OMTN, Volume 27

Supplemental information

Long noncoding RNA LUCAT1 enhances the

survival and therapeutic effects of mesenchymal

stromal cells post-myocardial infarction

Yue Tao, Qingnian Liu, Rongrong Wu, Changchen Xiao, Cheng Ni, Kan Wang, Wangxing Hu, Zhiwei Zhong, Jing Zhao, Qingju Li, Dan Zhu, Shuhan Zhong, Hong Yu, Wei Zhu, Jinghai Chen, Xinyang Hu, and Jian'an Wang

SUPPLEMENTAL FIGURES AND LEGENDS

Supplementary Figure S1. MSCs identification and characterization of LUCAT1 in MSCs

Characterization of MSCs: positive for mesenchymal cell surface markers PE-CD29 (A), APC-CD90 (B), PE-CD105 (C), and negative for the hematopoietic surface marker FITC-CD45 (D) and endothelial cell surface marker FITC-CD34 (E). The chondrogenesis, osteogenesis and adipogenesis differentiation of MSCs were shown with toluidine eblue staining (F, dark blue), alizarin red staining (G, dark red) and oil red O-staining (H, red), respectively (bar = 100 μ m). I, LUCAT1-002 was the longest transcripts and expressed higher both in N-MSCs and HP-MSCs compared with other transcripts, validated by qRT-PCR with three pairs of non-overlapping primers to each transcript (n = 3). 5' (J) and 3' (K) rapid amplification of cDNA ends (RACE) assays were showed by gel electrophoresis image of PCR products. Data are presented as mean ± SEM. * *p* <0.05, ***p* <0.01, ****p* <0.001.

Supplementary Figure S2. The TUNEL staining of the infarct border area at 3 days post MI

A and B, TUNEL staining of apoptotic cells in border area. bar=50 μ m. C and D, Quantitative analysis of TUNEL positive cardiac cells in border zone. n=5 for each group. *P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary Figure S3. The wheat-germ agglutinin (WGA) staining of MI segments at 28 days post MI treated with LUCAT1 knockdown or overexpression MSCs

A and B, The infarct area was stained with WGA (red), troponinI (TnI) (green). bar=100um. C and D, Quantitative analysis of TnI positive area within MI segment. n=5 for each group. ***P < 0.001.

Supplementary Figure S4. Evaluation of CD68+ inflammation cell in the border

area

A-B, Immunofluorescent staining of CD68 positive macrophages and troponin positive cardiomyocytes in the border area at 3 days post MI. bar = 100μ m. C-D, Quantitative analysis of CD68 positive cells/HPF. n=5 for each group.

Supplementary Figure S5. Evaluation of CD3+ inflammation cell in the border

area

A-B, Immunofluorescent staining of CD3 positive T-lymphocytes and troponin positive cardiomyocytes in the border area at 3 days post MI. bar = 100μ m. C-D, Quantitative analysis of CD3 positive cells/HPF. n=5 for each group.

Supplementary Figure S6. Effects of LUCAT1 on apoptosis and ARRDC3

A, TUNEL staining with nuclei as identified via DAPI staining (bar = 50 μ m) of control, sh-LUCAT1-001 and sh-LUCAT1-002 MSCs under 500 μ M H₂O₂ for 1 h. B, Quantification of TUNEL-positive nuclei (n = 3). C, Cleaved caspase 3 level was

measured by western blot of control, sh-LUCAT1-001 and sh-LUCAT1-002 MSCs under conditions above. D, The quantitative analysis of Cleaved caspase 3 expression (n = 3). E, ARRDC3 level was measured by western blot of control and sh-LUCAT1 MSCs. F, The quantitative analysis of ARRDC3 expression (n = 3). G, ARRDC3 level was measured by western blot of control and Lv-LUCAT1 MSCs. H, The quantitative analysis of ARRDC3 expression (n = 3). The data are presented as mean \pm SEM. * *p* <0.05, ***p* <0.01.

Supplementary Figure S7. RNA sequencing analysis of the PCG expression in the

MSCs with LUCAT1 knockdown

A and B, qRT-PCR showed the knockdown or overexpression efficiency of different lentivirus on LUCAT1 (n = 3). C, The GO analysis of the PCGs with downregulated expression. D, The KEGG analysis of the PCGs with downregulated expression. E, The expression of up-regulated apoptosis-related genes was analyzed through qRT-PCR when LUCAT1 was knockdown or overexpressed. Data are presented as mean \pm SEM. * *p* <0.05, ***p* <0.01, ****p* <0.001.

Supplementary Figure S8. mRNA levels of LUCAT1 and FOXQ1 in rescue experiment

A and B, qRT-PCR and western blotting showed the knockdown efficiency of different FOXQ1 siRNA in MSCs (n = 3). C and D, qRT-PCR and western blotting revealed the efficiency of FOXQ1 overexpression lentivirus at different multiplicities of infection (MOI) (n = 3). E and F, qRT-PCR detected the expression levels of LUCAT1 and FOXQ1 under different treatments (n = 3). Data are presented as mean

± SEM. * *p* <0.05, ***p* <0.01, ****p* <0.001.

Supplementary Figure S9. mRNA level of FOXQ1 following JMJD6 knockdown or overexpressed treatment

A and B, qRT-PCR and western blotting showed the knockdown efficiency of JMJD6 siRNA in MSCs (n = 3). C and D, qRT-PCR and western blotting revealed the efficiency of JMJD6 overexpression lentivirus at different MOI levels (n = 3). E and F, qRT-PCR results demonstrated that the mRNA level of FOXQ1 with JMJD6 knockdown or overexpressed treatment (n = 3). Data are presented as mean \pm SEM. * p < 0.05, **p < 0.01, ***p < 0.001.

siRNA	sense sequence (5'-3')	anti-sense sequence (5'-3')
FOXQ1-homo-1587	CUCCAUCAAACGUGCCUUATT	UAAGGCACGUUUGAUGGAGTT
FOXQ1-homo-1767	CAGGCUUCGUCUUAUUUCUTT	AGAAAUAAGACGAAGCCUGTT
FOXQ1-homo-1845	GGGAACCUUUCCACACUAUTT	AUAGUGUGGAAAGGUUCCCTT
FOXQ1-homo-2071	CAACGGGCUACAGCUUUAUTT	AUAAAGCUGUAGCCCGUUGTT
JMJD6-homo-1232	GGGAGACCAAAGUUAUCAATT	UUGAUAACUUUGGUCUCCCTT
JMJD6-homo-1063	CUGGCCACCUGAAUUCAAATT	UUUGAAUUCAGGUGGCCAGTT
JMJD6-homo-1137	GGCAUGUUGUCCUCAAUCUTT	AGAUUGAGGACAACAUGCCTT
JMJD6-homo-506	CGGUAUGAAAGACCUUACATT	UGUAAGGUCUUUCAUACCGTT

Table S2: The list of primers

IncRNA qPCR primers

1	Forward Primers	Reverse Primers
LUCAT1	CTGGCTCCTTTCCTCACAAG	AGCTTGCAGTGAACCGAGAT
RP11-841O20.2	GATGGATTGAGGAGTCTGGCT	ACATTTTGCTCACTCCTGAACC
NEAT1	CTCTCCATTTCCCCATCTGA	GCTGCTGCCAAACATCTACA
RP11-274H2.3	TGCCAACTCATCGGAACAGA	TTCTCAACAGCAGTGGTCCC
MIR210HG	CTATGCATTCCAGGCTCCAT	TCGGCTTGGTTATTTCTTGC
mRNA qPCR		
primers	Forward Drimons	Dovorso Drimors
ACIB		
GAPDH		
JMJD6		
FOXQ1		
DRP2	ACGGAATCAGAAGGTTAGAGCTG	AGGGAGUIGAAGUIIICCAU
MAPK10	CCTTTTGTCAGGGATTCGATAAAC	
RARB	A TGGAGTTGGGTGGACTTTTCT	
OLR1	GCAAATIGITCAGGACITCATCCA	
CDH18	CACCACAGCTCCATCAAGGT	TGGAGIGCAGCITICCAACA
ART3	CCTGTCTCAGCTCTCACTGTC	ACACITCAGCCITCACCIGG
NR4A3	TCTAAAGACGGAACCGCCAC	AAAAGGIGAIGAGGGCCIGG
EPHA1	TTCGAGACCTTGTGTCTGGC	CCIGACACIGGGAACACCIC
GADD45G	CAGCCAAAGTCTTGAACGTGG	TCCTCGTTGGGGGTTCGAAAT
POLQ	TGACCAAACAGGATTGTCACGA	AGCTGGCGCCTATTTTCACT
ABCC2	TGCATCTAGGCAAGGTTAACGA	GTCCAGGAATGAGGAATTCCAAAAA
PCLAF	AGAAAAGTGGTGGCTGCTCG	TCCTTTTTGCCACTTGGGAGT
CCL7	CCCTCACCCTCCAACATGAAA	TAGCTCTCCAGCCTCTGCTTA
E2F2	CAACATCCAGTGGGTAGGCA	GGCAATCACTGTCTGCTCCT
COL10A1	CAGCACGCAGAATCCATCTGA	AACTGTGTCTTGGTGTTGGGT
GRM1	CAGTCCACACGGAAGGGAAT	AAGCCTCTCTCGGAGTTTGC
NR0B1	GAAGATCCTCACCACCAGGC	GGCACGTCCGGGTTAAAGA
SKA3	CGGCGCCGAGATTCAAACTA	TCAAAGTCGCTTTCCTCTCCG
HMMR	TTTCCAATTGGCTAACGCCG	GGAGATGGTGCACAACCAGA
CENPM	CAGGGCGGTTTGAAAGATCG	GGACTTTGCCAAGTGGACCT
MAGED4B	GGATGAGGGTAGCGACGAAG	TTTCCGGATCCAGCTGCAAT
SERF1B	GCCCGTGGAAATCAACGAGA	AGACTTCTTCTCATTAGCTGCCT
ALPL	AACATCAGGGACATTGACGTG	GTATCTCGGTTTGAAGCTCTTCC
KCTD20	TGACAGTGACAGGTTATTGCG	AGGCATAGTCAAGTGAGAGGTC
HSD17B6	GGACTGGTGAACAATGCAGG	ACACAGTAGCCTCCTACAAAGA
ERO1B	CCGAGGCGAAGATGATGGAG	ACAGGGTCAAAGCGGTGTTT
GJD3	GCTGTTCGTCGTCTACTCCAT	ACCGCGAAATAGAAGAGCACG
KLHDC3	CCGCATTCGAGTCTTTGACAC	GTCATGGAAGTGCCGGTTC
BMF	AACCCCAGCGACTCTTTTATG	GGCAATCTGTACCTCTGCTTG
LIPA	TTACAACCAGAGTTATCCTCCCA	CCAAATGAAGTCAAGATGCTCCC

Table S3: Information of antibodies

Table 55: Information of antiboules						
	company		Western blot	ChIP	RIP	IHC
Histone H3 [Asym-dimethyl Arg2] Antibody	Novus biologicals	NB21-1002	1:1000	1:50		
Histone H4R3me2s (symmetric) antibody (pAb)	Active motif	61187	1:1000	1:50		
Anti-JMJD6	Abcam	ab65770	1:1000	1:50	1:50	
Anti-FOXQ1	Abcam	ab51340	1:1000			
Bcl2	Cell Signaling Technology	15071	1:1000			
Bax	Cell Signaling Technology	2774	1:1000			
Cleaved Caspase3 antibody	Cell Signaling Technology	9661	1:1000			
β-Actin	Cell Signaling Technology	4970	1:3000			
Anti-GFP	Abcam	ab290				1:200
Anti-TroplinI	Abcam	ab8295				1:200
Anti-CD3	Abcam	ab16669				1:200
Anti-CD68	Abcam	ab125212				1:200
Wheat germ agglutinin (WGA)	Thermofisher Scientific	W32464				100ug/ml
Donkey Anti-Mouse IgG H&L (DyLight® 488)	Abcam	ab96875				1:3000
Donkey Anti-Rabbit IgG H&L (DyLight® 550)	Abcam	ab96892				1:3000
Donkey Anti-Goat IgG H&L (DyLight® 488)	Abcam	ab96931				1:3000
Donkey polyclonal Secondary Antibody to Rabbit IgG - I	Abcam	ab150073				1:3000

ChIP:Chromatin immunoprecipitation; RIP:RNA-binding protein immunoprecipitation; IHC:immunohistochemistry

Table S4 : The list of proteins predicted to be only pulled down by sense sequence (see the attachedExcel table S4 for details).

Table S5: The list of RACE and ChIP primers

RACE primers

adaptor primers:

5'adaptor	GCTGTCAACGATACGCTACGTAACGGCATGACAGTGCCCCCCCC
3'adaptor	GCTGTCAACGATACGCTACGTAACGGCATGACAGTGTTTTTTTT
5.3'outer	TT GCTGTCAACGATACGCTACGTAAC
5.3'inner	GCTACGTAACGGCATGACAGTG
5' RACE:	
RC351-R4	TGTCTAGGACAGCTCCTAGCTCATATTTAGTGTT
RC351-R3	GAAAAATGGGATGCTAACATAAGGCCAAC
RC351-RT4	TCAGAGCTCAGGCTATACAT
RC351-RT3	CTTCCATACCAATTTGTTCA
3' RACE:	
RC351-F3	CTTTGAATGCAGCCAAACACAAATTTGTAA
RC351-F4	CATGTATTTTATGTGTGGCCCAAGACAATT

ChIP Primers

Promoter area(-)	Forward Primer(5'-3')	Reverse Primer(5'-3')
-147~-488	CCCAAAAAGCAGCCATTCCC	ACGCCGAGTTTCCTCCTTTT
-399~-766	TCCGTCGCTTTTTGTGCAAC	CACTTGTGTCCCTGCGGAAG
-757~-1156	GACACAAGTGCAGGCACAG	GCGGCGTATGTGCTTCTGTA
-1056~-1281	GCGCATACAATTTCAAGCCCA	GCAGTGACCTCTTTCGGGAG
-1261~-1643	TAAACTGCGTCCCCGAACTC	CCGGCCCAATATAACCCTGC
-1619~-2019	CCGCCGCAGGGTTATATTGG	GCTTTTTCTCTGGAGGGGCT

RACE: The 5' and 3' rapid amplification of cDNA ends

Table S6: Full length of LUCAT1 different transcripts

Full length of LUCAT1-002

TTTAAACAGAAGGCTCCAGGAGACATACAATCAACACTCCACTCAGACAA TGCCCAGACCTCCAGAAACCATGTGTCAAGCTCGGATTGCCTTAGACAGG TGCAATTTAAGAACAGCTTTCATCCTCTTTTCTCTCATATTGTCACACTATG TGTTCTGACTTCTGGCTCCTTTCCTCACAAGAAGCTCACCCAGCTGGAACT CTTATGGGACCTTGGCACCAGAGACCACAAATTCCTCTTTGAAGTTTTCTA ACAGCAACAATGGTATTTCTGACTTGGCTTTCTTGTATTTCTCTCACGTTAA CAAAATTGGTTCAGCATCTACCATGGGCTACATGCTGAGCTACAGAGTTT CGCTCTGTCGCCCAGGCTGGAGTGCAGTGGCGCGCGCGATCTCGGTTCACTG CAAGCTCCACCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCTGAGT AGCTGGGACTACAGGCGCCCGCCACCACCACGGAATCCAACTTGCTGT TTGCTATCACATGTGCTATACATGCTGTTGATGAAACTGCTAAAGGGGCTG AATGTGACTGACGTCTTTGGAAGGATGAGACTTAGCGTGCCTGTACAGTT AGAAAGATCAGAGGCTTATTTTAAACACTAAATATGAGCTAGGAGCTGTC CTAGACACTATGTAAAAGTTTTATTTAGTTCTCACTGTAATGTTGGCCTTA TGTTAGCATCCCATTTTTCAGACTGAGGAAATTATGGCTCAGAGAGGTTAA GAGACTTATTGAAGGTCACACAGCTCCACAAACTTTGGTGTAGATTGAAC GTGTACATGGGTCTATGTGACTTTGAATCTTGCATTCTTTACATTATTGGA ATATTTCACAGAAGGAAAATGACATATTAACATGGCAATAAGATTTCTGG TTCCAGTCTGGTTACTGGTCTTCCAAGAGTGTTATAGGATGTATAGCCTGA GCTCTGAAGCTTTGTTCTGAAGCATGCTATCAATATGAACAAATTGGTATG GAAGGAAGCCACAAATTATATACTAAAATCTAGTTCATCAGAGGAAAATA TAGTTAAATACATTTACATTCCCAGAACTGTTAATATTGAAGAATAAAAC

ACACAGTGGGAAAGAGACGAAGAGAAAATACGCCTGTTTTTATGACTTGT TGATATCTACAGGGTTTTTCCTTAAGCCTCACAACAATTTACAGCATTGCC AGCAGCATTCAGTACATTCAGAACAGGATAATTTCACCCGCAGCTGAACT AGGGCCATGCCTGGGACAGACAGAGAATGGCCTTCCAGCAGACATGCCA AGAAGCAAGCCAGGGTCAGTGAGTGAAGAGGAGGGCAGGCCCATTTGAA GCAACACAGTTTATGTAAGTGTGATCTAACTGCTTTCACTGGAAATGGGTC AGACTCCAGTTGAGAGAACCAGGGGCCTGAATGACCCCAGCAAAATCACT GTGGCAATTCTTTCAATCACCTCTGAGAATATGGCCCTGTGACGACATAAT GACGTTTGGATTAATTCCAGTCGGCTGTGTTTTCCCCCTCCTTTCTTGCCTCC CCGTAGTTGATTTGCCAAATTTTTTTGTTTGCTTAAATACGCGGAACTAA ACAGGATACATTATATGACAGTCTGTGATAAATTTACCACTGGGAATAGG GAAAAAGTATGGGATAAAGAAATAGGTATTTTTCGCCTCTCACAGCTGTG ATTCAGTTCTGACTCAAAAGGAAGTGTGCCACCTACTGAATCACAGAAAC CACTTCCTGTGGCTGTTTGGTTTATTCTGGAGGAGCATCAGGCCAAGTGCT GCCCTGCCCTGACCCTGACTGGCTCTTCAGAGCCAAGGCATTCACAGCTTG AGGTGGTTTGGCCTCAGACTCTTGAGAACATTGCATATTAAATTACAAGTG TTTGCAAACCAAGTATATCATTACTGAACCTGAATATCCTTACTTTTCAT AAGGTACGTATTCCGGATGACCACTCTTAAGATCTGAATGTACACTGGTTC TGTTTTTCCTGAGGGGAACTTGGGCAGTCTGCAGGGTGGCATTTACCAGCT GAGGGACTTCAAGAGCACCCTTTAATCAGTGTGGCAGCACTCAACTTGTA TTCACTCACTCAGAGTATTTTTGAGCATGTACTTATTGCCATGTGCTGTGCT AGGTAGGGGTAGAGGGTACAGTGGTGAACAAGACCCCACAGCTCCTGAC CTCATGGCTCATGTGTTCTACACCATAAGGGAATCAAGCTGTGTCTCCCGG GGCAGGGGCCTTCCTCTGTTCACCATGCAGCCCCAGCATCTAGCACCTGG

Full length of LUCAT1-001

GAATCAACACTCCACTCAGACAATGCCCAGACCTCCAGAAACCATGTGTC AAGCTCGGATTGCCTTAGACAGGTGCAATTTAAGAACAGCTTTCATCCTCT TTTCTCTCATATTGTCACACTATGTGTTCTGACTTCTGGCTCCTTTCCTCAC AAGAAGCTCACCCAGCTGGAACTCTTATGGGACCTTGGCACCAGAGACCA CAAATTCCTCTTTGAAGTTTTCTAACAGCAACAATGGTATTTCTGACTTGG CTTTCTTGTATTTCTCTCACGTTAACAAAATTGGTTCAGCATCTACCATGG GCTACATGCTGAGCTACAGAGTTTCGCTCTGTCGCCCAGGCTGGAGTGCA GTGGCGCGCGATCTCGGTTCACTGCAAGCTCCACCTCCCGGGTTCACGCC ACACCCAGGAATCCAACTTGCTGTTTGCTATCACATGTGCTATACATGCTG TTGATGAAACTGCTAAAGGGGGCTGAATGTGACTGACGTCTTTGGAAGGAT GAGACTTAGCGTGCCTGTACAGTTGTGTCCAAATGCTGTCCTCATCTCCCA ATGAAAAGGAACAAAACCCATCAGAAGATGTCAGAAGATAAGGATTTTT GTCCTGATGCTACACTTACCAGCTGTCCCTCAGTGTTCTACTTCTTAAAAA AAGAGAGATGGATAAACAGAGGCAACCCGAGGATAAAGGCCTTGCTCAG TGTCACACATTTCAGTCACTAAATAAGACACAATGGATGCCAGTATTCTC ATCCCCTCACAAATAAAGAGCCTTCAAGCTCTTGCAGTCAACAAGAACTT TTGGAATGATTTCACTGCCTGAAAAGGCAGATACATAGGTGACACCCACA AATAGGAAGAAAATCAACCTGAACCTGAGTGTGTGGGGCTCACTGACTCTA AGCAGTAGAGACAGAAGAAAAAAAAAAAGTTTTAGCAAAGAAGGGTTCTGA AAGAAAATAAATATAGCTCGTTATCAAGTGCTGTTTTTACACAGTAAAAC ATGGGCAAAATTACTCTTCTTTAAGTAGTAATTCTTATCTCTTGATTAAGT AAAAAAAAA