Metabolite discovery through global annotation of untargeted metabolomics data

Li Chen^{1,2}, Wenyun Lu^{2,3}, Lin Wang^{2,3}, Xi Xing^{2,3}, Ziyang Chen^{1,4}, Xin Teng², Xianfeng Zeng^{2,3}, Antonio D. Muscarella², Yihui Shen², Alexis Cowan^{2,4}, Melanie R. McReynolds^{2,3}, Brandon J. Kennedy⁵, Ashley M. Lato⁶, Shawn R. Campagna⁶, Mona Singh^{2,7}, Joshua D. Rabinowitz^{2,3,4,#}

¹Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200433, China. ²Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. ³Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA. ⁴Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. ⁵Lotus Separations, LLC, Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA. ⁶Department of Chemistry, The University of Tennessee at Knoxville, Knoxville, TN, 37996, USA. ⁷Department of Computer Science, Princeton University, Princeton, NJ, 08544, USA. # Corresponding author, e-mail: joshr@princeton.edu

Supplementary information

Supplementary Tables:

Supplementary Table 1. List of biochemical atom differences
Supplementary Table 2. List of abiotic atom differences
Supplementary Table 3. Examples of nickel-related peaks
Supplementary Table 4. Search results of reported metabolites in compound databases
Supplementary Table 5. Memory and run-time used in NetID

Supplementary Notes:

Supplementary Note 1. NetID scoring parameters Supplementary Note 2. Glucosyl-taurine synthesis Supplementary Note 3. NetID user guide Supplementary Note 4. NetID pseudocode

Supplementary Data (in separate excel files):

Supplementary Data 1. NetID annotation for the yeast negative-mode dataset Supplementary Data 2. Atom difference rule table Supplementary Data 3. In-house RT list Supplementary Data 4. HMDB reference compound database Supplementary Data 5. YMDB reference compound database Supplementary Data 6. PubChemLite reference compound database Supplementary Data 7. PubChemLite_bio reference compound database Supplementary Data 8. MS2 spectra of newly-discovered metabolites

Supplementary table 1. List of biochemical atom differences

Туре	Formula / Atom difference	Mass difference	RDBE ¹ difference	Allowed propagation direction ²
Deamination	O1N-1H-1	0.98402	0	0
Transamination	N1H3O-1	1.03163	-1	0
Hydrogenation	H2	2.01565	-1	0
Methylation	C1H2	14.01565	0	0
Amination	N1H1	15.01090	0	0
Hydroxylation	O1	15.99491	0	0
Amination	N1H3	17.02655	-1	0
Hydration	H2O1	18.01056	-1	0
Formylation	C1O1	27.99491	1	0
Beta oxidation	C2H4	28.03130	0	0
Deamination	C1H2O1	30.01056	0	0
Thiolation	S1	31.97207	0	0
Sulfurization	H2S1	33.98772	-1	0
Acetylation	C2H2O1	42.01056	1	0
Carboxylation	C1O2	43.98983	1	0
Isoprenylation	C5H8	68.06260	1	1
Sulfurylatoin	S1O3	79.95681	0	0
Phosphorylation	H1P1O3	79.96633	0	0
Hexose	C6H10O5	162.05282	1	1
Uronate	C6H8O6	176.03209	2	1
Palmitoylation	C16H30O1	238.22967	1	1
Sialic acid	C11H17N1O8	291.09542	3	1
AMP	C10H12N5O6P1	329.05252	7	1
CDP	C9H13N3O10P2	385.00762	5	1
ADP-ribosylation	C15H21N5O13P2	541.06111	8	1

1. RDBE stands for ring and double bond equivalence.

Allowed propagation direction: "1" means only forward propagation is allowed, i.e. adding the indicated atom differences to the parent formula; "-1" means reverse only, i.e. subtracting the indicated atom differences from the parent formula, and "0" means propagation is allowed for both directions.

Supplementary table 2. List of abiotic atom differences

Туре	Formula / Atom difference	Mass difference	RDBE difference	Allowed propagation direction
Isotope	[10]B-1B1	0.99637	0	-1
Isotope	[15]N1N-1	0.99703	0	1
Isotope	[29]Si-1[30]Si1	0.99728	0	1
Isotope	[29]Si1Si-1	0.99957	0	1
Isotope	[53]Cr1Cr-1	1.00014	0	1
Isotope	[13]C1C-1	1.00335	0	1
Isotope	[2]H1H-1	1.00628	0	1
Isotope	[34]S1S-1	1.99580	0	1
Isotope	[30]Si1Si-1	1.99684	0	1
Isotope	[37]CI1CI-1	1.99705	0	1
Isotope	[41]K1K-1	1.99812	0	1
Isotope	[18]010-1	2.00425	0	1
Isotope	[44]Ca1Ca-1	3.99289	0	1
Isotope	[60]Ni1Ni-1	1.99544	0	1
Isotope	[62]Ni1Ni-1	3.99300	0	1
Adduct	H-1Na1	21.98194	0	1
Adduct	CI1H1	35.97668	0	1
Adduct	H-1K1	37.95588	0	1
Adduct	H-2Ni1	55.91969	0	1
Adduct	Ca1H-2	37.94694	0	1
Adduct	C1H2O2	46.00548	0	1
Adduct	C1H1Na1O2	67.98742	0	1
Adduct	C1H1K1O2	83.96136	0	1
Adduct	C2H4O2	60.02113	0	1
Adduct	C2H3Na1O2	82.00307	0	1
Adduct	C2H3K1O2	97.97701	0	1
Adduct	C2H2Ni1O2	115.94082	0	1
Adduct	C2Ca1H2O2	97.96807	0	1
Adduct	H2O4S1	97.96738	0	1

Туре	Formula / Atom difference	Mass difference	RDBE difference	Allowed propagation direction
Adduct	H1Na1O4S1	119.94932	0	1
Adduct	H1K1O4S1	135.92326	0	1
Adduct	H1N1O3	62.99564	0	1
Adduct	N1Na1O3	84.97759	0	1
Adduct	H2C1O3	62.00039	0	1
Adduct	Na1H1C1O3	83.98234	0	1
Adduct	K1H1C1O3	99.95628	0	1
Adduct	H3O4P1	97.97690	0	1
Adduct	H2Na1O4P1	119.95884	0	1
Adduct	H2K1O4P1	135.93278	0	1
Adduct	Cr1O3	99.92525	0	1
Adduct	H4O4Si1	95.98789	0	1
Adduct	H3N1	17.02655	0	1
Adduct	H-2Na2	43.96389	0	1
Adduct	H-2K2	75.91176	0	1
Adduct	C1H1N1	27.01090	0	1
Adduct	C1H4O1	32.02621	0	1
Adduct	H6O8P2	195.95379	0	1
Adduct	B1H-3	7.98583	2	1
Adduct	B1H-1O1	25.99640	1	1
Adduct	H2O3Si1	77.97732	0	1
Adduct	H1Na1O1	39.99251	0	1
Adduct	H1K1O1	55.96645	0	1
Adduct	C2H3N1	41.02655	0	1
Adduct	C3H8O3Si1	120.02427	0	1
Fragment	C1O2	43.98983	1	-1
Fragment	C1H2O1	30.01056	0	-1
Fragment	H2O1	18.01056	-1	-1
Fragment	N1H3	17.02655	-1	-1
Radical	Н	1.00783	-0.5	-1

Supplementary table 3. Examples of nickel related peaks

peak_id	medMz	medRt	log10_ inten	formula	Δppm	annotation
4	89.0476	13.01	8.65	C3H7N1O2	0.92	C3H7N1O2
1194	294.0362	13.01	5.37	C8H16N2Ni1O6	0.01	C3H7N1O2 * 2 + C2H2Ni1O2
1952	296.0316	13.01	4.98	[60]Ni1C8H16N2O6	0.16	C3H7N1O2 * 2 + C2H2Ni1O2 + [60]Ni1Ni-1*
2723	234.0149	13	4.67	C6H12N2Ni1O4	0.74	C3H7N1O2 * 2 + H-2Ni1
2269	265.0095	13.07	4.92	C7H13N1Ni1O6	0.58	C3H7N1O2 + C2H4O2 + C2H2Ni1O2
3869	267.005	13.04	4.36	[60]Ni1C7H13N1O6	0.36	C3H7N1O2 + C2H4O2 + C2H2Ni1O2 + [60]Ni1Ni-1
855	270.0961	13.59	5.62	C10H14N4O5	1.27	C10H14N4O5
2005	358.0423	13.5	4.97	C11H16N4Ni1O6	0.14	C10H14N4O5 + C1H4O1 + H-2Ni1
2961	360.0377	13.51	4.39	[60]Ni1C11H16N4O6	0.26	C10H14N4O5 + C1H4O1 + H-2Ni1 + [60]Ni1Ni-1
125	222.0673	14.18	6.82	C7H14N2O4S1	0.68	C7H14N2O4S1
2406	338.0083	14.29	4.95	C9H16N2Ni1O6S1	-0.08	C7H14N2O4S1 + C2H2Ni1O2
31	117.079	11.21	7.61	C5H11N1O2	0.02	C5H11N1O2
3450	293.041	11.24	4.54	C9H17N1Ni1O6	-0.16	C5H11N1O2 + C2H4O2 + C2H2Ni1O2
4664	146.069	13.39	8.28	C5H10N2O3	1.13	C5H10N2O3
3287	262.0098	13.4	4.53	C7H12N2Ni1O5	0.72	C5H10N2O3 + C2H2Ni1O2
3534	322.0311	13.37	4.38	C9H16N2Ni1O7	0.05	C5H10N2O3 + C2H2Ni1O2 + C2H4O2
92	612.1521	14.19	6.98	C20H32N6O12S2	-0.19	C20H32N6O12S2
2440	668.0718	14.2	4.87	C20H30N6Ni1O12S2	-0.18	C20H32N6O12S2 + H-2Ni1
3528	670.0671	14.21	4.54	[60]Ni1C20H30N6O12S2	0.03	C20H32N6O12S2 + H-2Ni1 + [60]Ni1Ni-1
22	132.0898	16.24	7.34	C5H12N2O2	0.77	C5H12N2O2
4942	308.052	16.26	4.1	C9H18N2Ni1O6	-0.48	C5H12N2O2 + C2H4O2 + C2H2Ni1O2

* "[60]Ni1Ni-1" means adding an isotope ⁶⁰Ni and subtracting a regular Ni, representing the atom difference of nickel isotope. This representation aligns atom difference to mass difference.

Supplementary table 4. Search results of newly identified metabolites in compound databases

	HMDB		PubChem		METLIN		Sci-Finder	
	formula	structure	formula	structure	formula	structure	formula	structure
Thiamine + [C ₂ H ₂ O] (C ₁₄ H ₁₈ N ₄ O ₂ S)	х	Х	v	Х	х	Х	v	v ²
Thiamine + [C2H4O] (C14H20N4O2S)	Х	Х	v	X ¹	Х	Х	v	Х
Thiamine + [C4H6O3] (C16H22N4O4S)	Х	Х	v	X ¹	Х	Х	v	Х
Thiamine + [C4H8O] (C16H24N4O2S)	Х	Х	v	X ¹	Х	Х	v	Х
Glucosyl-taurine (C ₈ H ₁₇ NO ₈ S)	Х	Х	V	√ ²	Х	Х	v	v ²

Note:

1. Pyrophosphate form of the metabolite exists.

2. Reported only as a synthetic chemical, not a metabolite or biological chemical.

Supplementary Table 5. Memory and run-time used in NetID.

	Yeast neg	Yeast pos	Liver neg	Liver pos
Total non-background peaks	5588	9833	8191	12128
Maximum memory used (GB)	4.7	13.3	6.8	12.1
Optimization time (min)	2.5	6.7	1.1	2.4
Total time (min)	24.3	101.3	31.8	94.4

Note: The maximum memory and run-time reported here is under default parameter setting in NetID.

Supplementary Note 1 – NetID scoring parameters

Scoring candidate node annotations

NetID scores every candidate node and edge annotation assigned in the candidate annotation step. The node scoring system aims to assign high scores to annotations that align observed ion peaks with known metabolites based on m/z, retention time, MS/MS, and/or isotope abundances.

Let the set of candidate annotations for node u be denoted as $\{a_1 \dots a_i \dots a_m\}$. For each node u and each of its candidate annotation a_i , let $S(u, a_i)$ denotes the score of candidate annotation a_i for node u. Different scoring components for candidate node annotations are defined as below:

(a) $S_{m/z}(u, a_i)$ is negative when measured m/z differs from the calculated m/z of assigned molecular formula. A larger ppm difference between calculated formula m/z and measurement m/z results to lower scores. The default scale factor is -0.5. Let $a_{i,m/z}$ be the calculated m/z of annotation a_i , and $u_{m/z}$ be the measured m/z of node u, then

$$S_{m/z}(u, a_i) = -0.5 \times |u_{m/z} - a_{i,m/z}| / u_{m/z} \times 10^6$$
(1)

(b) $S_{RT}(u, a_i)$ is positive if the measured RT for the peak corresponding to node u matches to a known standard. A smaller difference between known and measured RT results in a higher score. Let $a_{i,RT}$ be the known RT of annotation a_i , and u_{RT} be the measured RT of node u, then

$$S_{\rm RT}(u, a_i) = 1 - |u_{\rm RT} - a_{i,\rm RT}|, \text{ if } |u_{\rm RT} - a_{i,\rm RT}| < 0.5 \text{ min}$$

Otherwise, $S_{\rm RT}(u, a_i) = 0$ (2)

(c) $S_{MS2}(u, a_i)$ is positive if the measured MS2 spectrum of node u matches the database MS2 spectrum of annotation a_i . A cosine similarity-based scoring function is used to score the MS2 spectra similarity^{1,2}. The intensities of the fragment ions in the MS2 spectra are rescaled so that the highest fragment ion is set to 1.

MS2 spectrum is represented as a data table containing m/z and corresponding relative intensity. Data tables for two spectra (one from experiment and one from database) are merged by m/z, which yields two equal-length vectors to represent relative intensity for experimental measured MS2 spectrum of u (W_u) and database MS2 spectrum of a_i (W_{a_i}). Cosine similarity (DP) and score for MS2 match ($S_{MS2}(u, a_i)$) are defined as below.

$$DP = \frac{\sum W_u W_{a_i}}{\sqrt{\sum W_u^2 \times \sum W_{a_i}^2}}$$
(3)

 $S_{MS2}(u, a_i) = DP$, if DP > 0.5

Otherwise
$$S_{MS2}(u, a_i) = 0$$
 (4)

(d) $S_{database}(u, a_i)$ is positive if the annotated formula a_i exists in HMDB. We give a positive score to a primary seed node annotation if that annotated formula exists in HMDB.

$$S_{database}(u, a_i) = 0.5$$
, if a_i in HMDB

Otherwise,
$$S_{database}(u, a_i) = 0$$
 (5)

(e)S_{missing_isotope} (u, a_i) is negative if an isotopic peak is missing. We penalize a formula annotation if it

passes the intensity threshold (default at $5x10^4$) but does not have isotopic peaks of specified elements. The default isotope being evaluated is ³⁷Cl. Any other elements, such as ¹³C or ¹⁸O, can be included by users.

$$S_{\text{missing}_{isotope}}(u, a_i) = -1$$
, if isotopic peak is missing

Otherwise
$$S_{\text{missing}_i\text{sotope}}(u, a_i) = 0$$
 (6)

(f) $S_{rule}(u, a_i)$ is negative if annotation a_i violates basic chemical rules. We strongly penalize formulae that violate basic chemical rules, including a negative RDBE (ring and double bond equivalents), and unlikely element ratios in metabolites (O/P < 3, O/Si < 2).

 $S_{rule}(u, a_i) = -10$, if chemical rules are violated

Otherwise,
$$S_{rule}(u, a_i) = 0$$
 (7)

(g) $S_{derivative}(u, a_i)$ is a non-negative score that reflects annotation a_i for node u gains confidence that derived from its parent node p with candidate annotation h. This is particularly helpful in annotating abiotic peaks. For example, annotation of glutamate sodium adduct will be given a positive $S_{derivative}$ when its parent node is annotated as glutamate with high score $S_{parent}(p,h)$. $S_{parent}(p,h)$ is calculated by summing up scores in (a)-(f).

$$S_{\text{derivative}}(u, a_i) = S_{\text{parent}}(p, h) - 0.5, \text{ if } S_{\text{parent}}(p, h) > 0.5$$

Otherwise, $S_{\text{derivative}}(u, a_i) = 0$ (8)
$$S_{\text{parent}}(p, h) = S_{\text{m/z}}(p, h) + S_{\text{RT}}(p, h) + S_{\text{MS2}}(p, h) +$$

 $S_{database}(p,h) + S_{missing_isotope}(p,h) + S_{rule}(p,h)$ (9)

A final score $S(u, a_i)$ for each candidate annotation a_i of node u is calculated by summing scores in (a)-(g).

$$S(u, a_i) = S_{m/z}(u, a_i) + S_{RT}(u, a_i) + S_{MS2}(u, a_i) + S_{database}(u, a_i) + S_{missing_isotope}(u, a_i) + S_{rule}(u, a_i) + S_{derivative}(u, a_i)$$
(10)

Note that for each node *u*, no annotation is always a candidate option. The node score for this null annotation is 0 at default. It can also be set to a positive value to decrease false positive annotations or a negative value to promote increased annotation completeness (at the expense of more false positives).

Scoring candidate edge annotations

The edge scoring system aims to assign high scores to edge annotations that correctly capture biochemical connections between metabolites (based on MS2 spectra similarity) and abiotic connections between metabolites and their mass spectrometry phenomena derivatives, such as isotopes and adducts. Biochemical, isotope, and adduct edge annotations are the most common types. Other less common abiotic connection types are described in a subsequent section.

Suppose we consider two nodes u and v that are connected by an edge (u, v). For each pair of nodes u and v such that there is an edge (u, v), let the set of candidate formula for node u and v be denoted as $\{a_1 \dots a_i \dots a_m\}$ and $\{b_1 \dots b_j \dots b_n\}$, respectively, and let the set of candidate atom differences for edge (u, v) be $\{D_1 \dots D_k \dots D_l\}$. Let $S(u, v, a_i, b_j, D_k)$ be the score of choosing candidate formula a_i for node u, candidate formula b_j for node v and candidate atom difference D_k for edge (u, v). Note that $S(u, v, a_i, b_j, D_k)$ is set to be 0 if atom difference D_k does not represent the formula difference of a_i and

 b_j .

$$S(u, v, a_i, b_j, D_k) = 0, \text{ if } |a_i - b_j| \neq D_k$$

$$(11)$$

Different scoring components for candidate edge annotations are defined as below:

(h) When node u and v have experimental measured MS2 spectra, $S_{MS2_similarity}(u, v, a_i, b_j, D_k)$ is defined for a biochemical edge, and is a positive score if two connected nodes u and v have MS2 similarity. $S_{MS2_similarity}$ is determined using the cosine similarity of the MS2 spectra (DP), as described in previous section, and the neutral ion loss similarity (DP_R) in the MS2 spectra¹. In calculating DP_R, data tables for two spectra (one from node u and one from node v) are merged by [precursor m/z – fragment m/z]. Two equal-length vectors representing the relative intensity of measured MS2 spectrum of u and v are denoted as R_u and R_v respectively. $S_{MS2_similarity}$ is set at 0 for abiotic edges.

$$DP = \frac{\sum W_u W_v}{\sqrt{\sum W_u^2 \times \sum W_v^2}}$$
(12)

$$DP_R = \frac{\sum R_u R_v}{\sqrt{\sum R_u^2 \times \sum R_v^2}}$$
(13)

$$S_{MS2_similarity}(u, v, a_i, b_j, D_k) = \max(DP, DP_R), \text{ if } \max(DP, DP_R) > 0.3$$

Otherwise,
$$S_{MS2_similarity}(u, v, a_i, b_j, D_k) = 0$$
 (14)

(i) $S_{co_elution}(u, v, a_i, b_j, D_k)$ is defined for an abiotic edge, and is a negative score if the RT of two connected nodes differ more than a threshold (0.05 min), given the formula difference of a_i and b_j matches the atom difference defined by D_k . $S_{co_elution}$ is set at 0 for biochemical edges.

$$S_{\text{co_elution}}(u, v, a_i, b_j, D_k) = -5 \times |u_{\text{RT}} - v_{\text{RT}}|, \text{ if } |u_{\text{RT}} - v_{\text{RT}}| \ge 0.05 \text{ min}$$

Otherwise,
$$S_{\text{co_elution}}(u, v, a_i, b_j, D_k) = 0$$
 (15)

(j) $S_{type}(u, v, a_i, b_j, D_k)$ is defined for all edges, given the formula difference of a_i and b_j matches the atom difference defined by D_k , and is a non-negative score depending on the connection type of edge, which is defined by D_k , including biotransformation, adduct, isotope and fragment (Supplementary Table 1, 2). The magnitude of scores reflects the empirical confidence in the annotation type when certain atom differences occur, and can be adjusted based on user preferences.

$$\begin{split} S_{\text{type}}(u, v, a_i, b_j, D_k) &= 0, \text{ if } D_k \quad \epsilon \text{ biotransformation} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 0.5, \text{ if } D_k \quad \epsilon \text{ adduct} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 2, \text{ if } D_k \quad \epsilon \text{ isotope} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 0.3, \text{ if } D_k \quad \epsilon \text{ common neutral loss} \end{split}$$
(16)

(k) For each $D_k \epsilon$ isotope, $S_{isotope_intensity}(u, v, a_i, b_j, D_k)$ is defined for isotope edge (u, v) where b_j is the isotopic derivative of a_i with atom difference of D_k , and is a negative score if the measured isotope peaks deviate from expected natural abundance. The score for an isotope edge depends on how likely the ratio of measured and expected isotopic intensity (Ratio_isotope) is observed in an empirical normal distribution $N(1, \sigma_{isotope}^2)$. Isotopes of all elements included in the atom difference table are evaluated.

$$\text{Ratio}_{\text{isotope}} = \frac{v_{\text{intensity}} / u_{\text{intensity}}}{\text{Expected isotopic intensity ratio} (a_i, b_j, D_k)}$$
(17)

$$S_{isotope_intensity}(u, v, a_i, b_j, D_k) = log_{10} \left[\frac{normPDF(\text{Ratio}_{isotope}, 1, \sigma_{isotope}^2)}{normPDF(1, 1, \sigma_{isotope}^2)} \right]$$
(18)

normPDF(x, μ , $\sigma_{isotope}^2$) is defined as the normal probability density function with mean μ and variance $\sigma_{isotope}^2$ evaluated at the values in x. $\sigma_{isotope}$ is empirically defined as below, so that when measured isotope intensity is close to detection limit, a larger $\sigma_{isotope}$ (a widened distribution, which is more tolerant to discrepancy) will be used.

$$\sigma_{\text{isotone}} = 0.2 + 10^{3 - \log_{10}(v_{\text{intensity}})} \tag{19}$$

A final edge annotation score $S(u, v, a_i, b_j, D_k)$ for choosing candidate formula a_i for node u, candidate formula b_j for node v and candidate atom difference D_k for edge (u, v) is calculated by summing scores in (h)-(n).

$$S(u, v, a_i, b_j, D_k) = S_{MS2_similarity}(u, v, a_i, b_j, D_k) + S_{co_elution}(u, v, a_i, b_j, D_k) + S_{type}(u, v, a_i, b_j, D_k) + S_{isotope_intensity}(u, v, a_i, b_j, D_k)$$
(20)

Less common edge annotations

LC-MS metabolomics may include additional abiotic relationships. In orbitrap data, these include oligomers, multi-charge species, heterodimers, in-source fragments of known or unknown metabolites³, and ringing artifact peaks surrounding high intensity ions^{4,5}. These relationships were included in NetID as additional edge types, which are evaluated for all m/z pairs within a predefined RT range (0.2 min). Associated scores are provided at the end of the section.

(I) Oligomer and multi-charge species. An oligomer/multi-charge edge is assigned between two nodes u and v, if their m/z satisfy

$$|v_{m/z} - n \times u_{m/z}| < u_{m/z} \times 10$$
 ppm, n \in {positive integers} (21)

(m) Heterodimer. Heterodimer peak (node v) may be observed when one abundant metabolite (node u) forms ion cluster with other ion species (node t). We examine nodes that have intensity above 10^5 , and assign a heterodimer edge between two nodes u and v if their m/z difference satisfy

$$(v_{m/z} - u_{m/z}) - t_{m/z} | < u_{m/z} \times 10 \text{ ppm}$$
 (22)

(n) In-source fragments. Such peaks may be observed when one abundant metabolite breaks up into fragments during the ionization process.

Database MS2 of known metabolites can be used to identify known ion fragment peaks³. If candidate annotation b_i of node v is annotated with a HMDB ID associated with database MS2 spectrum, and m/z

of node u matches to a fragment m/z in b_j 's MS2 spectrum, then a database fragment edge will connect such two nodes. That is,

 $u_{m/z} \in Database MS2$ spectrum of candidate annotation b_j of node v (23) Measured MS2 spectra can also be used to identify fragment peaks (including covering unknowns not present in MS2 database). If node v is associated with a measured MS2 spectrum, and m/z of another node u matches to a fragment m/z in the MS2 spectra, then an experiment fragment edge will connect such two nodes. That is,

$$u_{\rm m/z}~\epsilon$$
 Measured MS2 spectrum of node v (24)

(o) Ringing artifacts. Ringing peaks are artifact peaks (node v) often observed on both sides of the m/z of an intense ion peak (node u) in Fourier-transformed MS instrument including orbitrap. We examine nodes that have intensity above 10⁶, and assign a ringing artifact edge between two nodes if two nodes satisfy

$$50 \text{ ppm} < |v_{m/z} - u_{m/z}| / u_{m/z} < 1000 \text{ ppm}$$
$$u_{\text{intensity}} / v_{\text{intensity}} > 50$$
(25)

Scoring of these additional abiotic edges follow the same rules described in the "Scoring edge annotations" section with additional S_{type} defined as below.

$$\begin{split} S_{\text{type}}(u, v, a_i, b_j, D_k) &= 0.5, \text{ if } D_k \ \epsilon \text{ oligomer or multi-charge} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 0, \text{ if } D_k \ \epsilon \text{ heterodimer} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 0.3, \text{ if } D_k \ \epsilon \text{ database MS2 fragment} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 1, \text{ if } D_k \ \epsilon \text{ measured MS2 fragment} \\ S_{\text{type}}(u, v, a_i, b_j, D_k) &= 2, \text{ if } D_k \ \epsilon \text{ ringing artifacts} \end{split}$$
(26)

A final edge annotation score $S(u, v, a_i, b_j, D_k)$ for choosing candidate formula a_i for node u, candidate formula b_j for node v and candidate atom difference D_k for edge (u, v) is calculated by summing scores in (h)-(o).

$$S(u, v, a_i, b_j, D_k) = S_{MS2_similarity}(u, v, a_i, b_j, D_k) + S_{co_elution}(u, v, a_i, b_j, D_k) + S_{type}(u, v, a_i, b_j, D_k) + S_{isotope_intensity}(u, v, a_i, b_j, D_k)$$
(27)

Parameters to edit in different usage situations

Currently the algorithm is developed using Thermo Orbitrap instruments results. We anticipate the algorithm will work for other high mass accuracy data, such as TOF data. Due to the difference in mass resolving power and mass accuracy between TOF and orbitrap, in applying NetID to TOF data, it would be important to check parameters related to mass accuracy, e.g. the m/z tolerance for seed matching and candidate node annotations, and the score evaluating m/z accuracy for candidate node annotations. Other data acquisition differences may also impact the optimal parameter settings in NetID. For example, if sample type (e.g. yeast vs mouse) is different, users may check on choice of reference library and if ionization settings (e.g. high vs low in-source CID) is different, users may check on the scoring parameters related to forming clustered ion species such as oligomers or heterodimers. The overall logics is to assign high scores to those candidate annotations that effectively align the experimentally observed ion peaks with prior metabolomics knowledge, so the network optimization will lead to an optimal annotation.

Supplementary Note 2 – Glucosyl-taurine synthesis

Glucosyl-taurine synthesis was carried out following previous literature reports with slight modifications⁶. In brief, dry methanol was obtained by distillation of HPLC-grade methanol (Fisher; HPLC grade 0.2 micron filtered) over CaH₂ (Acros Organics; ca. 93% extra pure, 0-2 mm grain size). A flame-dried round-bottom flask equipped with a reflux condenser and stir bar was charged with 2.0 g taurine (Alfa Aesar; 99%), 3.1 g D-glucose (Acros Organics; ACS reagent), and 80 mL of dry methanol. This mixture was sonicated under an inert atmosphere for 30 min before being returned to the manifold for the reaction. To the fine-suspension of taurine and glucose in dry methanol at room temperature, 4.0 mL 5.4 M sodium methoxide in methanol (Acros Organics) was added via glass syringe. At this point, the suspension began to dissolve and after 30 minutes, gave a clear and colorless solution. The solution was stirred vigorously under an inert atmosphere for 72 hours, which resulted in a faint peach-colored solution. This solution was chilled to 0 C, and ~200 mL of absolute ethanol (200 proof) was added and precipitation was allowed to occur at this temperature for 30 minutes. Solvent was then removed by filtration over a glass filter (medium porosity), and washed with ~100 mL of absolute ethanol, affording a fine pale-yellow powder (2.4 g; crude material).

NMR was carried out to validate the structure of synthesized N-glucosyl-taurine. Selective TOCSY experiments using DIPSI2 spin-lock and with added chemical shift filter⁷ were run on a Bruker Avance III HD NMR spectrometer equipped with a custom-made QCI-F cryoprobe (Bruker, Billerica, MA) at 800 MHz and at 295 K controlled temperature. The sample was dissolved in DMSO-d6. The spectra shown on the plots are results of 200 ms SL mixing, 8 scans each. Data processing (MNova v.14, Mestrelab Research S.L., Santiago de Compostela, Spain) included zero filling, 1 Hz Gaussian apodization, phase- and baseline correction. NMR analysis suggests that the final crude material contains 5.2% N-glucosyl-taurine mixed with unreacted substrates (Extended Data Fig. 8).

Supplementary references:

- Shen, X. *et al.* Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. *Nature Communications* **10**, 1516 (2019).
- Stein, S. E. & Scott, D. R. Optimization and testing of mass spectral library search algorithms for compound identification. *J Am Soc Mass Spectrom* 5, 859–866 (1994).
- 3. Xue, J. *et al.* Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification. *Anal. Chem.* **92**, 6051–6059 (2020).

- Wang, L. *et al.* Peak Annotation and Verification Engine for Untargeted LC–MS Metabolomics. *Anal. Chem.* **91**, 1838–1846 (2019).
- Mitchell, J. M. *et al.* New methods to identify high peak density artifacts in Fourier transform mass spectra and to mitigate their effects on high-throughput metabolomic data analysis. *Metabolomics* 14, 125 (2018).
- Cho, H. J., You, J. S., Chang, K. J., Kim, K. S. & Kim, S. H. Anti-adipogenic Effect of Taurine-Carbohydrate Derivatives. *Bulletin of the Korean Chemical Society* 35, 1863–1866 (2014).
- Robinson, P. T., Pham, T. N. & Uhrín, D. In phase selective excitation of overlapping multiplets by gradient-enhanced chemical shift selective filters. *Journal of Magnetic Resonance* 170, 97–103 (2004).

Supplementary Note 3 - NetID User Guide

Li Chen, Ziyang Chen

8 August 2021

Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times, and (when available) MS/MS fragmentation patterns. Peaks are connected based on mass differences reflecting adducting, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically-informative peak-peak relationships, including for peaks lacking MS/MS spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.

NetID requires (1) a peak table (in .csv format) containing m/z, RT and intensity from high-resolution mass spectrometry data; (2) a reference compound database, for which we provide HMDB, YMDB, a lite version of PubChem (PubChemLite.0.2.0) and a subset of 47,101 biopathway related entries (PubChemLite_Bio) that the user may choose; and. (3) a transformation table (in .csv format), for which we assembled a list of 25 biochemical atom differences and 59 abiotic atom differences. NetID optionally use (4) a list of excel files containing MS2 fragmentation information (m/z and intensity) for peaks in the above peak table and (5) a list of known metabolites' retention time, for which we provide our in-house retention table and the retention. Users can customize the compound database, the transformation table and the retention time list following the user guide. Currently the algorithm is developed using Thermo Orbitrap instruments results. We anticipate the algorithm will work for other high mass accuracy data, such as TOF data, but parameters may need to be optimized for the best performance.

Citation: https://www.biorxiv.org/content/10.1101/2021.01.06.425569 Git-hub: https://github.com/LiChenPU/NetID

1 Environment Setup

This section provides step-by-step instructions to set up the environment to run NetID algorithm in a local computer. A Windows system is recommended. Typical install time on a "normal" desktop computer is within a few hours.

1.1 Software installation

 Install R, Rstudio, Rtools40, ILOG CPLEX Optimization Studio (CPLEX) and Git, preferably at default location. R(version 4.0, 4.1 tested): https://www.r-project.org/ RStudio: https://rstudio.com/products/rstudio/download Rtools40: https://cran.r-project.org/bin/windows/Rtools/ow CPLEX(version 12.8,12.10,20.10 tested): https://www.ibm.com/academic/ technology/data-science Git: https://git-scm.com/downloads

1.2 Code download

1.2.1 Via Git (recommended)

- Install git via https://support.rstudio.com/hc/en-us/articles/200532077?version=1.3. 1093&mode=desktop
- 2. In Rstudio, go to File \rightarrow New project \rightarrow Version control \rightarrow Git, enter https: //github.com/LiChenPU/NetID.git for URL, select a subdirectory, and create project.
- 3. You should be able to see all files in place under your selected subdirectory. Use pull option to check for latest updates.

1.2.2 Via Github

1. Go to website https://github.com/LiChenPU/NetID, hit the green code button, select download zip, and unzip files.

1.3 Package dependency installation

1.3.1 Install common packages

- 1. Open the R script NetID_packages.R in get started folder.
- 2. Run all lines.
- 3. Run all lines again. If you see "No new packages added...", then it means all packages are successfully installed.

1.3.2 Install cplexAPI

The package, cplexAPI, connecting R to CPLEX, requires additional installation steps.

- Go to website: https://cran.r-project.org/web/packages/cplexAPI/index.html, look for Package source, and download cplexAPI_1.4.0.tar.gz. In the same page, look for Materials, a package installation guide can be found in the link INSTALL.
- Unzip the folder cplexAPI to the desktop, open subfolder src, follow the installation guide to modify the file Makevars.win.
 Note: Penlace V in the Makevars win file into (in order for P to recognize the path)
 - **Note**: Replace $\$ in the Makevars.win file into / in order for R to recognize the path.
 - For example, the -I"\${CPLEX_STUDIO_DIR}\cplex\include" needs to be replaced with the path CPLEX_studio is installed, such as: -I"C:/Program Files/IBM/ILOG/CPLEX_Studio1210/cplex/include"
 - The -L"\${CPLEX_STUDIO_LIB}" needs to be replaced with the path CPLEX_studio is installed, such as: -L"C:/Program Files/IBM/ILOG/CPLEX_Studio1210/cplex/bin/x64_win64"

- The last part "-lcplexXXX" needs to be replaced with specific version code. For example, use "-lcplex12100" for CPLEX_Studio1210, and "-lcplex2010" for CPLEX_Studio201
- 3. build package,
 - In command line, change \${Username} to the actual user name and run line below, R CMD build --no-build-vignettes --no-manual --md5 "C:\Users\\${Username}\Desktop\cplexAPI"
 - Alternatively, you can run the lines below in Rstudio: setwd('C:/Users/\${Username}/Desktop/cplexAPI') devtools::build(vignettes = FALSE)

a new package cplexAPI_1.4.0.tar.gz will be built under the default path (for example, C:\Users\\${Username})

Note: You need to add R and Rtools40 to Environmental Variables PATH, with instruction provided at the end.

4. In command line, run line below to install package.

R CMD INSTALL --build --no-multiarch .\cplexAPI_1.4.0.tar.gz
If you see DONE (cplexAPI), then the package installation is successful.
Note: if error occurs relating to __declspec(dllimport deprecated), you need to go
to C:\Program Files\IBM\ILOG\CPLEX_Studio1210\cplex\include\ilcplex (or your
own installation folder), open the file cpxconst.h, go to the line indicated in the error
message or search for __declspec(dllimport deprecated), add _ in between, make it
to __declspec(dllimport_deprecated). Save file and repeat step 4.

 To test if cplexAPI is installed properly and to take a short venture using CPLEX in R, refer to Package cplexAPI – Quick Start in https://cran.r-project.org/web/packages/ cplexAPI/index.html.

2 Using NetID

This section will use yeast negative-mode dataset and mouse liver negative-mode dataset as examples to walk through the NetID workflow.

Note 1: If other El-MAVEN version was used, check the "raw_data.csv" for the column number where the first sample is located, and specify that in the NetID_run_script.R file. For example, In El-MAVEN (version 7.0), first_sample_col_num is set at 15 as default. If El-MAVEN (version 12.0) is used, first_sample_col_num should be set at 16.

Note 2: for more advanced uses, scoring and other parameters can be edited in NetID_function.R and NetID_run_script.R. Read the manuscript method section for detailed explanation on parameters.*

2.1 Yeast negative-mode dataset

In the Sc_neg folder, file raw_data.csv is the output from **Elmaven** recording MS information, and is the input file for **NetID**. MS2 is not collected for this dataset.

2.1.1 Running the code

1. Open code folder \rightarrow NetID_run_script.R

2. In the # Setting path #### section, set work_dir as "../Sc_neg/".

```
# Setting path ####
{
   setwd(dirname(rstudioapi::getSourceEditorContext()$path))
   source("NetID_function.R")

   work_dir = "../Sc_neg/"
   setwd(work_dir)
   printtime = Sys.time()
```

}

 In the # Read data and files #### section, set filename as "raw_data.csv", set MS2_folder as "".

set ion_mode as -1 if negative ionization data is loaded, and 1 if positive ionization data loaded.

4. Keep all other parameters as default, and run all lines.

2.1.2 Expected outputs

1. In the console, error message should not occur. If optimization step is successful, you will see messages in the following format.

```
"Optimization ended successfull - integer optimal, tolerance - OBJ_value = 2963.71
(bestobjective - bestinteger) / (le-10 + |bestinteger|) = 0.000048268"
95.74 sec elapsed
```

- 2. Three files will be generated in the Sc_neg folder. Expected run time on a "normal" desktop computer should be within an hour.
 - NetID_output.csv contains the annotation information for each peak.
 - NetID_output.RData contains node, edge and network information. The file will be used for network visualization in Shiny R app.
 - .RData records the environmental information after running codes. The file is mainly used for development and debugging.

2.2 Your own dataset

2.2.1 MS1 dataset preparation

1. File conversion. Use software **ProteoWizard40** (version 3.0.11392) to convert LC-MS raw data files (.raw) into mzXML format. A command line script specifies the conversion parameter. Assuming the raw data are in D:/MS data/test. Type in the scripts below.

```
D:
cd D:/MS data/test
"C:/Program Files/ProteoWizard/ProteoWizard 3.0.11392/msconvert.exe"
*.raw --filter "peakPicking true 1-" --simAsSpectra --srmAsSpectra --mzXML
```

If **ProteoWizard** is installed in location other than C:/Program Files/ProteoWizard/ProteoWizard 3.0.11392/msconvert.exe, specify your path to where you can find the msconvert.exe file. Expected outputs will be .mzXML files from .raw data.

 EI-MAVEN (version 7.0) is used to generate a peak table containing m/z, retention time, intensity for peaks. Detailed guides for peak picking can be found in https: //elucidatainc.github.io/EIMaven/faq/.

After peak picking and a peak table tab has shown up, click export to CSV. Choose export all groups. In the pop-up saved window, choose format Groups Summary Matrix Format Comma Delimited. Save to the desired path.

3. Under the NetID folder, create a new folder NetID_test, copy the csv file from step 2 into the folder, and change the filename into raw_data.csv.

2.2.2 MS2 dataset preparation

NetID currently utilizes targeted MS2 data for better MS2 quality, and will incorporate data-dependent MS2 data in the future.

1. Prepare MS2 inclusion list

For targeted MS2 analysis, from the peak list generated in *step 1*, select the peaks (m/z, RT) that you want to perform MS2, and arrange them into multiple csv files that will serve as the inclusion lists to set up the PRM method on **Thermo QExactive** instrument. Instruction can be found in https://proteomicsresource.washington.edu/docs/protocols05/PRM_QExactive.pdf.

Note: Arrange the parent ions so as to avoid to perform many PRMs at same time. An example is shown below with the start and End time set as RT-1.5 and RT+1.5 (min) to have good chromatogram coverage.

```
library(readr)
```

```
read_csv("example.csv")
##
## -- Column specification -----
## cols(
## Mass = col_double(),
##
    Formula = col_logical(),
##
   Formula_type = col_logical(),
##
   Species = col_logical(),
    CS = col_logical(),
##
##
   Polarity = col_character(),
##
   Start = col_double(),
   End = col_double(),
##
##
    CE = col_double(),
```

##	(CE_type	e = col_d	character(),							
##	/	ISXID =	= col_log	gical(),							
##	(Commen	$t = col_{-}$	character()							
##)										
##	# /	A tibb	le: 16 x	12							
##		Mass	Formula	Formula_type	Species	CS	Polarity	Start	End	CE	CE_type
##		<dbl></dbl>	<lgl></lgl>	<lgl></lgl>	<lgl></lgl>	<lgl></lgl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
##	1	499.	NA	NA	NA	NA	Negative	0.456	3.46	30	NCE
##	2	722.	NA	NA	NA	NA	Negative	0.733	3.73	30	NCE
##	3	403.	NA	NA	NA	NA	Negative	1.06	4.06	30	NCE
##	4	211.	NA	NA	NA	NA	Negative	1.20	4.20	30	NCE
##	5	328.	NA	NA	NA	NA	Negative	1.40	4.40	30	NCE
##	6	149.	NA	NA	NA	NA	Negative	1.59	4.59	30	NCE
##	7	151.	NA	NA	NA	NA	Negative	2.69	5.69	30	NCE
##	8	335.	NA	NA	NA	NA	Negative	2.70	5.70	30	NCE
##	9	143.	NA	NA	NA	NA	Negative	4.07	7.07	30	NCE
##	10	89.0	NA	NA	NA	NA	Negative	5.67	8.67	30	NCE
##	11	283.	NA	NA	NA	NA	Negative	6.92	9.92	30	NCE
##	12	202.	NA	NA	NA	NA	Negative	8.79	11.8	30	NCE
##	13	160.	NA	NA	NA	NA	Negative	10.3	13.3	30	NCE
##	14	216.	NA	NA	NA	NA	Negative	11.4	14.4	30	NCE
##	15	125.	NA	NA	NA	NA	Negative	12.0	15.0	30	NCE
##	16	230.	NA	NA	NA	NA	Negative	12.9	15.9	30	NCE
##	# .	wi	th 2 more	e variables:	MSXID <l< td=""><td>gl>, C</td><td>omment <cl< td=""><td>hr></td><td></td><td></td><td></td></cl<></td></l<>	gl>, C	omment <cl< td=""><td>hr></td><td></td><td></td><td></td></cl<>	hr>			

2. Instrument setup

Set up the **QExactive** instrument so that it contains both "Full MS" and "PRM" scan events. For PRM setup, use the above file as inclusion list to perform targeted MS2 analysis. We typically use the following setting for MS2 analysis: resolution 17500, AGC target 1e6, Maximum IT 500 ms, isolation window 1.5 m/z. For a total of 1500 parent ions and 15 parent ions for each method, it requires a total of 100 runs, or ~42 hours using a 25-min LC method.

3. MS2 file conversion.

RawConverter (version 1.2.0.1, http://fields.scripps.edu/rawconv/) is used to convert the .raw file into .mzXML file that contains MS2 information. Keep the default parameters except setting Environment Type as Data Independent, and Output Formats as mzXML.

4. MS2 reading and cleaning.

A matlab code is used for MS2 reading and cleaning, which can be found in **CodeOcean** as a published capsule (https://codeocean.com/capsule/1048398/tree/v1). The csv files from 1 paired with the MS2 data files in mzXML format from 3 are the required input data. Refer to capsule description and readme.md file for more details of how the code works. In Brief,

- Prepare filename. Filenames for both csv and mzXML files should be named as prefixNNN, where prefix is the given file name and NNN is the 3 digits number in continuous order (e.g. M001.csv, M002.csv,... and M001.mzXML, M002.mzXML,... in the /data folder).
- Duplicate the capsule to your own account so you can edit and use the capsule.
 Upload your own files and remove the previous files in /data folder.

- Specify the prefix and the range of numbers at the beginning section of the main code Main_example.m.
- Set the main code as file to run in Code Ocean using the dropdown menu next to main code.
- Click reproducible run to perform the batch processing.
- The resulting output files in .xlsx format with the same filenames will appear in the timeline. Each xlsx file contains multiple tabs of cleaned MS2 spectra. The names of the tabs correspond to the row numbers of the csv file specifying the individual parent peak information.
- 5. Save files to folders.

Back to the NetID_test folder, create a new folder MS2, download all xlsx files from 4 into the folder.

2.2.3 Running the code

- 1. Open code folder \rightarrow NetID_run_script.R.
- 2. In the # Setting path #### section, set work_dir as "../NetID_test/".
- 3. In the # Read data and files #### section, set filename as raw_data.csv, set MS2_folder as MS2. set LC_method to specify column to read for the retention time of known standards. (In folder NetID → dependent → known_library.csv, update the retention time info as needed.) set ion_mode as -1 if negative ionization data is loaded, and 1 if positive ionization data loaded.
- 4. Keep all other parameters as default, and run all lines.

2.2.4 Expected outputs

Similar to the demo file, the console will print out message indicating optimization step is successful, and three files NetID_output.csv, NetID_output.RData and .RData will be generated in the NetID_test folder

2.3 Other Settings

2.3.1 Compound librarys

2.3.1.1 Other provided librarys NetID provides 4 librarys for the user to choose: HMDB, YMDB, PubChem, PubChem Bio-pathway only.

To select the desired database, change HMDB_library_file = "../dependent/hmdb_library.csv" to ../dependent/ymdb_library.csv, ../dependent/pbcm_library.csv or ../dependent/pbcm_library_bio.csv.

```
Mset = read_files(filename = "raw_data.csv",
        LC_method = "Hilic_25min_QE",
        ion_mode = -1, # 1 for pos mode and -1 for neg mode
        HMDB_library_file = "../dependent/hmdb_library.csv"
```

2.3.1.2 Design your own library

1. A workable library requires following columns.

)

```
read_csv("../../dependent/hmdb_library.csv")
##
## -- Column specification -----
## cols(
##
   accession = col_character(),
    iupac_name = col_character(),
##
##
   name = col_character(),
    SMILES = col_character(),
##
    status = col_character(),
##
##
    formula = col_character(),
   mass = col_double(),
##
##
    rdbe = col_double(),
    category = col_character()
##
## )
## # A tibble: 114,014 x 9
##
     accession iupac_name name SMILES status formula mass rdbe category
##
     <chr>
                <chr>
                              <chr> <chr>
                                             <chr> <chr> <dbl> <dbl> <chr>
## 1 HMDB00000~ (2S)-2-amino-~ 1-Me~ CN1C=NC(~ quant~ C7H11N~ 169.
                                                                   4 Metabol~
## 2 HMDB00000~ propane-1,3-d~ 1,3-~ NCCCN quant~ C3H10N2 74.1
                                                                     0 Metabol~
## 3 HMDB00000~ 2-oxobutanoic~ 2-Ke~ CCC(=0)C~ quant~ C4H603 102.
                                                                     2 Metabol~
   4 HMDB00000~ 2-hydroxybuta~ 2-Hy~ CCC(0)C(~ quant~ C4H803 104.
                                                                     1 Metabol~
##
## 5 HMDB00000~ (1S,10R,11S,1~ 2-Me~ [H][C@@]~ quant~ C19H24~ 300.
                                                                     8 Metabol~
## 6 HMDB00000~ (3R)-3-hydrox~ (R)-~ C[C@@H](~ quant~ C4H803 104.
                                                                     1 Metabol~
## 7 HMDB00000~ 1-[(2R,4S,5R)~ Deox~ OC[C@H]1~ quant~ C9H12N~ 228.
                                                                     5 Metabol~
## 8 HMDB00000~ 4-amino-1-[(2~ Deox~ NC1=NC(=~ quant~ C9H13N~ 227.
                                                                     5 Metabol~
## 9 HMDB00000~ (1S,2R,10R,11~ Cort~ [H][C@@]~ quant~ C21H30~ 346.
                                                                     7 Metabol~
## 10 HMDB00000~ (1S,2R,10S,11~ Deox~ [H][C@@]~ quant~ C21H30~ 330.
                                                                     7 Metabol~
## # ... with 114,004 more rows
```

 To build your own library, make a csv file in the same format as the one shown above, and set HMDB_library_file = "../dependent/hmdb_library.csv" to your desired directory in NetID_run_script.R.

2.3.2 Modifying emperical_rules.csv

emperical_rules.csv can also be created or modifed to support specific biotransformation. A workable emperical_rules requires following columns. * name and note is not necessary. * category includes: Biotransform, Natural_abundance, Adduct, Fragment and Radical * rbde is calculated using the formula_rbde function of the package lc8 * direction states the possible direction of transformation: 1 means from larger mass to smaller mass; 0 means the opposite; -1 means both direction are possible.

```
read_csv("../../dependent/empirical_rules.csv")
##
## -- Column specification ------
```

```
## cols(
## category = col_character(),
## name = col_character(),
## formula = col_character(),
## mass = col_double(),
##
    direction = col_double(),
##
   rdbe = col_double(),
## note = col_character()
## )
## # A tibble: 84 x 7
## category name formula mass direction rdbe note
## <chr>
                <chr> <chr> <dbl> <dbl> <dbl> <chr>
## 1 Biotransform 0-HN 01N-1H-1 0.984
                                            0 0 Deamination
                                              0 -1 Transamination
## 2 Biotransform NH3-0 N1H30-1 1.03
## 3 Biotransform H2 H2 2.02
                                              0 -1 Hydrogenation
## 4 Biotransform CH2 C1H2 14.0
                                              0 0 Methylation
## 5 Biotransform NH N1H1 15.0
                                              0 0 Amination
## 6 Biotransform 0 01
                              16.0
                                              0 0 Hydroxylation
                                              0 -1 Amination (+NH3)
## 7 Biotransform N1H3 N1H3 17.0
## 8 Biotransform H20 H201
                                18.0
                                              0 -1 Hydration
## 9 Biotransform CO C101

        ##
        9 Biotransform CO
        C101
        28.0
        0
        1 Formylation (+0

        ##
        10 Biotransform C2H4
        C2H4
        28.0
        0
        0 Beta oxidation

                                              0 1 Formylation (+CO)
## # ... with 74 more rows
```

2.3.3 Retention time list

2.3.3.1 Customize your own RT table

1. In the dependent folder, open the known_library_customized.csv file

```
read_csv("../../dependent/known_library_customized.csv")[1:5,]
##
## -- Column specification -----
## cols(
## name = col_character(),
## HMDB = col_character(),
## formula = col_character(),
## SMILES = col_character(),
## Hilic_25min_QE = col_double(),
##
   No_RT = col_logical()
## )
## # A tibble: 5 x 6
## name
                         HMDB
                                 formula SMILES Hilic_25min_QE No_RT
## <chr>
                         <chr>
                                 <chr>
                                          <chr>
                                                             <dbl> <lql>
## 1 1-Methyl imidozolacetic~ HMDB000~ C6H8N202 CN1C=C(N=C1~
                                                              9.05 NA
## 2 5-L-Hydroxytryptophan <NA> C11H12N2O3 <NA>
                                                             10.2 NA
## 3 ADP
                         <NA>
                                C10H15N50~ <NA>
                                                             13.9 NA
## 4 CDP
                         <NA> C9H15N301~ <NA>
                                                             NA
                                                                  NA
## 5 CDP-choline
                         <NA>
                                C14H26N40~ <NA>
                                                             NA
                                                                   NA
```

Column Name, formula are required. Column HMDB, SMILES are optional. For each RT list (e.g. Hilic_25min_QE), record the retention time under the column. Multiple RT lists can be stored by adding additional columns. Empty retention time is allowed for a entry.

2.3.3.2 Skip RT table Setting the LC_method = "No_RT". Then RT information will not be considered in the algorithm.

```
Mset = read_files(filename = "raw_data.csv",
    LC_method = "No_RT",
    ion_mode = -1, # 1 for pos mode and -1 for neg mode
    HMDB_library_file = "../dependent/hmdb_library.csv"
    )
```

2.3.4 Score Setting

See Supplementary Note 2 of NetID paper for explanation

3 NetID Visualization

This section provides instruction to visualize and explore **NetID** output results in either **Cytoscape** software or interactive **Shiny R app**. After running **NetID** algorithm, it will export one .R and two .csvfiles (cyto_node.csv and cyto_edges.csv), storing the nodes and edges of the output network.

3.1 Cytoscape

- What is Cytoscape For more info regarding what is Cytoscape, check https://cytoscape. org/what_is_cytoscape.html.
- 1. install **Cytoscape** Download **Cytoscape** (https://cytoscape.org/download.html) and follow installation instruction to install onto your computer.
- 2. Load the example NetID output into Cytoscape
 - Run Cytoscape, click import network from file system, and load cyto_edges.csv, set edge_id column as the key, set nodelas source node, set node2 column as target node, and the rest columns as edge attribute.
 - Click import table from file, load cyto_node.csv, set node_id column as the key, and the rest columns as node attribute.
 - Select subnetwork, set styles, and explore the network with various functionalities inside Cytoscape.
- 3. Explore in Cytoscape

http://manual.cytoscape.org/en/stable/index.html provides all you need to know about exploring in **Cytoscape**. (This writer knew little about this cool software, so all he could give was this link and *may the Force be with you*.)

4. Export

The network as well as the curated subnetworks can be exported for future analysis or sharing with others. An example network file example.cys is included along with the two .csv files, which is created using **Cytoscape** version 3.8.2

3.2 Shiny App

This part provides instruction to visualize and explore **NetID** output results in the interactive **Shiny R app**. A 21-inch or larger screen is recommended for best visualization.

3.2.1 Runing Shiny App

- 1. Open code folder \rightarrow R_shiny_App.R.
- 2. In the # Read in files #### section, set datapath as ../Sc_neg/
- 3. Keep all other parameters as default, and run all lines.
- 4. A Shiny app will pop up.

3.2.2 Searching peaks of interest

- 1. On the left panel, you can enter a m/z or a formula to search your peak of interest. For example, 180.0631 or C6H12O6 will automatically update the data table on the right. Enter 0 to restore full list for the data table.
- 2. Change ionization and ppm window to adjust calculated m/z. W
- 3. On the right, you can explore the peak list in an interactive data table, including global text search on top right, specifying ranges for numeric column or searching text within character columns, ranking each column etc.

			Show 5 • entries						Search:	
а	Enter a mz or formula of interest	C	analis Ist A			lando latan A		A descente		
	C6H12O6		peak_id +	meaniz	medict	log10_inten	class	tormula		ppm_error v
			5587	180.063	1 13.61	5.3	Metabolite	C6H12O6		1.6
b	Select ionization									
	м –		All	All	All	All	All	All		All
	ppm		Showing 1 to 1 of 1 entries							Previous 1 Next
	3									

3.2.3 Network Visualization

- 1. Peak ID, formula and class determines the center node for the network graph. Peak ID will be automatically updated by the first line in the data table if a m/z or formula is given. Alternatively, you can manually enter Peak ID.
- 2. The degree parameter controls how far the network expands from the center node. Degree 1 means only nodes directly connected to the center node will be shown and degree 2 means nodes connected to degree 1 will be shown, etc.
- Biochemical graph shows biochemical connections. Abiotic graph shows abiotic connections. Node labels and Edge labels determines if the graph show node or edge labels. Optimized only determines whether to show only the optimal annotations or all possible annotations in the network.
- 4. When setting parameters, hit plot to see the network graph.

Supplementary Note 3 - NetID User Guide

5. A sample network graph is shown below (a different center node may give less complicated graph). You may edit the nodes or edges (top left), move figures with the arrow buttons (bottom left), and zoom in/out or center figure (bottom right).

6. You can use the "Download plot" button to download a html webpage to visualize the network graph independent of the Shiny app, and the "Download csv" button to download the information of the nodes in the network. The download buttons will appear after hitting the plot button. Note: edits within the Shiny app will not go into the html file.

3.2.4 Possible structures exploration

A figure $+\ data$ table is provided to explore structures of the selected node in the network graph.

1. The figure shows the chemical structure of the annotated metabolites. If the node is annotated as a putative metabolite, only the known parts of the putative metabolite will be shown.

Scroll left or right, or select the entry number, to visualize different annotations. Right click and select to save image.

2. In the data table, class has 3 possible entries: Metabolite if it is documented in database such as HMDB library; Putative metabolite if it is transformed from a metabolite through a biotransformation edge; and Artifact if it is transformed by an abiotic edge. Use the download button to download the data table

4 Troubleshooting

4.1 Failing to install package Lc8

Reinstall the packages devtools and digest.

4.2 Cannot find cplexAPI even if the installation seems successful

Check **R** version used in **RStudio** to see if <code>cplexAPI</code> is installed under the same R version library. Which R library <code>cplexAPI</code> goes to depends on the R path specified in <code>Environment Variables</code>.

4.3 Add **R** to PATH

- Go to Environment Variables: search PATH in windows → open edit Environment Variables → Environment Vari ables or control panel → system and security → System → Advanced system Settings (on your left) → Advanced → Environment Variables
- 2. In the lower Panel select the Path Variable and select Edit, add the R path (C:\Program Files\R\R-4.0.3\bin\x64, if installed at default location) to the Path Variable.
- 3. You may need to restart computer for the R path to take effect.

4.4 Add Rtools40 to PATH

- 1. Add the path C:\Rtools\bin to the Path Variablein Environment Variables
- 2. Run the line in R: writeLines('PATH="\${RTOOLS40_HOME}\\usr\\bin;\${PATH}"', con = "~/.Renvi ron") Use the line below in R console to check for successfully adding Rtools40 Sys.which("make") Expected output: ## "C:\\rtools40\\usr\\bin\\make.exe

1	Supplementary Note 4. NetID pseudocode
2	The whole algorithm runs in the following workflow:
3	1. Input data and data cleaning
4	2. Initializing and defining NodeSet and EdgeSet
5	3. Expanding candidate annotation through edge propagation
6	4. Defining CplexSet
7	5. Scoring candidate node and edge annotations
8	6. Global optimization
9	7. Network annotation
10	8. Output
11	# Note: description following the "#" sign are comments, and will not be run by the code.
12	
13	1. Input data and data cleaning
14	# Input
15	Define Mset as a list, read in
16	Experimental MS1 data (containing mz, RT and intensity from LC-MS)
17	Experimental MS2 data (associated with MS1 data)
18	ionization mode
19	HMDB library file
20	HMDB library MS2 files (pos or neg)
21	Known library file (with curated RT)
22	Atom difference table (rule table for biotransformations, adducts, isotopes, etc.)
23	
24	# Remove background peaks and duplicated entries
25	For each peak
26	IF its intensity in procedure blank > 0.5-fold of that in biological samples
27	Remove the peak
28	For any two (or more) peaks,
29	IF their mz difference is within <i>mz_tol</i> AND RT difference within <i>rt_tol</i>
30	Create a new entry by merging multiple entries
31	Take the median <i>mz</i> and <i>RT</i> of entries as new <i>mz</i> and <i>RT</i>
32	Take the largest intensity value of all entries in each sample as sample intensity
33	Remove old duplicated entry peaks
34	
35	2. Initializing and defining NodeSet and EdgeSet
36	# NodeSet: Each peak is a node, and becomes an entry in nodeset.
37	Define NodeSet as a list,
38	For each node in NodeSet,
39	store one peak's mz, RT, intensity, MS2
40	
41	# Set up seed nodes
42	For each node in NodeSet,
43	IF mz_difference < 10 ppm by comparing measured mz to all formulae in HMDB library

44	Add HMDB ID, formula and class information to corresponding node
45	
46	# Adjust systematic measurement errors
47	For all nodes in NodeSet that has at least one HMDB entry,
48	Linear regression using measured mz values of selected nodes and their HMDB formula mz
49	an absolute mz adjustment factor $\epsilon_{absolute}$ (independent of measured mz)
50	a relative mz adjustment factor $\epsilon_{relative}$ (linearly dependent on measured mz)
51	For each node <i>u</i> in <i>NodeSet</i>
52	Recalculate measured mz by applying
53	$u_{\rm mz,adjusted} = u_{\rm mz,measured} \times (1 + \varepsilon_{\rm relative}) + \varepsilon_{\rm absolute}$
54	
55	# EdgeSet: Each edge connects two nodes by a mass difference defined in atom difference table
56	Define EdgeSet as a list,
57	For each pair of node u and v (assuming $v_{mz} > u_{mz}$), and for each difference D_i in atom difference table,
58	IF $ (v_{m/z} - u_{m/z}) - D_i < v_{m/z} \times 10$ ppm,
59	IF <i>D_i</i> is a Biotransformation connection (defined in atom difference table)
60	Add an edge with <i>node1</i> = u , <i>node2</i> = v , and related info for D_i to EdgeSet
61	IF <i>D_i</i> is an Abiotic connection (defined in atom difference table) AND
62	IF $ v_{\rm RT} - u_{\rm RT} < 0.2 {\rm min}$
63	Add an edge with <i>node1</i> = u , <i>node2</i> = v , and related info for D_i to <i>EdgeSet</i> .
64	
65	# EdgeSet expansion with additional abiotic connections (see manuscript methods)
66	# including oligomers, multi-charge species, heterodimers, in-source fragments, etc.
67	For each pair of node <i>u</i> and <i>v</i>
68	IF $ v_{\rm RT} - u_{\rm RT} < 0.2 \min$ AND
69	IF properties of node u and v satisfy the criteria for additional abiotic connections
70	Add an edge with <i>node1</i> = u , <i>node2</i> = v , and related info for D_i to <i>EdgeSet</i> .
71	
72	3. Expanding candidate node annotation through edge propagation
73	# By applying the atom difference of edge (u, v) on the formula assigned to seed node u,
74	# we can derive a new candidate formula for the connected node v.
75	# Iterating the process to all candidate formulae of node u through edge (u, v) will
76	# further expand candidate formulae for node v.
77	# Seed nodes formulae from HMDB belong to Metabolite class.
78	For each edge (u, v) connecting node u, v in EdgeSet AND D _i is a Biotransformation connection
79	For each candidate formula of node u , $u_{formula}$, that belongs to Metabolite class
80	IF calculated mz of $u_{\text{formula}} + D_{\text{i,formula}}$ is within 5 ppm of measured mz of node v
81	Add combined formula ($u_{\rm formula} + D_{\rm i, formula}$) with Metabolite class to node v
82	For each <i>edge</i> (<i>u</i> , <i>v</i>) connecting node <i>u</i> , <i>v</i> in <i>EdgeSet</i> AND <i>D_i</i> is an Abiotic connection
83	For each candidate formula of node u, $u_{formula}$
84	IF calculated mz of $u_{\text{formula}} + D_{\text{i,formula}}$ is within 5 ppm of measured mz of node v
85	Add combined formula ($u_{\text{formula}} + D_{i,\text{formula}}$) with Artifact class to node v
86	REPEAT LINE 81-84 (above 4 lines) three times (three rounds of expansion via abiotic connections)
87	REPEAT LINE 77-85 (above 9 lines) two times (two rounds of expansion via biotransformation connections)

88	
89	4. Defining CplexSet
90	# CplexSet defines the network structure for global network optimization
91	# Each node may contain zero, one or more than one candidate node annotations
92	# Each candidate node annotation defines an ilp_node in CplexSet (ilp means integer linear programing)
93	# We use <i>ilp_nodes</i> to score and record each candidate node annotation
94	# Similarly, we use <i>ilp_edges</i> to score and record each candidate edge annotation
95	For each node <i>u</i> in <i>NodeSet</i> ,
96	For each candidate node annotation a_i in u_i
97	IF the combination of <i>node_id</i> , <i>formula</i> and <i>class</i> of a_i is not in <i>ilp_nodes</i>
98	Add the candidate annotation (u, a_i) to <i>ilp_nodes</i>
99	For each edge (u,v) in EdgeSet,
100	For each atom difference <i>D_k</i>
101	For each candidate node annotation a_i in u , and b_j in v
102	IF combined formula $(a_i + D_{k,formula}) == b_j$
103	Add the candidate edge annotation (u, v, a_i, b_j, D_k) to <i>ilp_edges</i>
104	
105	5. Scoring candidate node and edge annotations
106	# The scoring system is to assign high scores to annotations that effectively align the experimentally observed
107	# ion peaks with prior metabolomics knowledge.
108	# See manuscript method section for more details on score terms.
109	For each candidate node annotation (u, a_i) , its score $S(u, a_i)$ is the sum of
110	$S_{m/z}(u, a_i)$ # based on m/z accuracy,
111	$S_{RT}(u, a_i)$ # based on RT of measured peaks and known standards
112	$S_{MS2}(u, a_i)$ # based on MS2 of measured peaks and database MS2
113	$S_{database}(u, a_i)$ # based on if the annotation a_i exists in HMDB
114	$S_{\text{missing}_{\text{isotope}}}(u, a_i)$ # based on if the expected isotopic peak for a_i is missing
115	$S_{rule}(u, a_i)$ # based on if a_i violates basic chemical rules
116	$S_{derivative}(u, a_i)$ # based on if a_i is derived from a parent peak with a high annotation score
117	For each candidate node annotation (u, v, a_i, b_j, D_k) , its score $S(u, v, a_i, b_j, D_k)$ is the sum of
118	$S_{MS2_similarity}(u,v,a_i,b_j,D_k)$ # based on similarity of measured MS2 spectra of node u and v
119	$S_{co_elution}(u, v, a_i, b_j, D_k)$ # based on RT difference of node u and v
120	$S_{ m type}(u,v,a_i,b_j,D_k)$ # based on the connection type, defined by D_k in the atom difference table
121	$S_{isotope_{intensity}}(u, v, a_i, b_j, D_k)$ # based on the intensity ratio and expected natural abundance
122	
123	6. Global optimization
124	# The goal is to find annotations for each node so as to maximize the sum of the scores across the network
125	# under the constraints that each node is assigned a single annotation,
126	# and that the network annotation is consistent.
127	# An example optimization problem using CPLEX in R can be found at
128	<pre># https://cran.r-project.org/web/packages/cplexAPI/vignettes/cplexAPI.pdf</pre>
129	Define <i>x</i> as a vector of binary number
130	# if $x_i = 1$, the candidate node or edge annotation is selected in the global optimal network
131	# if $x_i = 0$, then the annotation is not selected.

132	Length(x) = (number of candidate node annotation) + (number of candidate edge annotation)
133	Define <i>Obj</i> as a vector with the same length of x
134	# Obj records score for each candidate node or edge annotation
135	# Obj \cdot x is the total scores of the network. Global optimization maximizes the total scores.
136	Obj = c(scores for ilp_nodes, scores for ilp_edges)
137	
138	# Constraints are defined as below.
139	# For a sample constraint $a_1x_1 + a_2x_2 \le b$,
140	# a_1x_1 + a_2x_2 is the left-hand side, b is the right-hand side and "≤" is the sense of the constraint
141	# [a ₁ , a ₂] is the constraint matrix, [a ₁ , a ₂] \cdot x is the left-hand side of a constraint
142	Define <i>mat</i> as a matrix
143	# mat $\cdot x$ is the left-hand side of the constraint.
144	# mat is a sparse matrix as most number in mat are zero.
145	Column number of <i>mat</i> = Length(<i>x</i>)
146	Row number of <i>mat</i> = Number of constraints
147	Define <i>triplet_mat</i> as a matrix
148	# we use triplet (<i>i,j,v</i>), i.e. the value (<i>v</i>) in the <i>i</i> th row, and <i>j</i> th column, to describe <i>mat</i> .
149	Column number of <i>triplet_mat</i> = 3
150	Row number of <i>triplet_mat</i> = number of non-zero entry in <i>mat</i>
151	Define rhs as a numeric vector
152	# <i>rhs</i> is the right-hand side of a constraint
153	Length(<i>rhs</i>) = Number of constraints
154	Define sense as a character vector
155	# rhs describes the signs between left- and right-hand sides
156	# Signs includes less or equal (L), equal (E), greater or equal (G)
157	Length(sense) = Number of constraints
158	
159	# How constraint matrix is filled up is described below.
160	# (I) Constrain each peak has single annotation.
161	# Total number for this constraint = number of peaks
162	# for all annotation a_i of peak u , sum (x_{ai}) = 1
163	For each candidate node annotation in <i>ilp_nodes</i> ,
164	Add i = peak_id, j = ilp_node_id, v = 1 to triplet_mat
165	Add rep(1, number of peaks) to <i>rhs</i>
166	Add rep('E', number of peaks) to <i>sense</i>
167	
168	# (II) Constrain each edge annotation exists only if related candidate node annotations exist.
169	# Total number for this constraint = number of candidate edge annotations * 2
170	# In candidate edge annotation $e(u, v, a_i, b_j, D_k)$, $x_e - x_{ai} \le 0$ and $x_e - x_{bj} \le 0$
171	<i>i</i> _{current} = total number of constraints from (I)
172	For each candidate edge annotation in <i>ilp_edges</i> ,
173	$i_{current} = i_{current} + 1$
174	Add $i = i_{current}$, $j = ilp_edge_id$, and $v = 1$;
175	<i>i</i> = <i>i</i> _{current} , <i>j</i> = <i>ilp_node_id</i> for <i>a</i> _{<i>i</i>} , and <i>v</i> = -1 to <i>triplet_mat</i>

176	$i_{current} = i_{current} + 1$
177	Add $i = i_{current}$, $j = ilp_edge_id$, and $v = 1$;
178	i = i _{current} , j = ilp_node_id for b _j , and v = -1 to triplet_mat
179	Add rep(0, number of candidate edge annotations * 2) to <i>rhs</i>
180	Add rep('L', number of candidate edge annotations * 2) to sense
181	
182	# (III) Constrain an isotope annotation exists only if the isotope connection exists
183	# Total number for this constraint = number of candidate edge annotation that is an isotope connection
184	# In candidate edge annotation $e(u,v,a_i,b_j,D_k)$, assuming b_j is an isotope annotation, $x_e - x_{bj} = 0$
185	<i>i</i> _{current} = total number of constraints from (I-II)
186	For each candidate edge annotation in <i>ilp_edges</i> that is an isotope connection
187	$i_{current} = i_{current} + 1$
188	Add $i = i_{current}$, $j = ilp_edge_id$, and $v = 1$;
189	$i = i_{current}$, $j = ilp_node_id$ for b_j , and $v = -1$ to triplet_mat
190	Add rep(0, number of candidate edge annotation that is an isotope connection) to rhs
191	Add rep('E', number of candidate edge annotation that is an isotope connection) to sense
192	
193	# (IV) Constrain only one edge can exist between two nodes
194	# Total number for this constraint = number of multiple-edge events * 2
195	# When multiple edges exist between two nodes, we call it multiple-edge event
196	# Assuming candidate edge annotation $e(u, v, a_i, b_j, D_k)$, $e'(u, v, a_i, b_j, D_k)$ and multiple edges exist
197	# At most one edge exist: $x_e + x_{e'} + x_{ai} \le 0$, $x_e + x_{e'} + x_{bj} \le 0$
198	<i>i</i> _{current} = total number of constraints from (I-III)
199	For each multiple edge event
200	$i_{current} = i_{current} + 1$
201	Add $i = i_{current}$, $j = ilp_node_id$ for a_i , and $v = -1$ to triplet_mat
202	For each candidate annotation <i>e</i> that exist between node u and node v with a _i and b _j annotation
203	Add <i>i</i> = <i>i</i> _{current} , <i>j</i> = <i>ilp_edge_id</i> for <i>e</i> , and <i>v</i> = 1 to <i>triplet_mat</i>
204	$i_{current} = i_{current} + 1$
205	Add $i = i_{current}$, $j = ilp_node_id$ for b_j , and $v = -1$ to triplet_mat
206	For each candidate annotation <i>e</i> that exist between node u and node v with a _i and b _j annotation
207	Add <i>i</i> = <i>i</i> _{current} , <i>j</i> = <i>ilp_edge_id</i> for <i>e</i> , and <i>v</i> = 1 to <i>triplet_mat</i>
208	Add rep(0, number of multiple edge event * 2) to <i>rhs</i>
209	Add rep('L', number of multiple edge event * 2) to <i>sense</i>
210	
211	# Pass parameters to CPLEX optimization
212	Add CPLEX_para = list(nc = Length(x), nr = number of constraint # number of columns and rows
213	CPX_MAX, # indicating maximization will be performed
214	obj, rhs, sense, # described above
215	cnt, ind, val, # describing mat in compressed sparse column (CSC) format
216	<i>Ib</i> = 0, <i>ub</i> = 1, <i>ctype</i> = "B" # x's lower and upper bound, and its type is binary
217) to CplexSet
218	
219	# CPLEX optimization

220	# ilp_solution contains a vector of binary number that
221	# denotes if a candidate node or edge annotation is selected for the global optimal network.
222	<i>ilp_solution</i> = Run_cplex(<i>CplexSet</i>)
223	<pre>optimized_nodes = Filter ilp_nodes that selected in ilp_solution</pre>
224	<pre>optimized_edges = Filter ilp_edges that selected in ilp_solution</pre>
225	
226	7. Network annotation
227	# Seeds are node annotations that have direct annotations from HMDB,
228	Define optimized_seed_nodes = Filter optimized_nodes that have HMDB annotations
229	Define optimized_nodes_M = Filter optimized_nodes that are Metabolite class annotation
230	Define optimized_nodes_A = Filter optimized_nodes that are Artifact class annotation
231	Define optimized_edges_M = Filter optimized_edges that are Biotransformation connections
232	Define <i>optimized_edges_A</i> = Filter <i>optimized_edges</i> that are Abiotic connections
233	
234	# The output network is an overlay of a biotransformation network and an abiotic network
235	Define <i>g_bio</i> , <i>g_abiotic</i> , <i>g_all</i> as graphs,
236	g_bio = graph (edges = optimized_edges_M,
237	nodes = optimized_nodes_M)
238	g_abiotic = graph (edges = optimized_edges_A,
239	nodes = <i>optimized_nodes</i> that exist in <i>optimized_edges_A</i>)
240	$g_all = g_bio + g_abiotic$
241	
242	# Every node annotation in the network can trace back to seed annotation
243	Define <i>bio_dist</i> as a distance matrix,
244	# distance in row <i>i</i> and column <i>j</i> records
245	# the shortest distance from node <i>i</i> in <i>optimized_seed_nodes</i> to node <i>j</i> in optimized_nodes_M
246	<pre>bio_dist = shortest.paths(graph = g_bio,</pre>
247	from = <i>optimized_seed_nodes</i> ,
248	to = optimized_nodes_M)
249	Define <i>abiotic_dist</i> as a distance matrix,
250	# distance in row <i>i</i> and column <i>j</i> records
251	# the shortest distance from node <i>i</i> in <i>optimized_nodes_M</i> to node <i>j</i> in optimized_nodes_A
252	<pre>abiotic_dist = shortest.paths(graph = g_abiotic,</pre>
253	from = <i>optimized_nodes_M</i> ,
254	to = <i>optimized_nodes_A</i>)
255	
256	# Path annotations to nodes
257	For each node <i>M</i> in <i>optimized_nodes_M</i>
258	Find seed node H that has shortest distances to M among all optimized_seed_nodes in bio_dist
259	Define path as the intermediate edges and nodes connecting from <i>H</i> to <i>M</i>
260	Add path annotation = c(HMDB name of <i>H</i> ,
261	HMDB formula of <i>H</i> ,
262	# Atom differences are specified by edge annotations in path
263	1 st step atom difference, "->", intermediate node formula,

264	
265	last step atom difference, "->", Formula of <i>M</i>) to node <i>M</i>
266	# for acetyl-thiamine peak: "thiamine C12H16N4O1S1 + C2H2O1 -> C14H18N4O2S1"
267	For each node A in optimized_nodes_A
268	Find Metabolite class node <i>M</i> that has shortest distances to <i>A</i> among all in <i>abiotic_dist</i>
269	Define <i>path</i> as the intermediate edges and nodes connecting from <i>M</i> to <i>A</i>
270	Add path annotation = c(Formula of <i>M</i> ,
271	# Atom differences are specified by edge annotations in path
272	1 st step atom difference, "->", intermediate node formula,
273	
274	last step atom difference, "->", Formula of A) to node A
275	# for glutamate sodium acetate adduct peak:
276	# "C5H9N1O4 + Na1H-1 -> C5H8Na1N1O4 + C2H4O2 -> C7H12N1Na1O6"
277	
278	8. Output
279	# csv format
280	For all peaks,
281	compiles peak_id, medMz, medRt, log10_inten, class, formula, ppm_error, path annotation
282	Exports as NetID_output.csv
283	# Shiny R visualization
284	Save all information as NetID_output.RData for Shiny R visualization
285	
286	