1133

1134
$$E_{3}^{*} = p_{21} \frac{1}{nv^{2}} (C_{1}E_{1} + C_{2}E_{2}) + p_{20}E_{3}$$

1135
1136 **Trigenic:**
1137 $E_{4}^{*} = E_{4}$
1138 $E_{5}^{*} = p_{21} \frac{1}{nv^{2}(v-1)} (2C_{4}E_{4} + C_{9}E_{9}) + p_{20}E_{5}$
1139 $E_{6}^{*} = p_{21} \frac{1}{nv^{2}(v-1)} (C_{2}E_{2} + C_{4}E_{4} + C_{9}E_{9}) + p_{20}E_{7}$
1140 $E_{7}^{*} = p_{21} \frac{1}{nv^{2}(v-1)} (C_{2}E_{2} + C_{4}E_{4} + C_{9}E_{9}) + p_{20}E_{7}$
1141 $E_{6}^{*} = p_{31} \frac{1}{3n(n-1)v^{3}} (C_{3}E_{3} + C_{5}E_{5} + 2C_{6}E_{6} + 2C_{7}E_{7}) + p_{30}E_{8}$
1142 $E_{9}^{*} = E_{9}$
1143 **Quadgenic:**
1144 **Quadgenic:**
1145 Dihaplotypic:
1146 $E_{10}^{*} = E_{10} \frac{1}{nv^{2}(v-1)} (C_{4}E_{4} + C_{15}E_{15}) + p_{20}E_{12}$
1150 $E_{12}^{*} = p_{21} \frac{1}{nv^{2}(v-1)} (C_{4}E_{4} + C_{15}E_{15}) + p_{20}E_{12}$
1151 $E_{13}^{*} = p_{21} \frac{1}{nv^{2}(v-1)} (C_{4}E_{4} + C_{15}E_{15}) + p_{20}E_{13}$
1152 $E_{14}^{*} = p_{31} \frac{3}{3n(n-1)v^{3}} (2C_{6}E_{6} + 2C_{13}E_{13} + C_{11}E_{11} + C_{12}E_{12}) + p_{30}E_{14}$
1153 $E_{15}^{*} = E_{15}$
1154 Uuadhaplotypic:
1155 Quadhaplotypic:
1156 $E_{16}^{*} = p_{21} \frac{1}{nv^{2}(v-1)^{2}} (2C_{4}E_{2} + 2C_{9}E_{9} + C_{10}E_{10} + 2C_{15}E_{15} + C_{21}E_{21}) + p_{20}E_{16}$
1157 $E_{17}^{*} = p_{21} \frac{1}{nv^{2}(v-1)^{2}} (2C_{4}D_{4} + 0A_{5}E_{15} + C_{21}E_{21}) + p_{20}E_{17}$
1158 $E_{16}^{*} = p_{31} \frac{1}{3n(n-1)v^{3}(v-1)} (2C_{7}E_{7} + 2C_{13}E_{13} + 2C_{22}E_{22} + C_{12}E_{12} + C_{16}E_{16}) + p_{30}E_{18}$
1159 $E_{19}^{*} = p_{31} \frac{3}{3n(n-1)v^{3}(v-1)} (2C_{7}E_{7} + 2C_{13}E_{13} + 2C_{22}E_{22} + C_{12}E_{12} + C_{16}E_{16}) + p_{30}E_{18}$
1159 $E_{19}^{*} = p_{31} \frac{1}{3n(n-1)v^{3}(v-1)} (2C_{7}E_{7} + 2C_{13}E_{13} + 2C_{22}E_{22} + C_{12}E_{12} + C_{16}E_{16}) + p_{40}E_{20}$
1160 $E_{20}^{*} = P_{42} \frac{1}{3n(n-1)v^{3}(v-1)} (2C_{7}E_{7} + 2C_{13}E_{13} + 2C_{22}E_{22} + C_{12}E_{12} + C_{16}E_{16})$
1161 $+ P_{41} \frac{1}{3n(n-1)v^{3}(v-1)} (C_{8}E_{9} + 2C_{15}E_{15} + C_{21}E_{21}) + p_{20}E_{22}$
1161 $E_{21}^{*} = E_{21}$
1162 $E_{22}^{*} = 2p_{21} \frac{1}{nv^{2}(v-$

1165 Using these expectations, the LD moment can be derived by the same method in Appendix 1166 C. The principal parts of **A**, are shown in Tables S8 and S9. It can be found \mathbf{A}_1^* is identical 1167 to \mathbf{A}_1 , while \mathbf{A}_2^* is distinct from \mathbf{A}_2 in two aspects: the coefficients of double non-identities 1168 are changes; extra terms of single non-identities, heterozygosities and allele probabilities 1169 are presented. Because they are not linear functions of double non-identities d^2 and δ^2 1170 cannot be derived with our previous methods.

1172

1173 Supplementary Tables

1174 Table S1. Elements in combination matrix A_1/Q

	$\mathrm{E}(\widehat{D}_{W}^{2})$	$\mathcal{E}(\widehat{D}_b^2)$	$\mathrm{E}(\widehat{D}_w\widehat{D}_b)$	$E(\widehat{D}^2)$	$E(\widehat{\Delta}^2)$	$E(\hat{Q})$	$E(\hat{R})$
Θ_1	0	0	0	0	0	0	0
Θ_2	1	0	0	1	1	0	0
Γ_1	-2	0	1	0	$2v_1$	0	0
Γ_2	0	0	0	0	0	0	0
Γ_3	0	0	-1	-2	-2v	0	0
Γ_4	0	0	0	0	0	0	0
Δ_1	1	1	-1	0	v_1^2	0	0
Δ_2	0	0	0	0	0	0	v_1^2
Δ_3	0	-2	1	0	$-2v_{1}v$	0	0
Δ_4	0	0	0	0	0	0	$-2v_{1}v_{1}$
Δ_5	0	1	0	1	v^2	1	v^2
Δ_6	0	0	0	0	0	0	0
Δ_7	0	0	0	0	0	0	0

1176 Table S2. Elements in combination matrix A_2/Q

	$\mathrm{E}(\widehat{D}_{w}^{2})$	$E(\widehat{D}_b^2)$	$\mathrm{E}(\widehat{D}_w\widehat{D}_b)$	$E(\widehat{D}^2)$	$E(\widehat{\Delta}^2)$	$E(\hat{Q})$	$E(\hat{R})$
Θ_1	$\frac{v_1^2 + 1}{vv_1}$	$\frac{1}{vv_1}$	$-\frac{1}{vv_1}$	$\frac{v_1}{v}$	$\frac{2v_1}{v}$	0	$\frac{2v_1}{v}$
Θ_2	-1	0	$-\frac{1}{n}$	$-\frac{2+v}{1}$	-3	0	0
Γ_1	2	$-\frac{2}{v}$	$-\frac{2v_1}{v}$	$-\frac{2v_1}{v}$	$-6v_{1}$	0	0
Γ_2	0	$-\frac{4}{12}$	$-\frac{2v_2}{n}$	$-\frac{4v_1}{12}$	$-8v_{1}$	0	$-8v_{1}$
Γ_3	0	$\frac{4}{v}$	3	$\frac{4+6v}{v}$	10 <i>v</i>	$\frac{4}{v}$	4 <i>v</i>
Γ_4	$-\frac{2v_2^2}{vv_1}$	$\frac{2v_2}{vv_1}$	$\frac{v_2v_3}{vv_1}$	0	$\frac{4v_1v_2}{v}$	0	$\frac{4v_1v_2}{v}$
Δ_1	-1	$\frac{2-3v}{v}$	$\frac{2v-1}{2v-1}$	0	$-3v_1^2$	0	0
Δ_2	0	0	0	0	0	0	$-3v_{1}^{2}$
Δ_3	0	$\frac{10v-4}{12}$	-3	$\frac{4v_1}{12}$	$10vv_1$	$\frac{4v_1}{2}$	$4vv_1$
Δ_4	0	$\frac{2v_1}{v}$	0	$\frac{2v_1}{v}$	$2vv_1$	$\frac{2v_1}{v}$	$8vv_1$
Δ_5	0	-6	0	-6	$-6v^{2}$	-6	$-6v^{2}$
Δ_6	$\frac{v_2v_3}{vv_1}$	$\frac{v_2 v_3}{v v_1}$	$-\frac{v_2v_3}{vv_1}$	0	$\frac{v_1v_2v_3}{v}$	0	$\frac{v_1v_2v_3}{v}$
Δ_7	0	$-\frac{4v_2}{v}$	$\frac{2v_2}{v}$	0	$-4v_1v_2$	0	$-4v_1v_2$

1179 Table S3. Essential factors to form Ω^T for HS mating

1180 system

	Θ_1' to Θ_2'	Γ_1' to Γ_4'	Δ'_1 to Δ'_7
Θ ₁	$c^2 + c_1^2 v_1^2$	$v_1 - cv_2$	$2v_1$
Θ_2	$vc_{1}^{2}N_{1}v_{1}$	$-c_1N_1v$	$2\nu N_1$
Γ_1	$-2cvc_1N_1v_1$	$vN_1(v_1-cv_2)$	$4\nu N_1\nu_1$
Γ_2	0	$2vN_1(v_1 - cv_2)$	$8\nu N_1\nu_1$
Γ_3	0	$-v^2c_1N_1N_2$	$4v^2N_1N_2$
Γ_4	$-2cv_2(cv_2-v_1)$	$(v_1 - cv_4)v_2$	$4v_1v_2$
Δ_1	$c^2 v N_1 v_1$	cvN_1v_1	$2vN_1v_1^2$
Δ_2	0	0	$vN_{1}v_{1}^{2}$
Δ_3	0	$cv^2N_1N_2$	$4v^2N_1N_2v_1$
Δ_4	0	0	$2v^2N_1N_2v_1$
Δ_5	0	0	$v^{3}N_{1}N_{2}N_{3}$
Δ_6	$c^2 v_2 v_3$	cv_2v_3	$v_1 v_2 v_3$
Δ_7	0	$2cvN_1v_2$	$4vN_1v_1v_2$
Divisor	Nvv_1	$N^2 v^2$	$N^3 v^3$

1181 There are 13 columns for Ω^{T} , the first two columns are the same, each of which is Nvv_1 1182 times of the combination coefficients of Θ'_1 or Θ'_2 . Similarly, the next four columns are the 1183 same, so are the last seven columns. Moreover, c - 1 is denoted by c_1 , N - i by N_i and v - 11184 i by v_i , i = 1, 2, 3.

1185 1186

1187

Table S4. Expressions of $x_1 - x_{11}, x_2 - x_{11}, \dots, x_{13} - x_{11}$

	110			DU
	HS	MS	ME/ DR	DH
	$2c + c_1^2 v - 1$	*	*	*
$x_1 - x_{11}$	Co C12, 12			
	$2c + c^2 m = 1$	ala		
$x_2 - x_{11}$	$2c + c_1 v - 1$	*	*	*
	$c_2 c v_1 v$			
	0	$4cv_1v_2$	$4cv_1v_2$	$2cv_2(2fv_1 + 3v - 2)$
$x_3 - x_{11}$	0	$v^2(cv_2 + v)(3v - 4)$	$v^2(cv_2 + v)(3v - 4)$	$\overline{(1+f)v^2(cv_2+v)(3v-4)}$
		v_2	212.	(1+)
$x_4 - x_{11}$	0	- <u>-</u>	$\frac{2v_1}{2}$	$\frac{2v_1}{2}$
	0	<i>V</i> -	v^2	v^2
$x_5 - x_{11}$	0	0	0	0
$x_6 - x_{11}$	0	*	*	*
		v_2^2	v_2^2	$fv_2^2 + 3v^2 - 6v + 4$
$x_7 - x_{11}$	0	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{1}{(1+f)m} \frac{m^2(2m-4)}{m^2}$
		$v_1 v_2 (3v - 4)$	$v_1 v_2 (3v - 4)$	$(1+j)v_1v^2(3v-4)$
$x_{0} - x_{11}$	0	$2v_2$	$\frac{4v_1}{2}$	$\frac{4\nu_1}{2}$
	-	v^2	v^2	v^2
$x_9 - x_{11}$	0	0	0	0
	0	v_2	$2v_1$	$2v_1$
$x_{10} - x_{11}$	0	$\overline{v^2}$	122	122
$x_{11} - x_{11}$	0	0	Ď	Ď
×11 ×11	0	U di	U de	ů t
$x_{12} - x_{11}$	U	*	*	*
$x_{12} - x_{14}$	0	v_2	$2v_1$	$2v_1$
×13 ×11	0	v^2	v^2	v^2

1188 The expressions represented by * are too long and are placed in the supplementary files.

1189

1191 Table S5. Approximations of d^2

v	HS	MS/ME/DR	DH
2	$1 - 2c + 2c^2$	$1 - 2c + 2c^2$	$1 + f - 2c(1 + f) + c^2(3 + 2f)$
2	$4cN_e - 2c^2N_e$	$\overline{4cN_e - 2c^2N_e}$	$\frac{2(-2+c)c(1+f)N_e}{2(-2+c)c(1+f)N_e}$
4	$3 - 6c + 4c^2$	$16 - 24c + 12c^2 + 5c^3$	$16(1+f) - 24c(1+f) + 4c^{2}(5+3f) + c^{3}(3+5f)$
4	$24cN_e - 12c^2N_e$	$128cN_e - 32c^3N_e$	$-\frac{32c(-4+c^2)(1+f)N_e}{32c(-4+c^2)(1+f)N_e}$
6	$5 - 10c + 6c^2$	$63 - 84c + 14c^2 + 32c^3$	$63(1+f) - 84c(1+f) + 7c^{2}(5+2f) + c^{3}(26+32f)$
0	$\overline{60cN_e - 30c^2N_e}$	$126c(6+c-2c^2)N_e$	$-\frac{126c(-6-c+2c^2)(1+f)N_e}{126c(-6-c+2c^2)(1+f)N_e}$
8	$7 - 14c + 8c^2$	$160 - 200c - 10c^2 + 99c^3$	$-10c^{2}(-3+f) + 160(1+f) - 200c(1+f) + c^{3}(87+99f)$
0	$112cN_e - 56c^2N_e$	$\overline{2560cN_e + 640c^2N_e - 960c^3N_e}$	$\frac{1}{320c(-8-2c+3c^2)(1+f)N_e}$
10	$9 - 18c + 10c^2$	$-325 + 390c + 78c^2 - 224c^3$	$-325(1+f) + 390c(1+f) + 13c^{2}(1+6f) - 4c^{3}(51+56f)$
10	$180cN_e - 90c^2N_e$	$650c(-10-3c+4c^2)N_e$	$650c(-10-3c+4c^2)(1+f)N_e$

1/(vn - 1) should be added to each expression in order to correct for finite sample size.

1194 Table S6. Approximations of δ^2

v	HS	MS/ME/DR	DH
2	$1 - 2c + 2c^2$	$-1 + 2c - 2c^2$	$1 + f - 2cf + 2c^2(1 + f)$
2	$4cN_e - 2c^2N_e$	$\overline{2(-2+c)c(N_e-v^2\eta)}$	$-\frac{1}{2(-2+c)c(1+f)(N_e-v^2\eta)}$
4	$3 - 6c + 4c^2$	$-4 + 3c - 12c^2 + 4c^3$	$3c(-5+f) - 4(1+f) + 4c^{3}(3+f) - 4c^{2}(5+3f)$
4	$24cN_e - 12c^2N_e$	$2c(-4+c^2)(4N_e-v^2\eta)$	$2c(-4+c^2)(1+f)(4N_e-v^2\eta)$
6	$5 - 10c + 6c^2$	$9(-7 - 4c - 26c^2 + 12c^3)$	$9[-7(1+f) + 12c^{3}(3+f) - 2c(27+2f) - 2c^{2}(25+13f)]$
0	$\overline{60cN_e - 30c^2N_e}$	$\overline{14c(-6-c+2c^2)(9N_e-v^2\eta)}$	$14c(-6-c+2c^2)(1+f)(9N_e-v^2\eta)$
8	$7 - 14c + 8c^2$	$4(-10 - 19c - 44c^2 + 24c^3)$	$4[-10(1+f) + 24c^{3}(3+f) - 4c^{2}(23+11f) - c(117+19f)]$
0	$112cN_e - 56c^2N_e$	$5c(-8-2c+3c^2)(16N_e-v^2\eta)$	$5c(-8-2c+3c^2)(1+f)(16N_e-v^2\eta)$
10	$9 - 18c + 10c^2$	$25(-13 - 42c - 66c^2 + 40c^3)$	$\frac{25[-13(1+f) + 40c^{3}(3+f) - 6c(34+7f) - 2c^{2}(73+33f)]}{25[-13(1+f) + 40c^{3}(3+f) - 6c(34+7f) - 2c^{2}(73+33f)]}$
10	$180cN_e - 90c^2N_e$	$\frac{1}{26c(-10-3c+4c^2)(25N_e-v^2\eta)}$	$26c(-10 - 3c + 4c^2)(1 + f)(25N_e - v^2\eta)$
	2(v-2)(v-1)	4(1)	$(2-1)^2$

1195 Where $\eta = \frac{2(\nu-2)(\nu-1)}{\nu^2}$ for the MS mating system, or $\eta = \frac{4(\nu-1)^2}{\nu^2}$ for the ME/DR/DH mating systems. 1/(n-1)

1196 should be added to each expression to correct for finite sample size.

Table S7. Exact d^2 and δ^2

Mating		12	12	Error	s2	c ²	Error
System	v	$d_{c=0.5}^{2}$	$d_{c=1-1/v}^2$	rate	$\delta_{c=0.5}^2$	$\delta_{c=1-1/v}^2$	rate
	2	0.0083	0.0083	0.00%	0.0134	0.0134	0.00%
	4	0.0036	0.0032	13.95%	0.0112	0.0108	4.13%
HS	6	0.0023	0.0020	19.45%	0.0108	0.0104	3.69%
	8	0.0017	0.0014	22.49%	0.0106	0.0103	3.11%
	10	0.0014	0.0011	24.43%	0.0105	0.0102	2.66%
	2	0.0083	0.0083	0.00%	0.0134	0.0134	0.00%
	4	0.0038	0.0033	13.06%	0.0134	0.0134	0.13%
MS	6	0.0024	0.0020	18.63%	0.0134	0.0135	-0.41%
	8	0.0018	0.0015	21.81%	0.0134	0.0135	-0.51%
	10	0.0014	0.0011	23.85%	0.0134	0.0135	-0.51%
	2	0.0083	0.0083	0.00%	0.0133	0.0133	0.00%
	4	0.0037	0.0033	12.99%	0.0133	0.0133	0.06%
ME	6	0.0024	0.0020	18.55%	0.0133	0.0133	-0.47%
	8	0.0018	0.0014	21.71%	0.0133	0.0133	-0.57%
	10	0.0014	0.0011	23.74%	0.0133	0.0133	-0.56%
	2	0.0083	0.0083	0.00%	0.0133	0.0133	0.00%
DR	4	0.0037	0.0033	12.96%	0.0133	0.0133	0.04%
(f = 1)	6	0.0024	0.0020	18.52%	0.0133	0.0134	-0.48%
() -)	8	0.0018	0.0014	21.69%	0.0133	0.0134	-0.58%
	10	0.0014	0.0011	23.72%	0.0133	0.0134	-0.56%
	2	0.0083	0.0083	0.00%	0.0133	0.0133	0.00%
DR	4	0.0037	0.0033	12.95%	0.0133	0.0133	0.04%
(f = 2)	6	0.0024	0.0020	18.51%	0.0133	0.0134	-0.49%
0 -/	8	0.0018	0.0014	21.68%	0.0133	0.0134	-0.58%
	10	0.0014	0.0011	23.72%	0.0133	0.0134	-0.57%
	2	0.0082	0.0082	0.00%	0.0133	0.0133	0.00%
DR	4	0.0037	0.0033	12.93%	0.0133	0.0133	0.02%
(f = 5)	6	0.0024	0.0020	18.50%	0.0133	0.0133	-0.50%
0 -7	8	0.0018	0.0014	21.67%	0.0133	0.0134	-0.59%
	10	0.0014	0.0011	23.71%	0.0133	0.0134	-0.58%
	2	0.0091	0.0091	0.00%	0.0166	0.0166	0.00%
DH	4	0.0039	0.0035	10.13%	0.0166	0.0168	-1.20%
(f = 1)	6	0.0024	0.0021	16.04%	0.0165	0.0168	-1.35%
0 /	8	0.0018	0.0015	19.59%	0.0165	0.0167	-1.22%
	10	0.0014	0.0012	21.92%	0.0165	0.0167	-1.07%
	2	0.0088	0.0088	0.00%	0.0155	0.0155	0.00%
DH	4	0.0038	0.0034	11.04%	0.0154	0.0156	-0.85%
(f = 2)	6	0.0024	0.0021	16.85%	0.0154	0.0156	-1.10%
0 /	8	0.0018	0.0015	20.28%	0.0154	0.0156	-1.03%
	10	0.0014	0.0011	22.51%	0.0154	0.0156	-0.93%
	2	0.0085	0.0085	0.00%	0.0144	0.0144	0.00%
DH	4	0.0038	0.0034	11.96%	0.0143	0.0144	-0.45%
(f = 5)	6	0.0024	0.0020	17.66%	0.0143	0.0145	-0.83%
· /	8	0.0018	0.0015	20.96%	0.0143	0.0145	-0.83%
	10	0.0014	0.0011	23.10%	0.0143	0.0144	-0.77%

Where the effective population size N_e and the sample size n are 100, and the error rate is calculated by $(d_{c=0.5}^2 - d_{c=1-1/v}^2)/d_{c=1-1/v}^2$ or $(\delta_{c=0.5}^2 - \delta_{c=1-1/v}^2)/\delta_{c=1-1/v}^2$.

1202 Table S8. Elements in combination matrix A_1^*/Q

	$\mathrm{E}(\widehat{D}_{w}^{*2})$	$\mathrm{E}(\widehat{D}_{b}^{*2})$	$\mathrm{E}(\widehat{D}_w^*\widehat{D}_b^*)$	$\mathrm{E}(\widehat{D}^{*2})$	$E(\widehat{\Delta}^{*2})$	$\mathrm{E}(\widehat{Q}^*)$	$E(\hat{R}^*)$
Θ_1	0	0	0	0	0	0	0
Θ_2	1	0	0	1	1	0	0
Γ_1	-2	0	1	0	$2v_1$	0	0
Γ_2	0	0	0	0	0	0	0
Γ_3	0	0	-1	-2	-2v	0	0
Γ_4	0	0	0	0	0	0	0
Δ_1	1	1	-1	0	v_1^2	0	0
Δ_2	0	0	0	0	0	0	v_1^2
Δ_3	0	-2	1	0	$-2v_{1}v_{1}$	0	0
Δ_4	0	0	0	0	0	0	$-2v_{1}v_{1}$
Δ_5	0	1	0	1	v^2	1	v^2
Δ_6	0	0	0	0	0	0	0
Δ_7	0	0	0	0	0	0	0

Table S9. Elements in combination matrix A^{*}₂

	$E(\widehat{D}_{w}^{*2})$	$E(\widehat{D}_{b}^{*2})$	$\mathrm{E}(\widehat{D}_w^*\widehat{D}_b^*)$	$E(\widehat{D}^{*2})$	$E(\widehat{\Delta}^{*2})$	$\mathrm{E}(\hat{Q}^*)$	$E(\hat{R}^*)$
λP	1	$v_1v_2 + 1$	1	v_1	12 ²	$-\frac{v_1}{2}$	$-n_{1}(2n-1)$
	v_1	vv_1	vv_1	v	v ₁	v	V1(2V 1)
λП	0	1	0	1	v^2	-1	$-v^2$
pq	$-\frac{2}{v_1}$	$-\frac{2v_1^2+2}{vv_1}$	$\frac{2}{vv_1}$	-2	$-2v^2 + 2v - 2$	$\frac{2v+1}{v}$	$2 - 2v + 3v^2$
$\Theta_1 Q$	$\frac{2v_1^2+2}{2v_1^2+2}$	2	$-\frac{2}{1212}$	$\frac{2v_1}{n}$	$\frac{4v_1}{2}$	0	$\frac{4v_1}{v_1}$
	<i>vv</i> ₁	<i>vv</i> ₁	2^{ν_1}	2(v + 2)	V		V
$\Theta_2 Q$	-2	0	<u>-</u>		-6	0	0
$\Gamma_1 Q$	4	$-\frac{4}{12}$	$-\frac{4v_1}{v_1}$	$-\frac{4v_1}{v_1}$	$-12v_{1}$	0	0
$\Gamma_2 Q$	0	$-\frac{12}{2}$	$-\frac{6v_2}{n}$	$-\frac{12v_1}{n}$	$-24v_{1}$	0	$-16v_{1}$
$\Gamma_3 Q$	0	8	6	$\frac{12v+8}{v}$	20 <i>v</i>	8	8 <i>v</i>
$\Gamma_4 Q$	$-\frac{4v_2^2}{vv_1}$	$\frac{4v_2}{vv_1}$	$\frac{2v_2v_3}{vv_1}$	<i>v</i> 0	$\frac{8v_1v_2}{v}$	<i>v</i> 0	$\frac{8v_1v_2}{v}$
$\Delta_1 Q$	-2	$\frac{4-6v}{w}$	$\frac{4v-2}{w}$	0	$-6v_{1}^{2}$	0	0
$\Delta_2 Q$	0	0	0 0	0	0	0	$-5v_{1}^{2}$
$\Delta_3 Q$	0	$\frac{20v-8}{v}$	-6	$\frac{8v_1}{v}$	$20vv_1$	$\frac{8v_1}{v}$	$8vv_1$
$\Delta_4 Q$	0	$\frac{6v_1}{v}$	0	$\frac{6v_1}{v}$	$6vv_1$	$\frac{6v_1}{v_1}$	$18vv_1$
$\Delta_5 Q$	0	-12	0	-12	$-12v^{2}$	-12	$-12v^{2}$
$\Delta_6 Q$	$\frac{2v_2v_3}{vv_1}$	$\frac{2v_2v_3}{vv_1}$	$-\frac{2v_2v_3}{vv_1}$	0	$\frac{2v_1v_2v_3}{v}$	0	$\frac{2v_1v_2v_3}{v}$
$\Delta_7 Q$	0	$-\frac{12v_2}{v}$	$\frac{6v_2}{v}$	0	$12v_1v_2$	0	$-8v_1v_2$

1207 Where $\lambda = 2pq - p^2q - pq^2$.

1209 Supplementary Figures

Figure S1. The behaviors of \hat{r}^2 and \hat{r}_{Δ}^2 for various mating systems (set $N_e = 40$, v = 2, 4, 6 or 8, L = 200 and c = 0.1; for DR and DH, also set f = 2 or 5). Each column shows the results under a different mating system. Each row shows the results under a different ploidy level. Solid gray lines denote the approximate d^2 or δ^2 , dotted gray lines denote of the exact d^2 or δ^2 , and solid lines denote \hat{r}^2 and \hat{r}_{Δ}^2 , where the lines denoting δ^2 (or \hat{r}_{Δ}^2) are above those denoting d^2 (or \hat{r}^2) for each situation.

1215 1216 **Figure S2.** The behaviors of \hat{r}^2 and \hat{r}_{Δ}^2 for the MS mating system under different 1217 recombination frequencies (set $N_e = 80$ and L = 200). The number above a line represents 1218 a recombination frequency.

1220

Figure S3. The relationship between d^2 (or δ^2) and the recombination frequency *c* for various mating systems (set $N_e = 100$ and n = 100). The line styles are the same as those in Figure 2. Each subscript of d^2 or δ^2 denotes a mating system, e.g., the subscript DR1 is the DR mating system with f = 1.

Figure S4. The bias and RMSE of \hat{N}_e . The first and second columns show the results for1228unlinked and linked loci, respectively. The line styles and the remaining simulation1229configurations are as for Figure 3.

Figure S5. The relationship between the RMSE of \hat{V} and the sample size *n*. The figure 1234 layout and the line style are the same as those in Figure 3.

1237

Figure S6. The bias of \hat{V} for different types of loci under different sampling strategies. The first and second columns show the results for unlinked and linked loci, respectively. Four sampling strategies are compared: random sampling, pair sampling of half-sibs, full-sibs and clones, with the results for each shown on different rows. The line styles and the remaining simulation configurations are as for Figure 3.