

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Identification of Acute Respiratory Distress Syndrome subphenotypes denovo using routine clinical data: a retrospective analysis of ARDS clinical trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053297
Article Type:	Original research
Date Submitted by the Author:	11-May-2021
Complete List of Authors:	Duggal, Abhijit ; Cleveland Clinic, Department of Critical Care Medicine Kast, Rachel; Endpoint Health Inc, Department of Clinical Data Science Van Ark, Emily; Endpoint Health Inc, Department of Clinical Data Science Bulgarelli, Lucas; Endpoint Health Inc, Department of Clinical Data Science Siuba, Matthew T.; Cleveland Clinic, Department of Critical Care Medicine Osborn, Jeff; Endpoint Health Inc, Department of Clinical Data Science Rey, Diego; Endpoint Health Inc, Department of Clinical Data Science Zampieri, Fernando; Hospital do Coração Cavalcanti, Alexandre ; HCor Research Institute Maia, Israel; Hospital do Coracao Paisani, Denise M; HCor Research Institute Laranjeira, Ligia N; HCor Research Institute Serpa Neto, Ary; Monash University Deliberato, Rodrigo Octávio; Endpoint Health Inc, Department of Clinical Data Science
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Adult intensive & critical care < ANAESTHETICS, RESPIRATORY MEDICINE (see Thoracic Medicine)
	•

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	1	Identification of Acute Respiratory Distress Syndrome subphenotypes
5	2	denovo using routine clinical data: a retrospective analysis of ARDS
7 8	3	clinical trials
9 10	4	
11 12	5	Abhijit Duggal MD ^{1‡} , Rachel Kast PhD ^{2‡} , Emily Van Ark PhD ^{2‡} , Lucas Bulgarelli BSc ^{2‡} ,
13	6	Matthew T. Siuba DO ¹ , Jeff Osborn ² , Diego Rey PhD ² , Fernando G Zampieri MD PhD ³ ,
14 15	7	Alexandre B Cavalcanti MD PhD ³ , Israel S Maia MD ³ , Denise M Paisani PhD ³ , Ligia N
16 17	8	Laranjeira ³ , Ary Serpa Neto MD MSc PhD, ^{4,5,6,7,8} Rodrigo Octávio Deliberato MD PhD ²
18 19	9	
20	10	‡ Authors contributed equally
21 22	11	
23 24	12	1. Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic,
25 26	13	Cleveland, Ohio, USA.
27	14	2. Department of Clinical Data Science, Endpoint Health Inc, Palo Alto, California, USA.
28 29	15	3. HCor Research Institute, São Paulo, Brazil
30 31	16	4. Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of
32	17	Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
34	18	5. Department of Critical Care, Melbourne Medical School, University of Melbourne,
35 36	19	Austin Hospital, Melbourne, Australia.
37 38	20	6. Department of Intensive Care, Austin Hospital, Melbourne, Australia.
39	21	7. Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne,
40 41	22	Australia.
42 43	23	8. Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo,
44 45	24	Brazil.
46 47 48 49 50 51 52 53 54 55 56 57 58 59	25 26 27 28 29 30	Correspondence: Abhijit Duggal MD Address: 9500 Euclid Ave, L2-330, Cleveland, Ohio, 44195 E-mail: duggala2@ccf.org
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	31	Word count (Abstract): 235 words
5 6	32	Word count (Text): 2814 words
7 8	33	Number of figures: 2 figures
9 10 11	34	Number of tables: 3 tables
12 13	35	Supplementary Material: 01
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 31 23 34 35 36 37 38 9 40 41 42 43 44 50 51 52 53 45 54 55	36 37	Key words: Subphenotype, machine learning, ARDS, critical care, clinical data, clustering
56 57 58		
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

38 ABSTRACT

Objectives: The acute respiratory distress syndrome (ARDS) is a heterogenous 40 condition, and identification of subphenotypes may help in better risk stratification.

41 Identify ARDS subphenotypes using new simpler methodology and readily available

42 clinical variables using a retrospective analysis of previously published ARDS trials.

Setting: Data from the U.S. ARDSNet trials and from the international ART trial.

44 Participants: 3763 patients from ARDSNet datasets and 1010 patients from the ART
45 dataset.

46 Primary and secondary outcome measures: The primary outcome was 60-day or 28-47 day mortality, depending on what was reported in the original trial. K-means cluster 48 analysis was performed to identify subgroups. For feature selection, sets. Sets of 49 candidate variables were tested to assess their ability to produce different probabilities 50 for mortality in each cluster. Clusters were compared to biomarker data, allowing 51 identification of subphenotypes.

Results: Data from 4,773 patients was analyzed. Two subphenotypes (A and B) resulted in optimal separation in the final model, which included nine routinely collected clinical variables, namely: heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO₂, arterial pH, and FiO₂. Participants in subphenotype B showed increased levels of pro-inflammatory markers, had consistently higher mortality, lower number of ventilator-free days at day 28, and longer duration of ventilation compared to patients in the subphenotype A.

2	
3	59
4	00
5	60
6	00
7	64
8	61
9	
10	62
11	
12	
15	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 52	
53 51	
54	
56	
57	
58	

59

60

Conclusions: Routinely available clinical data can successfully identify two distinct subphenotypes in adult ARDS patients. This work may facilitate implementation of precision therapy in ARDS clinical trials.

tor beer terien only

ARTICLE SUMMARY

Strengths and limitations of this study

- Largest cohort of patients used to identify subphenotypes of ARDS patients. •
- Subphenotypes were validated in the population of a large international ARDS randomized controlled trial.
- Subphenotypes were identified by using only routinely collected clinical data. •
- Our use of data exclusively from randomized controlled trials does not prove • generalizability to unselected ARDS populations.
- The clinical utility of the subphenotypes have to be validated in a prospective study. •

Page 7 of 50

BMJ Open

73 INTRODUCTION

The Berlin definition of acute respiratory distress syndrome (ARDS) encompasses acute hypoxemic respiratory failure due to a wide variety of etiologies [1]. Due to this inclusion of heterogeneous conditions within the syndrome, there are significant clinical and biological differences that makes ARDS challenging to treat [2,3]. These differences amongst ARDS patients are associated with variation in risk of disease development and progression [3,4], potentially generating differential responses to treatments and interventions [5–10]. In spite of those evidences, clinical risk stratification of ARDS patients still solely depends on PaO₂/FiO₂ ratios [11,12], possibly misleading the interpretation of results in clinical trials and clinicians when evaluating treatment options for patients [13].

Therefore, identifying groups of patients who have similar clinical, physiologic, or biomarker traits becomes relevant [6,14] as it can help with stratification of patients producing better targeted therapies and interventions [15]. These different groups can be defined as ARDS subphenotypes [4,14]. Two ARDS subphenotypes have been consistently identified in previous studies [6-10,16-18]. However, these models are complex, and significant barriers exist in their implementation and use in clinical practice. Existing models use up to 40 predictor variables, including biomarkers and other variables that are not readily available at the bedside [6–10,16–18]. These limitations explain the current status quo of ARDS care, where clinicians must depend on the limited prognostic value of PaO_2/FiO_2 ratios instead of biologically distinct subphenotypes.

We hypothesized that the use of a simpler methodology and a small number of easily available clinical variables could identify new ARDS subphenotypes and thus provide the means to allow future implementation of bedside stratification.

s coul. uture implemen.

2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ I วา
22
23
24
25
26
27
28
29
30
21
22
32
33
34
35
36
37
38
39
40
41
+1 ∕\)
42
45
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59

60

98 **METHODS**

99 Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, ordissemination plans of our research.

102 Data source and participants

103 We performed a retrospective study using a de-identified dataset pooling data from six randomized clinical trials in patients with ARDS, namely: ARMA, ALVEOLI, FACTT, 104 EDEN, SAILS, and ART [19–24]. Patients in ARMA, ALVEOLI, FACTT, EDEN and SAILS 105 trials were eligible if they met the American-European consensus for ARDS, including 106 patients with a PaO_2 / FiO₂ ratio < 300 up to 48 hours before enrollment. From 1996 to 107 2013, these trials enrolled 902, 549, 1000, 1000, and 745 patients, respectively, and 108 tested a variety of interventions [19–23]. Between 2011 and 2017 the international ART 109 study enrolled 1010 adult patients diagnosed with moderate to severe ARDS according 110 to the Berlin definition (PaO₂ / FiO₂ ratio < 200) for less than 72 hours of duration and 111 assessed two different ventilatory strategies [24]. To avoid biases due to high mortality in 112 the high tidal volume group of the ARMA study [19], which has not been standard of care 113 since the beginning of 2000, only 473 patients receiving low tidal volume in that study 114 were included. 115

5 116 **Predictors**

Six clinical trials were assessed to identify a set of clinical variables recorded closest to time of randomization which were most commonly available across all datasets. The list of potential candidates was then further refined to include only those that are frequently observed in the routine care of ARDS patients at the time of its diagnosis. In order to

develop a clustering algorithm for potential rapid translation into clinical use, elements
which would not be commonly found in the electronic health records (EHR) at the time of
ARDS diagnosis, such as biomarker levels, ARDS risk factors, organ support apart from
mechanical ventilation settings, and severity scores, were excluded from model
development. The treatment assignment in the original trials, and clinical outcomes were
not considered in the model development.

After all assessment, 16 variables that are routinely collected as part of the usual care and which were uniformly present in all the trials were considered, including: age, gender, arterial pH, PaO₂, PaCO₂, bicarbonate, creatinine, bilirubin, platelets, heart rate, respiratory rate, mean arterial pressure, positive end-expiratory pressure (PEEP), plateau pressure, FiO₂, and tidal volume adjusted for predicted body weight (mL/kg PBW). The PBW was calculated as equal to 50 + 0.91 (centimeters of height – 152.4) in males, and 45.5 + 0.91 (centimeters of height – 152.4) in females [18]. These variables were grouped into five domains named demographics, arterial blood gases, laboratory values, vital signs, and ventilatory variables. Plateau pressure was excluded due to a high rate of missingness across the trials included in the training set. Amount of missing data in the training datasets is reported in **eTable 1**.

138 Outcomes

The primary outcome was 60-day mortality for all ARDSnet trials, and 28-day mortality for ART trial. Secondary outcomes included 90-day mortality, number of ventilator free days at day 28 [25], and the duration of mechanical ventilation in survivors within the first 28 days post enrollment.

143 Data preparation

Page 11 of 50

BMJ Open

Data preprocessing was performed before modeling, and the pooled dataset was assessed for completeness and consistency. Patients with values out of the plausible physiological range for a specific variable were excluded from the final analysis (described in eTable 2). The training dataset was constructed using data from the two largest ARDSnet trials, EDEN and FACTT. The validation dataset was sourced from the four remaining trials: ALVEOLI, ARMA, SAILS, and ART. Means and standard deviations for z-scoring variables were calculated from the training dataset and subsequently applied to the validation data.

5 152 Statistical analysis

Baseline and outcome data were presented according to the assigned cluster. Continuous variables were presented as medians with their interquartile ranges and categorical variables as total number and percentage. Proportions were compared using Fisher exact tests and continuous variables were compared using the Wilcoxon rank-sum test. Study outcomes were further compared using the median and mean absolute differences for continuous and categorical values, respectively.

Model development and validation

For the model development, the K-means clustering algorithm was used. K-means is one of the simplest and most commonly used classes of clustering algorithms. In critical care research, unsupervised machine learning techniques have already been used in several studies, attempting to find homogeneous subgroups within a broad heterogeneous population [26]. This specific algorithm identifies a K number of clusters in a dataset by finding K centroids within the n-dimensional space of clinical features [26].

For feature selection, different sets of candidate variables were tested to assess their ability to produce significantly different mortality probabilities in each cluster using the minimum amount of readily available clinical data. For each set of candidate variables, the optimal number of clusters was determined by comparing models with between 2 and 5 clusters, using the Elbow method [27] and the Calinski-Harabasz index [28]. Information about the methods for selecting number of clusters are provided in the supplemental material.

The following steps were performed for the final model selection: 1) all predictors were assessed for correlation (eTable 3); and 2) ten different combinations of the proposed variables were investigated. These combinations were developed based on the perceived clinical importance of each variable and its combinations. All 10 models were tested for the optimal number of clusters and based on both the Elbow method and the Calinski-Harabasz index, as described above. The models were then compared, aiming for the minimum set of variables with high 60-day mortality separation. The description of each model is show in eTable 4.

Biological and clinical characteristics of the clusters were evaluated using clinical, Biological and clinical characteristics of the clusters were evaluated using clinical, laboratory, and (when available) biomarker data to establish subphenotypes [4]. All iterations in model development were done on the training set and the generalizability of the final model was assessed using the validation dataset. K-means clustering analysis is structured to ignore cases with missing data. No assumption was made for missingness and we therefore conducted a complete case analysis. Model development and evaluation was performed using Python version 3.8 and scikit-learn 0.23.1.

188 Data availability

1 ว			
2 3 4	189	Data from the ARDSnet studies (EDEN, FACTT, ARMA, ALVEOLI and SAILS) is public	cly
5 6	190	available from the NHLBI ARDS Network and data from the ART trial can be request	ed
7 8	191	from study authors.	
8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40 41 42 43 44 50 51 22 34 55 56 57 58 59	191		10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	12

RESULTS

194 Participants

Data from 4777 clinical trial patients were considered for inclusion. In total, 4 patients were excluded for having clinical measurements outside plausible range. The remaining 197 1998 patients from EDEN and FACTT trials were included in the training set, while the 2775 patients from ARMA, ALVEOLI, SAILS, and ART were included in the validation cohort.

Baseline characteristics of the patients in the training and validation sets are presented in **Table 1**. Pneumonia was the prevailing etiology followed by sepsis and aspiration in all trials. Between 29.3% to 72.7% of the patients were receiving vasopressors at the time of randomization. At randomization, PaO_2 / FiO_2 ratio ranged from 112 (75 - 158) to 134 (96 - 185) mmHg, and PEEP from 8 (5 - 10) to 12 (10 - 14) cmH₂O across trials. Mortality at 60 days for the ARDSnet trials ranged from 22.7% to 30.1%, while in the ART trial mortality at 28 days was 58.8%.

	Training se	et (<i>n</i> = 1998)				
	EDEN (<i>n</i> = 1000)	FACTT (<i>n</i> = 998)	ALVEOLI (<i>n</i> = 549)	ARMA (<i>n</i> = 472)	ART (<i>n</i> = 1010)	SAILS (<i>n</i> = 744)
Age, year	52.0 (42.0 - 63.0)	49.0 (38.0 - 60.8)	50.0 (39.0 - 65.0)	50.0 (37.8 - 65.0)	52.0 (36.0 - 64.0)	55.0 (42.0 - 66.0)
Male gender - no. (%)	510 (51.0)	533 (53.4)	302 (55.0)	285 (60.4)	631 (62.5)	365 (49.0)
Etiology - no. (%)						
Pneumonia	650 (65.0)	471 (47.2)	221 (40.3)	145 (30.7)	555 (55.0)	526 (70.7)
Sepsis	147 (14.7)	231 (23.1)	120 (21.9)	125 (26.5)	196 (19.4)	147 (19.8)
Aspiration	96 (9.6)	149 (14.9)	84 (15.3)	72 (15.3)	58 (5.7)	49 (6.6)
Trauma	36 (3.6)	74 (7.4)	45 (8.2)	59 (12.5)	31 (3.1)	6 (0.8)
Other	71 (7.1)	73 (7.3)	79 (14.4)	71 (15.0)	170 (16.8)	16 (2.2)
Severity of Illness*	73.0 (59.0 - 89.0)	78.0 (62.0 - 94.0)	78.0 (64.0 - 93.0)	83.0 (70.0 - 97.0)	63.0 (50.2 – 75.0)	76.0 (61.0 - 92.0)
Vasopressors - no. (%)	489 (48.9)	397 (40.5)	156 (29.3)	147 (31.3)	734 (72.7)	395 (54.2)
Laboratory tests						

BMJ Open

White blood cell count, 10 ⁹ /L	12.0 (7.8 - 16.7)	11.8 (7.2 - 17.1)	11.6 (7.7 - 15.7)	11.5 (7.5 - 16.2)		13.9 (8.7 - 20.0)
Platelets, 10 ⁹ /L	169 (108 - 241)	183 (106 - 258)	157 (83 - 247)	135 (80 - 211)	175 (106 - 263)	167 (96 - 247)
Creatinine, mg/dL	1.2 (0.8 - 2.0)	1.0 (0.7 - 1.5)	1.0 (0.7 - 1.7)	1.1 (0.8 - 1.7)	1.3 (0.8 - 2.2)	1.0 (0.7 - 1.7)
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.8 (0.5 - 1.6)	0.8 (0.5 - 1.5)	1.0 (0.6 - 2.1)	0.8 (0.4 - 1.5)	0.8 (0.5 - 1.4)
Arterial blood gas						
pH*	7.36 (7.30 - 7.42)	7.37 (7.30 - 7.43)	7.40 (7.34 - 7.44)	7.41 (7.35 - 7.45)	7.28 (7.19 - 7.36)	7.37 (7.31 - 7.42)
PaO₂, mmHg	83 (68 - 108)	79 (67 - 100)	77 (67 - 93)	76.5 (67 - 93)	112 (81 - 155)	83 (69 - 103)
PaO ₂ / FiO ₂	125 (86 - 178)	118 (80 - 163)	134 (96 - 185)	112 (75 - 158)	112 (81 - 155)	133 (89 - 178)
PaCO ₂ , mmHg	38 (34 - 45)	39 (34 - 45)	38 (33 - 43)	36 (31 - 41)	50 (42 - 62)	39 (34 - 45)
Bicarbonate, mmol/L	21.0 (18.0 - 25.0)	21.0 (17.4 - 25.0)	22.0 (18.0 - 26.0)	22.0 (18.0 - 25.0)	22.9 (19.4 - 26.3)	22.0 (18.0 - 25.0)
Ventilatory variables						
Tidal volume, mL	410 (360 - 470)	450 (400 - 510)	500 (420 - 600)	700 (600 - 750)	350 (308 - 400)	400 (350 - 460)
Per PBW, mL/kg PBW	6.3 (6.0 - 7.3)	7.1 (6.1 - 8.1)	7.9 (6.6 - 9.4)	10.2 (9.0 - 11.3)	5.9 (5.1 - 6.1)	6.2 (6.0 - 7.1)
Plateau pressure, cmH ₂ O	24.0 (20.0 - 27.0)	26.0 (22.0 - 30.0)	26.0 (22.0 - 31.0)	29.0 (24.8 - 34.0)	26.0 (22.0 - 29.0)	24.0 (19.0 - 28.0)
PEEP, cmH₂O	10 (5 - 12)	10 (5 - 12)	10 (5 - 12)	8 (5 - 10)	12 (10 - 14)	10 (5 - 11)
FiO ₂	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.74)	0.70 (0.60 - 1.00)	0.60 (0.40 - 0.70)
Clinical outcomes						
28-day mort no. (%)					594 (58.8)	
60-day mort no. (%)	227 (22.7)	268 (26.9)	144 (26.2)	141 (30.1)		199 (26.7)
90-day mort no. (%)	233 (23.3)	283 (28.6)	148 (27.5)	143 (30.8)		204 (27.4)
Ventilator-free days, day 28	20.0 (0.0 - 24.0)	17.0 (0.0 - 23.0)	18.0 (0.0 - 24.0)	13.0 (0.0 - 23.0)	0.0 (0.0 - 13.0)	20.0 (0.0 - 25.0
Ventilator days in	7.0 (4.0 -	8.0 (5.0 -	8.0 (4.0 - 14.0)	8.0 (4.0 -	13.0 (8.0 -	6.0 (4.0 - 11.0)

Predictor variables and model selection

The correlation between the 15 variables selected for clustering is shown in eTable 3. The strongest correlation was between PEEP and FiO_2 (r = 0.49). The comparison of the 10 models regarding the optimal number of clusters based on both the Elbow method and

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

the Calinski-Harabasz index is shown in **eFigure 1**. In all models and methods, two

clusters were a better fit than a higher number of clusters.

Across the ten models, absolute mortality difference between cluster 1 and cluster 2 ranged from 3.9% to 13.1% for the FACTT study and between 0.1% to 8.1% for EDEN (**Table 2**). The models with the highest 60-day absolute mortality separation between the clusters for each of the two trials in the training set were then further evaluated. Models 6, 5, and 8 were consistently amongst the models with highest separation (**Table 2**). Model 8 was selected for further investigation, as it the fewest variables (**eTable 4**).

Table 2 -	Table 2 - Absolute 60-day Mortality Difference Among Clusters per Trial and Model					
	FACT (<i>n</i> = 1	T trial 998)		EDEI (<i>n</i> =	N trial 1000)	
Model	Patients scored	Mortality difference among clusters	Model	Patients scored	Mortality difference among clusters	
6	93.5%	13.1%	7	77.7%	8.1%	
2	57.4%	12.5%	8	77.7%	8.1%	
5	65.5%	12.2%	6	84.1%	6.7%	
8	70.2%	11.6%	5	71.7%	6.5%	
7	70.2%	11.4%	9	84.7%	6.1%	
1	57.4%	11.2%	3	77.7%	4.4%	
4	70.2%	10.6%	4	77.7%	4.0%	
9	93.5%	10.4%	2	57.7%	3.9%	
3	70.2%	10.1%	10	87.3%	2.8%	
10	98.8%	3.9%	1	57.7%	0.1%	

223 Clinical characteristics of each cluster

Based on model 8, only nine clinical and laboratory variables were needed to identify the two distinct clusters in ARDS patients, namely: heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO₂, arterial pH, and FiO₂. For each variable in the model, opposing measurements could be observed for each cluster

(Figure 1 and eFigure 2). For the ARDSnet trials, the incidence of cluster 1 patients varied from 57.8% (EDEN) to 73.6% (ARMA), and 41.5% of ART patients were part of cluster 1. Across all trials, patients in cluster 2 had higher severity of illness, rate of vasopressor, heart rate, respiratory rate, creatinine, and bilirubin, as well as lower platelets, pH, BUN, and bicarbonate compared to patients in cluster 1 (eTable 5, 6 and 7). In addition, 28-, 60-, and 90-day mortality rate was higher in patients in cluster 2 in all trials (**Table 3**). Likewise, for each trial, ventilator-free days at day 28 was lower in patients in cluster 2 compared to cluster 1, and duration of ventilation in survivors was longer in cluster 1.

	Cluster 1	Cluster 2	Difference (95% CI)	<i>p</i> value
Training set				
FACTT	<i>n</i> = 407	n = 294		
60-day mortality - no. (%)	94 (23.1)	102 (34.7)	11.6% (4.9% to 18.3%)	0.001
90-day mortality - no. (%)	103 (25.4)	106 (36.3)	10.9% (4.1% to 17.8%)	0.002
Ventilator-free days at day 28	19.0 (0.0 - 24.0)	10.0 (0.0 - 21.0)	-9.0 (-11.9 to -6.1)	< 0.001
Duration of ventilation in survivors, days	8.0 (4.0 - 13.0)	10.0 (7.0 - 19.0)	2.0 (0.5 to 3.5)	< 0.001
EDEN	n = 449	n = 328		
60-day mortality - no. (%)	87 (19.4)	90 (27.4)	8.1% (2.1% to 14.0%)	0.010
90-day mortality - no. (%)	90 (20.0)	93 (28.4)	8.3% (2.3% to 14.3%)	0.009
Ventilator-free days at day 28	21.0 (0.0 - 25.0)	15.0 (0.0 - 22.2)	-6.0 (-8.1 to -3.9)	< 0.001
Duration of ventilation in survivors, days	6.0 (4.0 - 11.0)	8.0 (6.0 - 18.0)	2.0 (0.9 to 3.1)	< 0.001
Validation set				
ALVEOLI	n = 336	n = 157		
60-day mortality - no. (%)	59 (17.6)	68 (43.3)	25.8% (17.7% to 33.8%)	< 0.001
90-day mortality - no. (%)	60 (18.1)	70 (45.5)	27.3% (19.2% to 35.5%)	< 0.001
Ventilator-free days at day 28	21.0 (4.8 - 25.0)	2.0 (0.0 - 19.0)	-19.0 (-20.8 to -17.2)	< 0.001
Duration of ventilation in survivors, days	7.0 [4.0,13.0]	11.0 (6.0 - 22.2)	4.0 (2.1 to 5.9)	< 0.001
ARMA	n = 279	<i>n</i> = 100		
60-day mortality - no. (%)	69 (24.8)	42 (42.0)	17.2% (6.9% to 27.5%)	0.002
90-day mortality - no. (%)	70 (25.5)	42 (42.0)	16.5% (6.0% to 26.9%)	0.003
Ventilator-free days at day 28	17.0 (0.0 - 24.0)	2.0 (0.0 - 19.0)	-15.0 (-18.6 to -11.4)	< 0.001
Duration of ventilation in survivors, days	7.0 (4.0 - 13.8)	11.0 (5.0 -18.0)	4.0 (1.5 to 6.5)	0.018
SAILS	<i>n</i> = 319	<i>n</i> = 188		
60-day mortality - no. (%)	80 (25.1)	60 (31.9)	6.8% (-1.2% to 14.9%)	0.119
90-day mortality - no. (%)	81 (25.4)	63 (33.5)	8.1% (0.0% to 16.3%)	0.063

				1
Ventilator-free days at day 28	21.0 (0.0 - 25.0)	16.0 (0.0 - 23.0)	-5.0 (-7.3 to -2.7)	< 0.001
Duration of ventilation in survivors, days	6.0 (3.0 - 10.0)	8.0 (5.0 - 14.0)	2.0 (0.7 to 3.3)	< 0.001
ART	<i>n</i> = 211	n = 298		
28-day mortality - no. (%)	81 (38.4)	180 (60.4)	22.0% (13.4% to 30.7%)	< 0.001
Ventilator-free days at day 28	0.0 (0.0 - 17.0)	0.0 (0.0 - 7.8)	-0.0 (-1.0 to 1.0)	< 0.001
Duration of ventilation in survivors, days	12.0 (8.0 - 20.0)	13.5 (8.0 - 20.0)	2.0 (-0.3 to 4.2)	0.570
Data are median (quartile 25 th - quartile 75 median difference with (95% CI) for contin Abbreviations: CI is confidence interval.	^{ith}) or N (%). Differenc uous variables	e is mean difference v	vith (95% CI) for binomial variat	bles and
Identification of Subphenor	ypes haracteristics o	of the clusters,	each cluster was as	signed f
represent a distinct subphe	notype of ARI	DS, with patie	nts in cluster 1 ass	signed 1
subphenotype A, and patien	ts in cluster 2	assigned to s	ubphenotype B. Usi	ng bloc
biomarker information availal	ole for a subset	of patients fro	m both ARMA and A	LVEOL
subphenotype B showed increased levels of pro-inflammatory markers when compared				
to subphenotype A (Figure 2	and eTables 8	and 9).		

BMJ Open

DISCUSSION

This study successfully demonstrated that nine easily obtainable clinical variables can identify two distinct ARDS subphenotypes with different clinical and biologic characteristics as well as outcomes across the test and validation cohorts. There was good generalizability amongst diverse populations from multiple validation datasets with temporal and geographical differences.

It is understandable that researchers feel compelled to use as much information as possible to build robust models. This is supportable for two main reasons: (1) the well-known heterogeneity of complex syndromes such as ARDS and (2) the abundance of highly granular clinical data generated by electronic health records (EHRs). It is anticipated that analyzing this vast amount of data will provide new knowledge regarding disease mechanisms by enabling researchers to find plausible hidden patterns within the data [29]. However, this data-heavy approach has the potential drawback of using predictors which are not generally obtained in a time window prior to intervention, or worse yet, using variables that are not part of the routine standard of care for patients. The rationale of using fewer and easy to collect clinical variables is not new in the field of critical care. Prognostic models have already shown that it is indeed feasible to create meaningful models using fewer predictors [30,31].

Our initial choices to define variables commonly found in the EHR at ARDS diagnosis was inspired by a recent report from the World Health Organization (WHO) which showed an enormous discrepancy of medical devices availability in a survey across 135 countries [29]. Recognizing this inconsistency is essential for widespread implementation of machine learning models regardless of varying availability of resources

across countries and health systems [29]. The aim is to provide clinically relevant
information within a defined and short time period that might impact the delivery of
effective interventions to the right patient population and to as many patients as possible
[29].

273 Recently, Sinha *et al.* developed supervised-learning gradient boosted classifier 274 models trained using 24 or 14 readily available clinical data elements to reproduce 275 biomarker-derived subphenotypes which were previously identified by Calfee *et al.* [17]. 276 Unlike Sinha *et al.*, who predicted previously identified subphenotypes, our study has 277 identified two subphenotypes *de novo* using a small set of clinical variables.

Although the subphenotypes that we have identified and those that have been previously published look similar, our work is distinct from previous studies in several ways. We employed different training and validation datasets and also utilized a different and well-established unsupervised learning technique. Moreover, we utilized a process for selecting predictors which is not comparable to previous studies. Acknowledging these differences is crucial. It would not be unexpected to assume that these deviations would be relevant enough to produce different subphenotypes [32]. However, the clinical, laboratory characteristics, and the clinical outcomes of our subphenotypes show that they are remarkably similar to subphenotypes found in previous papers, regardless of methodological differences.

At this point it is not possible to go beyond this comparative analysis, as there is no gold standard definition of ARDS subphenotypes [32]. Nonetheless, our work does provide robust evidence that ARDS does indeed have two subphenotypes that can be systematically identified, despite major differences in population assessed and

Page 21 of 50

BMJ Open

methodological approach used compared with previous studies. It also reinforces that we
should continue to explore the underlying biological pathways of such subphenotypes to
find responders to new or previously tested therapies.

Our study has several strengths. First, it is the largest cohort of patients that has been studied to develop distinct subphenotypes of ARDS patients. Moreover, our validation cohort included patients from the ART trial, allowing us to validate our model in the contemporaneous population of a large international randomized clinical trial in addition to the ARDSnet studies used in other subphenotyping studies. Second, our subphenotyping model was developed exclusively on the training set and then validated across multiple separate datasets. Nevertheless, similar separation in mortality was seen between the two subphenotypes across all trials. Third, we used the K-means algorithm to identify our subphenotypes, and the results obtained with this technique can be easily interpreted by clinicians and implemented in clinical practice. Lastly, this is the first phenotyping study that has used easily available clinical variables to identify ARDS phenotypes *de novo*, which allows for early identification of these patients in the clinical care at the bedside. Using this algorithm with a small number of routinely collected variables could enable our model to be applied in trials that either retrospectively or prospectively assess interventions targeted to each subphenotype. Future work should analyze previous trials to identify possible differential treatment response for the subphenotypes of ARDS patients identified in this study.

This study also has limitations. First, we have developed our models exclusively on patients enrolled in clinical trials. Due to the strict inclusion and exclusion criteria of these clinical trials, the generalizability of these results needs to be evaluated in

unselected ARDS populations. Although there are clear clinical and biomarker differences between the identified subphenotypes, the model's clinical utility needs to be prospectively validated and further investigated. Additionally, our biomarker analysis is limited to those patients in which the data was made publicly available by the study authors. Lastly, K-means clustering does not handle missing data, and no approach was used to impute missing values. However, the extremely low rate of missingness in our study makes this issue less relevant. Store teries only

323 CONCLUSIONS

This study confirms the existence of two distinct subphenotypes in ARDS patients using a novel clustering model on routinely collected clinical data. This work may allow for easier ph. ment of ta. narker evaluation. identification of ARDS subphenotypes to facilitate implementation of precision clinical trial enrollment and development of targeted therapies in a variety of settings without the added burdens of biomarker evaluation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

DECLARATIONS

Funding: This research received no specific grant from any funding agency in the public,
 commercial or not-for-profit sectors.

Competing Interest: AD, MS, FGZ, ABC, ISM, DMP, LNL declare no relevant financial
conflicts of interest. RK, EVA, LB, JO, DR and ROD are employees of Endpoint Health,
Inc. ASN reported receiving personal fees from Dräger unrelated to the submitted work.
Ethics Approval: All patients provided informed consent in the original trials. This
secondary analysis study was exempt from IRB review because it does not meet the
definition of human subject as defined in 45 CFR 46.102. WIRB Work Order #1-1228617-

Availability of data and material: Data from the ARDSnet studies (EDEN, FACTT,
ARMA, ALVEOLI) is publicly available from the NHLBI ARDS Network (NHLBI ARDS
Network) and data from the ART trial can be requested from study authors.

Author Contributions: AD, RK, EVA, LB participated in study design and analysis,

drafted, and revised the manuscript, and are the guarantor of the document. MS, DR,

JO, FGZ, ABC, ISM, DMP, LNL, and ASN participated in interpretation of data analysis,

drafted the manuscript, and revised it for critically important intellectual content. ROD

347 participated in the study design, analysis, interpretation of data analysis, and final

348 revision of the manuscript content.

349 Twitter: @AbhiduggalMD, @msiuba, @f_g_zampieri, @rod_deliberato, @a_serpaneto,
 350 @l_bulgarelli, @endpointhealth

2 3 4	352	RE	FERENCES
5 6 7 8	353 354 355	1	ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, <i>et al.</i> Acute respiratory distress syndrome: the Berlin Definition. <i>JAMA</i> 2012; 307 :2526–33. doi:10.1001/jama.2012.5669
9 10 11 12 13	356 357 358	2	Thille AW, Esteban A, Fernández-Segoviano P, <i>et al.</i> Comparison of the Berlin Definition for Acute Respiratory Distress Syndrome with Autopsy. <i>Am J Respir Crit Care Med</i> 2013; 187 :761–7. doi:10.1164/rccm.201211-1981OC
14 15 16	359 360	3	Reilly J, Calfee C, Christie J. Acute Respiratory Distress Syndrome Phenotypes. Semin Respir Crit Care Med 2019; 40 :019–30. doi:10.1055/s-0039-1684049
17 18 19 20 21	361 362 363	4	Reddy K, Sinha P, O'Kane CM, <i>et al.</i> Subphenotypes in critical care: translation into clinical practice. <i>The Lancet Respiratory Medicine</i> 2020; 8 :631–43. doi:10.1016/S2213-2600(20)30124-7
22 23 24	364 365	5	Shankar-Hari M, Fan E, Ferguson ND. Acute respiratory distress syndrome (ARDS) phenotyping. <i>Intensive Care Med</i> 2019; 45 :516–9. doi:10.1007/s00134-018-5480-6
25 26 27 28 29	366 367 368 369	6	Calfee CS, Delucchi K, Parsons PE, <i>et al.</i> Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. <i>The Lancet Respiratory Medicine</i> 2014; 2 :611–20. doi:10.1016/S2213-2600(14)70097-9
30 31 32 33 34	370 371 372	7	Famous KR, Delucchi K, Ware LB, <i>et al.</i> Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. <i>Am J Respir Crit Care Med</i> 2017; 195 :331–8. doi:10.1164/rccm.201603-0645OC
35 36 37 38 39 40	373 374 375 376	8	Calfee CS, Delucchi KL, Sinha P, <i>et al.</i> Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. <i>The Lancet Respiratory Medicine</i> 2018; 6 :691–8. doi:10.1016/S2213-2600(18)30177-2
41 42 43 44 45	377 378 379 380	9	for the NHLBI ARDS Network, Sinha P, Delucchi KL, <i>et al.</i> Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. <i>Intensive Care Med</i> 2018; 44 :1859–69. doi:10.1007/s00134-018-5378-3
46 47 48 49 50	381 382 383	10	Bos LD, Schouten LR, van Vught LA, <i>et al.</i> Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. <i>Thorax</i> 2017; 72 :876–83. doi:10.1136/thoraxjnl-2016-209719
51 52 53 54 55 56	384 385 386	11	Ferguson ND, Fan E, Camporota L, <i>et al.</i> The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. <i>Intensive Care Med</i> 2012; 38 :1573–82. doi:10.1007/s00134-012-2682-1
57 58 59 60			24 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว			
2 3 4 5 6	387 388 389	12	Bellani G, Laffey JG, Pham T, <i>et al.</i> Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. <i>JAMA</i> 2016; 315 :788. doi:10.1001/jama.2016.0291
/ 8 9	390 391	13	Gattinoni L, Vassalli F, Romitti F. Benefits and risks of the P/F approach. <i>Intensive Care Med</i> 2018; 44 :2245–7. doi:10.1007/s00134-018-5413-4
10 11 12 13 14	392 393 394	14	Matthay MA, Arabi YM, Siegel ER, <i>et al.</i> Phenotypes and personalized medicine in the acute respiratory distress syndrome. <i>Intensive Care Med</i> 2020; 46 :2136–52. doi:10.1007/s00134-020-06296-9
15 16 17 18 10	395 396 397	15	Shankar-Hari M, Rubenfeld GD. Population enrichment for critical care trials: phenotypes and differential outcomes. <i>Current Opinion in Critical Care</i> 2019; 25 :489–97. doi:10.1097/MCC.000000000000641
20 21 22 23 24	398 399 400 401	16	Sinha P, Delucchi KL, McAuley DF, <i>et al.</i> Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. <i>The Lancet Respiratory Medicine</i> 2020; 8 :247–57. doi:10.1016/S2213-2600(19)30369-8
25 26 27 28 29 30	402 403 404 405	17	Sinha P, Churpek MM, Calfee CS. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. <i>Am J Respir Crit Care Med</i> 2020; 202 :996–1004. doi:10.1164/rccm.202002- 0347OC
31 32 33 34 35	406 407 408 409	18	Kitsios GD, Yang L, Manatakis DV, <i>et al.</i> Host-Response Subphenotypes Offer Prognostic Enrichment in Patients With or at Risk for Acute Respiratory Distress Syndrome*: <i>Critical Care Medicine</i> 2019; 47 :1724–34. doi:10.1097/CCM.000000000004018
36 37 38 39 40 41 42	410 411 412 413 414	19	The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. <i>N Engl J Med</i> 2000; 342 :1301–8. doi:10.1056/NEJM200005043421801
43 44 45 46 47 48	415 416 417 418	20	The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. <i>N Engl J Med</i> 2004; 351 :327–36. doi:10.1056/NEJMoa032193
49 50 51 52 53	419 420 421 422	21	The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. <i>N Engl J Med</i> 2006; 354 :2213–24. doi:10.1056/NEJMoa061895
54 55 56 57	423 424	22	The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Rice TW, Wheeler AP, <i>et al.</i> Initial Trophic vs Full
58 59 60			25 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	425		Enteral Feeding in Patients With Acute Lung Injury: The EDEN Randomized Trial.
4	426		JAMA: The Journal of the American Medical Association 2012; 307 :795–803.
5	427		doi:10.1001/jama.2012.137
7			,
8	428	23	The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network.
9	429		Rosuvastatin for Sepsis-Associated Acute Respiratory Distress Syndrome. <i>N Engl J</i>
10	430		Med 2014: 370 :2191–200. doi:10.1056/NEJMoa1401520
11			
12	431	24	Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome
13	432		Trial (ART) Investigators. Cavalcanti AB. Suzumura ÉA. et al. Effect of Lung
14	433		Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on
15	434		Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized
16 17	/35		Clinical Trial ./AMA 2017: 318 :1335. doi:10.1001/jama.2017.14171
17	433		
19	436	25	Yehva N, Harhav MO, Curley MAO, et al. Reappraisal of Ventilator-Free Days in
20	/37	20	Critical Care Research Am J Respir Crit Care Med 2019 200 828–36
21	120		doi:10.1164/recm 201810-2050CP
22	430		
23	439	26	Castela Forte J. Perner A. van der Horst ICC. The use of clustering algorithms in
24	133	20	critical care research to unravel nation theterogeneity. Intensive Care Med
25	440		2010 ; <i>A</i>5 :1025_8 doi:10.1007/e00131_010_05631_7
26	441		2013,43.1025-0. 001.10.1007/300134-018-03031-2
27	112	27	Ketchen D.J. Shook Cl. The Application of Cluster Analysis in Strategic
20	1/2	21	Management Research: An Analysis and Critique Strategic Management Journal
30	445		1006: 17 :1/1–58 doi:https://doi.org/10.1002/(SICI)1007_
31	444		1330, 17.441-30.001.1009.1001.009/10.1002/(3101)1037-
32	445		0200(199000)17.0×441AID-SWJ019>3.0.CO,2-G
33	116	28	Caliński T. Harabasz, I. A dendrite method for cluster analysis. Communications in
34	440	20	Statistics 107/3:1 27 doi:10.1080/03610027/08827101
35	447		Statistics 1974, 3 . 1–27. 001. 10. 1000/03010927400027101
36	<i>11</i> 8	29	Bulgarelli L. Deliberato RO, Johnson AEW, Prediction on critically ill patients: The
38	110	20	role of "big data". <i>Journal of Critical Care</i> 2020: 60 :64–8
39	450		doi:10.1016/i.jcrc.2020.07.017
40	430		
41	451	30	Johnson AFW Kramer AA Clifford GD A New Severity of Illness Scale Using a
42	451 162	00	Subset of Acute Physiology and Chronic Health Evaluation Data Elements Shows
43	452		Comparable Predictive Accuracy*: Critical Care Medicine 2013:41:1711 8
44	435		doi:10.1007/CCM.0b012o21929o24fo
45	454		UUI. 10. 1097/CCIM.00013e318288241e
46	155	31	Deliberato PO Escudero CC Bulgarelli L et al SEVERITAS: An externally
47	455	51	validated mortality prediction for critically ill patients in low and middle income
48	456		valuated mortality prediction for childrary in patients in low and mode-income
49 50	457		countries. International Journal of Medical Informatics 2019,131.103959.
51	458		doi: 10. 1016/j.ijmedint.2019. 103959
52	450	ວງ	DeMarle KM Angue DC Beillie IK at al Sensie Subelesses: A Framework for
53	459	52	Development and Interpretation <i>Crit Care Med</i> Published Online First: 15 February
54	460		
55	461		ZUZT. 001.10.1097/CCIVI.00000000004842
56			
5/ 50			
50 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

462 FIGURES LEGENDS

Figure 1 - Differences of the Variables Included in the Cluster Algorithm Among Clusters

465 Square symbols represent the study with the highest mean z score for each phenotype;

466 Circles represent the study with the lowest mean z score for each phenotype. The colored

- 467 bands are exclusively to help visualize the opposite trends of the variables on the different
- 468 clusters; Art.pH: arterial pH; Bicarb: bicarbonate; MAP: mean arterial pressure; Creat:
- 469 creatinine; Resp.Rate: respiratory rate
- 470 Figure 2 Heat Map of the Biomarkers Available for the ARMA and ALVEOLI Trials
- 471 For better visualization and due to difference in scales, the values were log-normalized
- 472 and z-scored. Subphenotypes A and B are shown separately to highlight their differences.

Figure 1 - Differences of the Variables Included in the Cluster Algorithm Among Clusters 812x457mm (72 x 72 DPI)

812x457mm (72 x 72 DPI)

Identification of Acute Respiratory Distress Syndrome subphenotypes denovo using routine clinical data: a retrospective analysis of ARDS clinical trials

ONLINE SUPPLEMENT

Additional Methods

Number of clusters

The optimal number of clusters was chosen according to two criteria: (1) Elbow method, by selecting a number of clusters that if further increased will result in only a small increase in performance and possibly cause overfit, hence this number is commonly referenced as to being in the "elbow" of the curve (**eFigure 1**); and (2) Calinski-Harabasz index, consisting of the ratio of *within* to *between* cluster dispersion; higher scores are indication of dense and well separated clusters (**e-Figure 1**).

Ventilator-free days

Ventilator free days for ALVEOLI, EDEN, FACTT, and SAILS were calculated according to the methods outlined by Yehya et al (1). Briefly, patients who died at any time in the 28 days were assigned 0 ventilator-free days. For survivors, the number of ventilator-free days was calculated based on the date of the final successful extubation; reintubations before the final extubation were not counted toward ventilator-free days. All days after a patient was discharged home up to the 28th day with unassisted breathing were assumed to be ventilator-free days.

eTable 1 - F	'ercentage	of n	nissing	data	in	the	routinely	collected
variables, clo	osest rando	mizat	tion, on	EDEN	l ar	nd F	ACTT trials	S.

Variables	Lower Limit	Upper Limit
Age (years)	16	89
Arterial pH	6.65	7.80
Bicarbonate (mEq/L)	1	50
Bilirubin (mg/dL)	0.1	50
Creatinine (mg/dL)	0.1	20
FiO2	0.21	1
Heart Rate (beats per minute)	20	300
Height (cm)	120	220
Mean arterial pressure (mmHg)	10	400
PaCO2 (mmHg)	20	120
PaO2 / FiO2	0	500
PaO2 (mmHg)	30	500
PEEP (cm H20)	0	60
Platelets (thousands)	1	1000
Plateau Pressure (cm H20)	10	50
Respiratory Rate (resp per minute)	1	100
Tidal Volume (cm H20)	100	1400

eTable 2 - Plausible physiological ranges for clinical measurements, closest to time of randomization

Fize, nousands) essure (cm H20) ry Rate (resp per minute) 1 . me (cm H20) 100 1400
21 22

23

24

25

45 46 47

BMJ Open

	Age	рН	HCO ₃	Bili	Creat	FiO ₂	Gender	HR	MAP	PaCO₂	PaO₂	PEEP	Plat	RR	V⊤/PBW
Age	1.00	0.06	-0.04	-0.02	0.11	-0.13	0.00	-0.27	-0.12	-0.11	-0.06	-0.22	0.00	-0.11	0.03
эΗ	0.06	1.00	0.40	-0.04	-0.16	-0.26	-0.01	-0.18	0.15	-0.39	0.00	-0.20	0.05	-0.21	0.07
−ICO₃	-0.04	0.40	1.00	-0.08	-0.28	-0.05	-0.02	-0.18	0.08	0.44	0.02	-0.05	0.15	-0.24	-0.07
Bili	-0.02	-0.04	-0.08	1.00	0.06	-0.03	-0.04	0.01	-0.04	-0.01	0.03	0.01	-0.20	0.04	-0.01
Creat	0.11	-0.16	-0.28	0.06	1.00	-0.04	-0.08	-0.04	-0.01	-0.14	0.00	-0.06	-0.12	0.02	0.00
FiO ₂	-0.13	-0.26	-0.05	-0.03	-0.04	1.00	0.03	0.13	-0.06	0.18	0.11	0.49	0.06	0.21	-0.02
Gender	0.00	-0.01	-0.02	-0.04	-0.08	0.03	1.00	-0.03	-0.05	-0.04	-0.06	0.02	0.09	0.09	0.19
IR	-0.27	-0.18	-0.18	0.01	-0.04	0.13	-0.03	1.00	-0.02	0.03	-0.04	0.12	-0.05	0.22	0.08
MAP	-0.12	0.15	0.08	-0.04	-0.01	-0.06	-0.05	-0.02	1.00	-0.03	0.01	-0.01	0.06	-0.04	0.00
PaCO ₂	-0.11	-0.39	0.44	-0.01	-0.14	0.18	-0.04	0.03	-0.03	1.00	-0.04	0.17	0.11	-0.05	-0.17
PaO ₂	-0.06	0.00	0.02	0.03	0.00	0.11	-0.06	-0.04	0.01	-0.04	1.00	-0.09	-0.04	-0.09	0.03
EEP	-0.22	-0.20	-0.05	0.01	-0.06	0.49	0.02	0.12	-0.01	0.17	-0.09	1.00	0.00	0.33	-0.15
lat	0.00	0.05	0.15	-0.20	-0.12	0.06	0.09	-0.05	0.06	0.11	-0.04	0.00	1.00	-0.05	0.03
									1						-

0.03 Data are Pearson correlation coefficients.

-0.11

-0.21

0.07

-0.24

-0.07

0.04

-0.01

0.02

0.00

0.21

-0.02

RR

V_T/PBW

Abbreviations: Bill denotes bilirubin, Creat is creatinine, HR is heart rate, MAP is mean arterial pressure, PEEP is positive end-expiratory pressure, Plat is platelets, RR is respiratory rate and V_T/PBW is tidal volume per predicted body weight.

0.22

0.08

-0.04

0.00

0.09

0.19

-0.05

-0.17

-0.09

0.03

0.33

-0.15

-0.05

0.03

1.00

-0.31

-0.31

1.00

BMJ Open

Medel	Demo	ographics	Arterial Blood Gases			Laboratory Values			Vital Signs			Ventilator Variables			
wodei	Age	Gender	рН	PaO ₂	PaCO ₂	Creat	Bili	HCO ₃	Plat	MAP	RR	HR	FiO2	PEEP	V _T /PBW
1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	Х	Х	Х	Х	Х	Х	Х	Х		Х	х	Х	Х		
4	Х	Х	Х	Х		Х	Х	Х		Х	х	Х	Х		
5			Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х		
6	Х	Х	Х	X		Х		Х		Х	Х	Х	Х		
7			Х	X	Х	Х	Х	Х		Х	х	Х	Х		
8			Х	x		Х	Х	Х		Х	х	Х	Х		
9			Х	x	Х			Х		Х	Х	Х			
10	Х	Х								Х	Х	Х			

eTable 4 - List of variables in each model assessed

 Abbreviations: Bill denotes billrubin, Creat is creatinine, HR is heart rate, MAP is mean arterial pressure, PEEP is positive end-expiratory pressure, Plat is platelets, RR is respiratory rate and V_T/PBW is tidal volume per predicted body weight.

BMJ Open

		FACTT			EDEN	
	Cluster 1 (<i>n</i> = 407)	Cluster 2 (<i>n</i> = 294)	<i>p v</i> alue	Cluster 1 (<i>n</i> = 449)	Cluster 2 (<i>n</i> = 328)	<i>p v</i> alu
Age, year*	50.0 (40.0 - 63.0)	47.0 (36.0 - 58.0)	0.002	53.0 (44.0 - 63.0)	51.0 (41.0 - 62.2)	0.183
Male gender - no. (%)	223 (54.8)	151 (51.4)	0.411	233 (51.9)	168 (51.2)	0.910
Body mass index, kg/m ²	27.5 (23.3 - 32.1)	27.4 (23.0 - 32.7)	0.938	29.1 (24.6 - 34.5)	28.5 (23.4 - 35.1)	0.476
Caucasian - no. (%)	269 (66.1)	177 (60.2)	0.129	349 (81.5)	237 (75.7)	0.067
Etiology - no. (%)			< 0.001			0.003
Pneumonia	201 (49.4)	139 (47.3)		296 (65.9)	217 (66.2)	
Sepsis	78 (19.2)	101 (34.4)		50 (11.1)	60 (18.3)	
Aspiration	67 (16.5)	30 (10.2)		45 (10.0)	27 (8.2)	
Trauma	24 (5.9)	8 (2.7)		24 (5.3)	5 (1.5)	
Other	37 (9.1)	16 (5.4)		34 (7.6)	19 (5.8)	
Prognostic scores						
APACHE III	69.0 (56.0 - 84.0)	91 (76.0 - 105.0)	< 0.001	66.0 (54.0 - 79.0)	84.0 (71.0 - 100.2)	< 0.00
Use of vasopressor - no. (%)	118 (29.5)	189 (64.9)	< 0.001	187 (41.6)	209 (63.7)	< 0.00
Vital signs						
Temperature, ⁰C	37.5 (36.8 - 38.2)	37.6 (37.0 - 38.4)	0.371	37.3 (36.8 - 37.8)	37.3 (36.7 - 38.1)	0.212
Heart rate, bpm	95.0 (81.0 - 110.0)	114 (102 - 126)	< 0.001	89 (77 - 102)	101 (89 - 116)	< 0.00
Mean arterial Pressure, mmHg	76.0 (68.0 - 88.0)	71.0 (65.0 - 80.8)	< 0.001	77.0 (68.0 - 84.0)	71.0 (66.0 - 80.0)	< 0.00
SpO ₂ , %	96 (93 - 98)	95 (92 - 97)	< 0.001	96 (94 - 98)	95 (92 - 98)	0.032
Urine output in 24 hours, mL	1785 (1192 - 2853)	1370 (842 - 2446)	< 0.001	1505 (977 - 2250)	1165 (566 - 1816)	< 0.00
Laboratory tests						
Hematocrit, %	30.0 (26.0 - 33.0)	30.0 (24.2 - 35.0)	0.272	30.0 (26.0 - 34.0)	30.0 (26.0 - 35.0)	0.919
White blood cell count, 10 ⁹ /L	11.6 (7.3 - 16.3)	11.7 (5.6 - 17.9)	0.972	11.4 (7.7 - 15.5)	12.7 (7.7 - 19.0)	0.019
Platelets, 10 ⁹ /L	195 (118.5 - 268)	158 (87 - 237)	< 0.001	163 (108 - 241)	164 (103 - 227)	0.552
Creatinine, mg/dL	0.9 (0.7 - 1.3)	1.4 (1.0 - 2.0)	< 0.001	1.0 (0.7 - 1.5)	1.6 (1.0 - 2.8)	< 0.00
Bilirubin, mg/dL	0.7 (0.5 - 1.3)	0.9 (0.5 - 2.0)	0.003	0.8 (0.5 - 1.3)	0.8 (0.5 - 1.7)	0.128
Arterial blood gas						
pH*	7.41 (7.36 - 7.45)	7.29 (7.23 - 7.35)	< 0.001	7.40 (7.35 - 7.44)	7.30 (7.24 - 7.35)	< 0.00
PaO ₂ , mmHg	78 (68 - 100)	78 (65 - 99)	0.240	83 (70 - 107)	81 (67 - 107)	0.416
PaO ₂ / FiO ₂	132 (92 - 173)	89 (65 - 126)	< 0.001	133 (98 - 193)	101 (73 - 162)	< 0.00

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

PaCO ₂ , mmHg	39 (34 - 44)	38.5 (33 - 47.9)	0.877	38 (34 - 44)	38 (33 - 46)	0.55
Bicarbonate, mmol/L	24.0 (21.0 - 27.0)	17.0 (14.0 - 20.0)	< 0.001	23.0 (21.0 - 26.0)	18.5 (15.0 - 21.0)	< 0.001
Ventilatory variables						
Tidal volume, mL	450 (400 - 530)	450 (382 - 500)	0.009	420 (356 - 487)	400 (350 - 450)	0.032
Per PBW, mL/kg PBW	7.1 (6.3 - 8.4)	7.0 (6.0, 8.0)	0.058	6.3 (6.0 - 7.5)	6.1 (6.0 - 7.3)	0.079
Plateau pressure, cmH ₂ O	25.0 (20.0 - 29.0)	28.0 (24.0 - 32.0)	< 0.001	23.0 (19.0 - 27.0)	24.0 (21.0 - 28.0)	0.004
PEEP, cmH ₂ O	8 (5 - 10)	10 (8 - 14)	< 0.001	10 (5 - 10)	10 (8 - 14)	< 0.001
Respiratory rate, breaths/min	22 (18 - 27)	30 (24 - 35)	< 0.001	22 (19 - 26)	30 (25 - 35)	< 0.001
FiO ₂	0.50 (0.40 - 0.70)	0.80 (0.60 - 1.00)	< 0.001	0.60 (0.45 - 0.70)	0.80 (0.60 - 1.00)	< 0.001

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, V-//PBW denotes tidal volume per predicted body weight.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		ALVEOLI			ARMA	
	Cluster 1 (<i>n</i> = 336)	Cluster 2 (<i>n</i> = 157)	<i>p v</i> alue	Cluster 1 (<i>n</i> = 279)	Cluster 2 (<i>n</i> = 100)	<i>p v</i> alue
Age, year*	53.0 (39.0 - 66.2)	46.0 (37.0 - 60.0)	0.007	49.0 (37.0 - 64.0)	47.5 (36.0 - 61.0)	0.180
Male gender - no. (%)	188 (56.0)	86 (54.8)	0.883	169 (60.6)	61 (61.0)	0.965
Body mass index, kg/m ²	27.0 (22.9 - 31.1)	25.2 (21.7 - 30.2)	0.050	25.8 (23.0 - 30.2)	24.4 (21.5 - 29.7)	0.057
Caucasian - no. (%)	263 (78.3)	102 (65.0)	0.002	220 (78.9)	65 (65.0)	0.009
Etiology - no. (%)			0.001			< 0.001
Pneumonia	130 (38.7)	66 (42.0)		83 (29.7)	30 (30.0)	
Sepsis	63 (18.8)	50 (31.8)		64 (22.9)	43 (43.0)	
Aspiration	55 (16.4)	19 (12.1)		44 (15.8)	14 (14.0)	
Trauma	33 (9.8)	5 (3.2)		43 (15.4)	4 (4.0)	
Other	55 (16.4)	17 (10.8)		45 (16.1)	9 (9.0)	
Prognostic scores						
APACHE III	71. (59.0 - 83.0)	93.0 (80.0 - 110.0)	< 0.001	77.0 (66.0 - 90.5)	97.0 (81.8 (110.0)	< 0.001
Use of vasopressor - no. (%)	65 (20.1)	80 (51.3)	< 0.001	77 (27.6)	52 (52.5)	< 0.001
Vital signs						
Temperature, ºC	37.6 (37.1 - 38.2)	37.7 (36.9 - 38.3)	0.778	37.6 (37.1 - 38.1)	37.6 (36.8 - 38.4)	0.803
Heart rate, bpm	97.5 (83.0 - 109)	111.0 (97.0 - 126)	< 0.001	101.0 (89.0 - 112.5)	118 (105.0 - 128.0)	< 0.001
Mean arterial Pressure, mmHg	77.3 (77.0 - 87.3)	73.3 (65.0 - 80.3)	< 0.001	78.0 (70.7 - 88.0)	70.5 (64.9 - 80.4)	< 0.001
SpO ₂ , %	96 (94 - 97)	95 (92 - 97)	0.005	95 (93 - 98)	95.5 (93 - 97)	0.799
Urine output in 24 hours, mL	2065 (1355 - 3255)	1433 (569 - 2189)	< 0.001	2100 (1375 - 3096)	1525 (816 - 2650)	0.001
Laboratory tests						
Hematocrit, %	31.0 (28.0 - 34.0)	31.0 (27.0 - 35.0)	0.617	30.0 (28.0 - 33.0)	31.0 (28.0 - 34.0)	0.299
White blood cell count, 10 ⁹ /L	11.7 (8.1 - 15.3)	10.7 (6.4 - 15.8)	0.166	11.9 (7.7 - 16.7)	9.8 (5.4 - 16.7)	0.057
Platelets, 10 ⁹ /L	173 (94 - 266)	141 (57 - 214)	0.001	139 (80 - 212)	125 (72 - 196)	0.260
Creatinine, mg/dL	0.9 (0.7 - 1.3)	1.5 (0.9 - 3.0)	< 0.001	1.0 (0.7 - 1.4)	1.8 (1.2 - 3.2)	< 0.001
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.9 (0.4 - 1.8)	0.289	1.0 (0.6 - 2.1)	1.1 (0.7 - 2.7)	0.106
Arterial blood gas						
pH*	7.42 (7.38 - 7.45)	7.31 (7.24 - 7.36)	< 0.001	7.42 (7.38 - 7.47)	7.33 (7.28 - 7.37)	< 0.00
PaO ₂ , mmHg	78 (68 - 93)	74 (65 - 92)	0.082	75 (66 - 91)	81 (68 - 96)	0.106
PaO ₂ / FiO ₂	149 (109 - 192)	103 (74 - 136)	< 0.001	118 (83 - 160)	99 (68 - 137)	0.006

aTable 6 - Pasalina Characteristics and Clinical Outcomes According to the Clusters and Two Trials in the Validation Set

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

PaCO2, mmHg	38 (34 - 43)	36 (31 - 42)	0.046	37 (31 - 41)	34 (28.8 - 39.2)	0.003
Bicarbonate, mmol/L	24 (21 - 27)	17 (13 - 20)	< 0.001	23 (20 - 26)	16 (13 - 19)	< 0.001
Ventilatory variables						
Tidal volume, mL	500 (437 - 600)	480 (400 - 572)	0.002	700 (600 - 750)	700 (550 - 700)	0.198
Per PBW, mL/kg PBW	8.0 (6.9 - 9.5)	7.4 (6.2 - 9.2)	0.006	10.1 (9.2 - 11.1)	10.6 (9.0 - 11.4)	0.383
Plateau pressure, cmH ₂ O	25.0 (21.0 - 30.0)	29.0 (24.0 - 33.0)	< 0.001	29.0 (24.0 - 34.0)	31.0 (27.0 - 36.0)	0.018
PEEP, cmH ₂ O	10 (5 - 10)	10 (8 - 14)	< 0.001	8 (5 - 10)	10 (5 - 12)	0.150
Respiratory rate, breaths/min	20 (15 - 25)	30 (24 - 35)	< 0.001	18 (14 - 21)	24 (18.8 - 28)	< 0.001
FiO ₂	0.50 (0.44 - 0.65)	0.75 (0.60 - 1.00)	< 0.001	0.60 (0.50 - 0.70)	0.70 (0.59 - 0.96)	< 0.001

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, V_T/PBW denotes tidal volume per predicted body weight.

BMJ Open

		SAILS			ART	
	Cluster 1 (<i>n</i> = 319)	Cluster 2 (<i>n</i> = 188)	<i>p v</i> alue	Cluster 1 (<i>n</i> = 211)	Cluster 2 (<i>n</i> = 298)	<i>p v</i> alue
Age, year*	57.0 (46.0 - 67.0)	53.5 (39.0 - 65.0)	0.035	54.0 (37.0 - 65.0)	50.0 (35.2 - 61.0)	0.075
Male gender - no. (%)	150 (47.0)	100 (53.2)	0.211	136 (64.5)	181 (60.7)	0.448
Body mass index, kg/m ²	28.5 (23.9 - 34.6)	29.8 (23.2 - 35.1)	0.903	28.8 (24.6 - 35.6)	28.4 (25.0 - 31.7)	0.367
Caucasian - no. (%)	250 (78.4)	140 (74.5)	0.369			
Etiology - no. (%)			0.709			0.052
Pneumonia	228 (71.5)	127 (67.6)		113 (53.6)	171 (57.4)	
Sepsis	63 (19.7)	39 (20.7)		38 (18.0)	59 (19.8)	
Aspiration	19 (6.0)	15 (8.0)		13 (6.2)	16 (5.4)	
Trauma	3 (0.9)	1 (0.5)		10 (4.7)	2 (0.7)	
Other	6 (1.9)	6 (3.2)		37 (17.5)	50 (16.8)	
Prognostic scores						
APACHE III	70.0 (56.0 - 84.0)	92.0 (75.0 - 105.8)	< 0.001			
SAPS III		40		62 (50 - 71)	66 (53 - 75)	0.010
Use of vasopressor - no. (%)	150 (47.8)	142 (78.5)	< 0.001	130 (61.6)	242 (81.2)	< 0.00
Vital signs						
Temperature, ºC	37.2 (36.7 - 37.8)	37.3 (36.7 - 38.0)	0.346			
Heart rate, bpm	91.0 (80.5 - 103.0)	102.0 (88.8 - 117.0)	< 0.001	90.0 (73.0 - 103.0)	112.0 (97.2 - 126.0)	< 0.00
Mean arterial Pressure, mmHg	78.0 (69.5 - 88.0)	70.0 (63.0 - 78.)	< 0.001	80.0 (73.5 - 89.0)	75.0 (70.0 - 83.0)	< 0.00
SpO ₂ , %	96 (95 - 99)	96 (93 - 99)	0.270			
Urine output in 24 hours, mL	1570 (852 - 2383)	920 (350 - 1665)	< 0.001			
Laboratory tests						
Hematocrit, %	31 (27 - 35)	31 (28 - 37)	0.142			
White blood cell count, 10 ⁹ /L	13.6 (8.5 - 18.1)	15.4 (9.8 - 23.3)	0.009			
Platelets, 10 ⁹ /L	164 (96 - 238)	131 (80 - 223)	0.032	177 (120 - 292)	169 (90 - 256)	0.048
Creatinine, mg/dL	1.0 (0.7 - 1.5)	1.4 (0.9 - 2.6)	< 0.001	1.0 (0.7 - 1.5)	1.7 (1.0 - 2.8)	< 0.00
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.8 (0.5 - 1.6)	0.630	0.6 (0.4 - 1.2)	0.9 (0.4 - 1.7)	0.002
Arterial blood gas						
pH*	7.39 (7.35 - 7.44)	7.31 (7.24 - 7.35)	< 0.001	7.4 (7.3 - 7.4)	7.2 (7.2 - 7.3)	< 0.00
PaO ₂ , mmHg	82 (68 - 101)	86 (72 - 111.2)	0.112	118 (82 - 158)	104 (78 - 152)	0.065

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

PaO ₂ / FiO ₂	139 (98 - 195)	107 (74 - 159)	< 0.001	118 (82 - 158)	104 (78 - 152)	0.065
PaCO ₂ , mmHg	38 (34 - 45)	38 (32 - 44)	0.423	46 (41 - 56)	53 (42 - 65)	< 0.001
Bicarbonate, mmol/L	23 (20 - 26)	17 (14 - 21)	< 0.001	25.2 (22.5 - 28.8)	20.6 (17.8 - 23.4)	< 0.001
Ventilatory variables						
Tidal volume, mL	420 (360 - 480)	400 (340 - 450)	0.016	360 (320 - 400)	350 (300 - 397.8)	0.008
Per PBW, mL/kg PBW	6.4 (6.0 - 7.3)	6.1 (5.9 - 7.0)	0.030	6.0 (5.3 - 6.1)	5.9 (5.1 - 6.1)	0.034
Plateau pressure, cmH ₂ O	22.0 (18.0 - 27.0)	25.0 (20.0 - 29.0)	0.003	24.0 (21.0 - 28.0)	27.0 (23.0 - 30.0)	< 0.001
PEEP, cmH ₂ O	8 (5 - 10)	10 (8 - 13)	0.001	10 (10 - 14)	12 (10 - 14)	< 0.001
Respiratory rate, breaths/min	23 (19 - 27)	30 (24 - 35)	< 0.001	24 (20 - 28)	30 (24 - 34)	< 0.001
FiO ₂	0.50 (0.40 - 0.60)	0.70 (0.50 - 0.90)	< 0.001	0.70 (0.60 - 0.80)	0.80 (0.70 - 1.00)	< 0.001

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

 Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, V₇/PBW denotes tidal volume per predicted body weight...

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 eTable 8 - Biomarker levels by study and cluster

2		ARMA				ALVEOLI		
3 4	Subphenotype A (<i>n</i> = 279)	Subphenotype B (<i>n</i> = 100)	Median Difference (95% Cl)	p value	Subphenotype A (n = 336)	Subphenotype B (n = 157)	Median Difference (95% CI)	<i>p</i> value
5 ICAM-1	654.0 (399.0 - 959.4)	888.0 (550.0 - 1365.3)	234 (60.3 to 407.8)	0.002	847.9 (585.7 - 1227.1)	1070.4 (748.2 - 1588.8)	219.4 (90.4 to 348.4)	< 0.001
7 ^{IL-6}	214.0 (91.8 - 553.5)	966.0 (291.0 - 2200.0)	749.1 (589.9 to 908.2)	< 0.001	182.5 (85.5 - 435.2)	775.0 (148.0 - 2846.5)	592 (515.5 to 668.6)	< 0.001
8 PAI-1	65.3 (37.8 - 109.5)	101.7 (50.8 - 291.6)	41 (18.3 to 63.7)	0.001	Not assessed	Not assessed		
9 IL-8	46.0 (2.0 - 91.0)	106.9 (43.8 - 281.4)	60.9 (35.6 to 86.2)	< 0.001	Not assessed	Not assessed		
10 11 ^{IL-10}	16.0 (0.0 - 40.3)	47.9 (0.0 - 120.7)	31.9 (20.2 to 43.6)	< 0.001	Not assessed	Not assessed		
12 ^{TNFR-I}	2604.0 (1950.0 - 3777.0)	6897.0 (3622.5 - 12281.5)	4293 (3323.6 to 5262.4)	< 0.001	Not assessed	Not assessed		
13TNFR-II	6581.0 (4958.0 - 9658.0)	18611.0 (12262.5 - 35652.0)	12030 (9577.5 to 14482.5)	< 0.001	Not assessed	Not assessed		
14 _{SPA}	29.0 (11.8 - 68.0)	25.0 (10.5 - 40.0)	-4 (-19.9 to 11.9)	0.398	Not assessed	Not assessed		
15 16SPD	76.0 (36.2 - 145.2)	59.0 (30.0 - 125.0)	-18 (-52.6 to 16.6)	0.254	Not assessed	Not assessed		
1 <u>7</u> VW	308.0 (165.5 - 431.0)	384.0 (246.0 - 549.0)	76 (-26.5 to 178.5)	0.045	Not assessed	Not assessed		

18Data are median (quartile 25th - quartile 75th).

19Abbreviations: 95%CI denotes 95% confidence interval, ICAM-1 is intercellular adhesion molecule-1, IL-6 is interleukin-6, PAI-1 is plasminogen activator inhibitor-1, IL-8 is interleukin-8, IL-10 is interleukin-10, TNFR-20I is tumor necrosis factor receptor 1, TNFR-II is tumor necrosis factor II, SPA is surfact protein A, SPD is surfact Protein D and VW is Von Willebrand factor.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eTable 9 - Percentage of missingness in biomarker levels measured on day of randomization, on ARMA and ALVEOLI trials for patients with an assigned subphenotype

Biomarker	AR (<i>n</i> =	379)	ALVEOLI (<i>n</i> = 493)		
	Subphenotype A	Subphenotype B	Subphenotype A	Subphenotype B	
ICAM-1	43%	31%	4%	3%	
IL-6	41%	33%	4%	4%	
PAI-1	42%	32%	Not assessed	Not assessed	
IL-8	41%	33%	Not assessed	Not assessed	
IL-10	42%	33%	Not assessed	Not assessed	
TNFR-I	68%	61%	Not assessed	Not assessed	
TNFR-II	68%	61%	Not assessed	Not assessed	
SPA	67%	61%	Not assessed	Not assessed	
SPD	67%	61%	Not assessed	Not assessed	
VW	67%	61%	Not assessed	Not assessed	

Abbreviations: ICAM-1 is intercellular adhesion molecule-1, IL-6 is interleukin-6, PAI-1 is plasminogen activator inhibitor-1, IL-8 is interleukin-8, IL-10 is interleukin-10, TNFR-I is tumor necrosis factor receptor 1, TNFR-II is tumor necrosis factor II, SPA is surfact protein A, SPD is surfact Protein D and VW is Von Willebrand factor.

different clusters.

Abbreviations: Art. pH is arterial pH, Bicarb is bicarbonate, MAP is mean arterial pressure, Creat is creatinine and Resp. Rate is respiratory rate

1 2	
3 4 5	Reference:
6 7 8 9 10	 Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of Ventilator-Free Days in Critical Care Research. Am J Respir Crit Care Med.2019 Oct 1;200(7):828-836. doi: 10.1164/rccm.201810-2050CP.
12 13 14 15 16	
17 18 19 20 21 22	
23 24 25 26 27 28	
29 30 31 32 33	
34 35 36 37 38 39	
40 41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
50 57 58	

Reporting checklist for prediction model development/validation.

Based on the TRIPOD guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the TRIPODreporting guidelines, and cite them as:

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.

			Page
		Reporting Item	Number
Title		4	
	<u>#1</u>	Identify the study as developing and / or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract			
	<u>#2</u>	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2
Introduction			
	<u>#3a</u>	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	6
	<u>#3b</u>	Specify the objectives, including whether the study describes the	6
	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 49 of 50

BMJ Open

1			development or validation of the model or both.	
<u>}</u>	Methods			
	Source of data	<u>#4a</u>	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	8
0 1 2	Source of data	<u>#4b</u>	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	8
3 4 5 6	Participants	<u>#5a</u>	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	8
7 8	Participants	<u>#5b</u>	Describe eligibility criteria for participants.	8
9 20 21	Participants	<u>#5c</u>	Give details of treatments received, if relevant	8
22 23 24	Outcome	<u>#6a</u>	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	9
.5 26 27	Outcome	<u>#6b</u>	Report any actions to blind assessment of the outcome to be predicted.	N/A
8 9 0 1 2	Predictors	<u>#7a</u>	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured	8
3 4 5 6	Predictors	<u>#7b</u>	Report any actions to blind assessment of predictors for the outcome and other predictors.	N/A
7 8	Sample size	<u>#8</u>	Explain how the study size was arrived at.	8
9 0 1 2 3	Missing data	<u>#9</u>	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	9
- 5 6 7	Statistical analysis methods	<u>#10a</u>	If you are developing a prediction model describe how predictors were handled in the analyses.	N/A
8 9 0 1 2 3	Statistical analysis methods	<u>#10b</u>	If you are developing a prediction model, specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	N/A
4 5 6 7	Statistical analysis methods	<u>#10c</u>	If you are validating a prediction model, describe how the predictions were calculated.	N/A
/ 8 9	Statistical analysis	<u>#10d</u>	Specify all measures used to assess model performance and, if relevant,	10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

4 5

1	methods		to compare multiple models.	
2 3 4 5	Statistical analysis methods	<u>#10e</u>	If you are validating a prediction model, describe any model updating (e.g., recalibration) arising from the validation, if done	N/A
6 7	Risk groups	<u>#11</u>	Provide details on how risk groups were created, if done.	11
8 9 10 11	Development vs. validation	<u>#12</u>	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	10
12 13	Results			
14 15 16 17 18	Participants	<u>#13a</u>	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	12
20 21 22 23 24	Participants	<u>#13b</u>	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	12
25 26 27 28 29	Participants	<u>#13c</u>	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	12
30 31 32 33	Model development	<u>#14a</u>	If developing a model, specify the number of participants and outcome events in each analysis.	12
34 35 36 37	Model development	<u>#14b</u>	If developing a model, report the unadjusted association, if calculated between each candidate predictor and outcome.	N/A
38 39 40 41 42	Model specification	<u>#15a</u>	If developing a model, present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	N/A
43 44 45 46	Model specification	<u>#15b</u>	If developing a prediction model, explain how to the use it.	N/A
47 48 49 50	Model performance	<u>#16</u>	Report performance measures (with CIs) for the prediction model.	14
51 52 53 54	Model-updating	<u>#17</u>	If validating a model, report the results from any model updating, if done (i.e., model specification, model performance).	N/A
55 56	Discussion			
57 58 59	Limitations	<u>#18</u> For p	Discuss any limitations of the study (such as nonrepresentative sample,	19
50		- P		

Page	51 of 50		BMJ Open	
1			few events per predictor, missing data).	
2 3 4 5	Interpretation	<u>#19a</u>	For validation, discuss the results with reference to performance in the development data, and any other validation data	17
6 7 8	Interpretation	<u>#19b</u>	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	17
9 10 11 12	Implications	<u>#20</u>	Discuss the potential clinical use of the model and implications for future research	20
13 14	Other			
15 16	information			
17 18 19 20	Supplementary information	<u>#21</u>	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	22
21 22 23 24	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study.	22
25	The TRIPOD che	cklist is d	istributed under the terms of the Creative Commons Attribution License CC-BY	
26 27	This checklist wa	s complet	ed on 07. May 2021 using https://www.goodreports.org/, a tool made by the	
28 29	EQUATOR Netw	vork in col	llaboration with <u>Penelope.ai</u>	
30				
31 32				
33 34				
35				
36 37				
38				
39 40				
41 42				
43				
44 45				
46				
47 48				
49 50				
50 51				
52 53				
54				
55 56				
57 58				
50				

BMJ Open

BMJ Open

Identification of Acute Respiratory Distress Syndrome subphenotypes denovo using routine clinical data: a retrospective analysis of ARDS clinical trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053297.R1
Article Type:	Original research
Date Submitted by the Author:	26-Oct-2021
Complete List of Authors:	Duggal, Abhijit ; Cleveland Clinic, Department of Critical Care Medicine Kast, Rachel; Endpoint Health Inc, Department of Clinical Data Science Van Ark, Emily; Endpoint Health Inc, Department of Clinical Data Science Bulgarelli, Lucas; Endpoint Health Inc, Department of Clinical Data Science Siuba, Matthew T.; Cleveland Clinic, Department of Critical Care Medicine Osborn, Jeff; Endpoint Health Inc, Department of Clinical Data Science Rey, Diego; Endpoint Health Inc, Department of Clinical Data Science Zampieri, Fernando; HCor Research Institute Cavalcanti, Alexandre ; HCor Research Institute Maia, Israel; Hospital do Coracao Paisani, Denise M; HCor Research Institute Serpa Neto, Ary; Monash University, Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine,; Hospital Israelita Albert Einstein, Critical Care
	Medicine Deliberato, Rodrigo Octávio; Endpoint Health Inc, Department of Clinical Data Science
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Respiratory medicine
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Adult intensive & critical care < ANAESTHETICS, RESPIRATORY MEDICINE (see Thoracic Medicine)

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Identification of Acute Respiratory Distress Syndrome subphenotypes de novo using routine clinical data: a retrospective analysis of ARDS clinical trials

Abhijit Duggal MD^{1‡}, Rachel Kast PhD^{2‡}, Emily Van Ark PhD^{2‡}, Lucas Bulgarelli BSc^{2‡}, Matthew T. Siuba DO¹, Jeff Osborn², Diego Rey PhD², Fernando G Zampieri MD PhD³, Alexandre B Cavalcanti MD PhD³, Israel S Maia MD³, Denise M Paisani PhD³, Ligia N Laranjeira³, Ary Serpa Neto MD MSc PhD,^{4,5,6,7,8} Rodrigo Octávio Deliberato MD PhD²

[‡] Authors contributed equally

1. Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA.

2. Department of Clinical Data Science, Endpoint Health Inc, Palo Alto, California, USA.

3. HCor Research Institute, São Paulo, Brazil

4. Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

5. Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia.

6. Department of Intensive Care, Austin Hospital, Melbourne, Australia.

7. Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne, Australia.

8. Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.

Correspondence:

Abhijit Duggal MD Address: 9500 Euclid Ave, L2-330, Cleveland, Ohio, 44195 E-mail: <u>duggala2@ccf.org</u>

Word count (Abstract): 236 words

- Word count (Text): 2814 words
- Number of figures: 2 figures
- Number of tables: 3 tables

Supplementary Material: 01

Key words: Subphenotype, machine learning, ARDS, critical care, clinical data, clustering

ABSTRACT

Objectives: The acute respiratory distress syndrome (ARDS) is a heterogeneous condition, and identification of subphenotypes may help in better risk stratification. Our study objective is to identify ARDS subphenotypes using new simpler methodology and readily available clinical variables.

Setting: This is a retrospective Cohort Study of ARDS trials. Data from the U.S. ARDSNet trials and from the international ART trial.

Participants: 3763 patients from ARDSNet datasets and 1010 patients from the ART dataset.

Primary and secondary outcome measures: The primary outcome was 60-day or 28day mortality, depending on what was reported in the original trial. K-means cluster analysis was performed to identify subgroups. Sets of candidate variables were tested to assess their ability to produce different probabilities for mortality in each cluster. Clusters were compared to biomarker data, allowing identification of subphenotypes.

Results: Data from 4,773 patients was analyzed. Two subphenotypes (A and B) resulted in optimal separation in the final model, which included nine routinely collected clinical variables, namely: heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO₂, arterial pH, and FiO₂. Participants in subphenotype B showed increased levels of pro-inflammatory markers, had consistently higher mortality, lower number of ventilator-free days at day 28, and longer duration of ventilation compared to patients in the subphenotype A.

Conclusions: Routinely available clinical data can successfully identify two distinct subphenotypes in adult ARDS patients. This work may facilitate implementation of precision therapy in ARDS clinical trials.

to beet teries only

ARTICLE SUMMARY

Strengths and limitations of this study

- Largest cohort of patients used to identify subphenotypes of ARDS patients.
- Subphenotypes were validated in the population of a large international ARDS randomized controlled trial.
- Subphenotypes were identified by using only routinely collected clinical data.
- Our use of data exclusively from randomized controlled trials does not prove generalizability to unselected ARDS populations.
- The clinical utility of the subphenotypes has to be validated in a prospective study.

INTRODUCTION

The Berlin definition of acute respiratory distress syndrome (ARDS) encompasses acute hypoxemic respiratory failure due to a wide variety of etiologies [1]. Due to this inclusion of heterogeneous conditions within the syndrome, there are significant clinical and biological differences that make ARDS challenging to treat [2,3]. These differences amongst ARDS patients are associated with variation in risk of disease development and progression [3,4], potentially generating differential responses to treatments and interventions [5–10]. Despite evidence, clinical risk stratification of ARDS patients still solely depends on PaO₂/FiO₂ ratios [11,12], possibly misleading the interpretation of results in clinical trials and clinicians when evaluating treatment options for patients [13].

Therefore, identifying groups of patients who have similar clinical, physiologic, or biomarker traits becomes relevant [6,14] as it can help with stratification of patients producing better targeted therapies and interventions [15]. These different groups can be defined as ARDS subphenotypes [4,14]. Two ARDS subphenotypes have been consistently identified in previous studies [6–10,16–18]. However, these models are complex, and significant barriers exist in their implementation and use in clinical practice. Existing models use up to 40 predictor variables, including biomarkers and other variables that are not readily available at the bedside [6–10,16–18]. These limitations explain the current status quo of ARDS care, where clinicians must depend on the limited prognostic value of PaO₂/FiO₂ ratios instead of biologically distinct subphenotypes.

We hypothesized that the use of a simpler methodology and a small number of easily available clinical variables could identify new ARDS subphenotypes and thus provide the means to allow future implementation of bedside stratification.

METHODS

Data source and participants

We performed a retrospective study using a de-identified dataset pooling data from six randomized clinical trials in patients with ARDS, namely: ARMA, ALVEOLI, FACTT, EDEN, SAILS, and ART [19–24]. Patients in ARMA, ALVEOLI, FACTT, EDEN, and SAILS trials were eligible if they met the American-European consensus for ARDS, including patients with a PaO_2 / FiO_2 ratio < 300 up to 48 hours before enrollment. From 1996 to 2013, these trials enrolled 902, 549, 1000, 1000, and 745 patients, respectively, and tested a variety of interventions [19–23]. Between 2011 and 2017 the international ART study enrolled 1010 adult patients diagnosed with moderate to severe ARDS according to the Berlin definition (PaO_2 / FiO_2 ratio < 200) for less than 72 hours of duration and assessed two different ventilatory strategies [24]. To avoid biases due to high mortality in the high tidal volume group of the ARMA study [19], which has not been standard of care since the beginning of 2000, only 473 patients receiving low tidal volume in that study were included.

Predictors

Six clinical trials were assessed to identify a set of clinical variables recorded closest to time of randomization which were most commonly available across all datasets. The list of potential candidates was then further refined to include only those that are frequently observed in the routine care of ARDS patients at the time of its diagnosis according to judgement provided by ICU physicians who participated in this study. To develop a clustering algorithm for potential rapid translation into clinical use, elements which would not be commonly found in the electronic health records (EHR) at the time of ARDS

BMJ Open

diagnosis, such as biomarker levels, ARDS risk factors, organ support apart from mechanical ventilation settings, and severity scores, were excluded from model development. The treatment assignment in the original trials, and clinical outcomes were not considered in the model development.

After all assessment, 16 variables that are routinely collected as part of the usual care and which were uniformly present in all the trials were considered, including: age, gender, arterial pH, PaO₂, PaCO₂, bicarbonate, creatinine, bilirubin, platelets, heart rate, respiratory rate, mean arterial pressure, positive end-expiratory pressure (PEEP), plateau pressure, FiO₂, and tidal volume adjusted for predicted body weight (mL/kg PBW). The PBW was calculated as equal to 50 + 0.91 (centimeters of height – 152.4) in males, and 45.5 + 0.91 (centimeters of height – 152.4) in females [18]. These variables were grouped into five domains named demographics, arterial blood gases, laboratory values, vital signs, and ventilatory variables. Plateau pressure was excluded due to a high rate of missingness across the trials included in the training set. Amount of missing data in the training datasets is reported in **eTable 1**.

Outcomes

The primary outcome was 60-day mortality for all ARDSnet trials, and 28-day mortality for ART trial. Secondary outcomes included 90-day mortality, number of ventilator free days at day 28 [25], and the duration of mechanical ventilation in survivors within the first 28 days post enrollment.

Data preparation

Data preprocessing was performed before modeling, and the pooled dataset was assessed for completeness and consistency. Patients with values out of the plausible

physiological range for a specific variable were excluded from the final analysis (described in **eTable 2**). The training dataset was constructed using data from the two largest ARDSnet trials, EDEN and FACTT. The validation dataset was sourced from the four remaining trials: ALVEOLI, ARMA, SAILS, and ART. Means and standard deviations for *z*-scoring variables were calculated from the training dataset and subsequently applied to the validation data.

Statistical analysis

Baseline and outcome data were presented according to the assigned cluster. Continuous variables were presented as medians with their interquartile ranges and categorical variables as total number and percentage. Proportions were compared using Fisher exact tests and continuous variables were compared using the Wilcoxon rank-sum test. Study outcomes were further compared using the median and mean absolute differences for continuous and categorical values, respectively.

Model development and validation

For the model development, the K-means clustering algorithm was used. K-means is one of the simplest and most used classes of clustering algorithms. In critical care research, unsupervised machine learning techniques have already been used in several studies, attempting to find homogeneous subgroups within a broad heterogeneous population [26]. This specific algorithm identifies a K number of clusters in a dataset by finding K centroids within the n-dimensional space of clinical features [26].

For feature selection, different sets of candidate variables were tested to assess their ability to produce significantly different mortality probabilities in each cluster using the minimum amount of readily available clinical data. For each set of candidate variables,

BMJ Open

the optimal number of clusters was determined by comparing models with between 2 and 5 clusters, using the Elbow method [27] and the Calinski-Harabasz index [28]. Information about the methods for selecting the number of clusters are provided in the supplemental material.

The following steps were performed for the final model selection: 1) all predictors were assessed for correlation (**eTable 3**); and 2) ten different combinations of the proposed variables were investigated. These combinations were developed based on the perceived clinical importance of each variable and its combinations. All 10 models were tested for the optimal number of clusters based on both the Elbow method and the Calinski-Harabasz index, as described above. The models were then compared, aiming for the minimum set of variables with high 60-day mortality separation. The description of each model is shown in **eTable 4**.

Biological and clinical characteristics of the clusters were evaluated using clinical, laboratory, and (when available) biomarker data to establish subphenotypes [4]. All iterations in model development were done on the training set and the generalizability of the final model was assessed using the validation dataset. K-means clustering analysis is structured to ignore cases with missing data. No assumption was made for missingness, and we therefore conducted a complete case analysis. Model development and evaluation was performed using Python version 3.8 and scikit-learn 0.23.1.

Patient and public involvement

There was no patient involvement in this study.

Data availability

Data from the ARDSnet studies (EDEN, FACTT, ARMA, ALVEOLI and SAILS) is publicly available from the NHLBI ARDS Network and data from the ART trial can be requested from study authors.

RESULTS

Participants

Data from 4777 clinical trial patients were considered for inclusion. In total, 4 patients were excluded for having clinical measurements outside plausible range. The remaining 1998 patients from EDEN and FACTT trials were included in the training set, while the 2775 patients from ARMA, ALVEOLI, SAILS, and ART were included in the validation cohort.

Baseline characteristics of the patients in the training and validation sets are presented in **Table 1**. Pneumonia was the prevailing etiology followed by sepsis and aspiration in all trials. Between 29.3% to 72.7% of the patients were receiving vasopressors at the time of randomization. At randomization, PaO_2 / FiO_2 ratio ranged from 112 (75 - 158) to 134 (96 - 185) mmHg, and PEEP from 8 (5 - 10) to 12 (10 - 14) cmH₂O across trials. Mortality at 60 days for the ARDSnet trials ranged from 22.7% to 30.1%, while in the ART trial mortality at 28 days was 58.8%.

	Training s	et (n = 1998)		Validation set (n = 2775)			
	EDEN (n = 1000)	FACTT (n = 998)	ALVEOLI (n = 549)	ARMA (n = 472)	ART (n = 1010)	SAILS (n = 744)	
Age, year	52.0 (42.0 - 63.0)	49.0 (38.0 - 60.8)	50.0 (39.0 - 65.0)	50.0 (37.8 - 65.0)	52.0 (36.0 - 64.0)	55.0 (42.0 - 66.0)	
Male gender - no. (%)	510 (51.0)	533 (53.4)	302 (55.0)	285 (60.4)	631 (62.5)	365 (49.0)	
Etiology - no. (%)							
Pneumonia	650 (65.0)	471 (47.2)	221 (40.3)	145 (30.7)	555 (55.0)	526 (70.7)	
Sepsis	147 (14.7)	231 (23.1)	120 (21.9)	125 (26.5)	196 (19.4)	147 (19.8)	
Aspiration	96 (9.6)	149 (14.9)	84 (15.3)	72 (15.3)	58 (5.7)	49 (6.6)	
Trauma	36 (3.6)	74 (7.4)	45 (8.2)	59 (12.5)	31 (3.1)	6 (0.8)	
Other	71 (7.1)	73 (7.3)	79 (14.4)	71 (15.0)	170 (16.8)	16 (2.2)	
Severity of Illness*	73.0 (59.0 - 89.0)	78.0 (62.0 - 94.0)	78.0 (64.0 - 93.0)	83.0 (70.0 - 97.0)	63.0 (50.2 – 75.0)	76.0 (61.0 - 92.0)	
Vasopressors - no. (%)	489 (48.9)	397 (40.5)	156 (29.3)	147 (31.3)	734 (72.7)	395 (54.2)	
Laboratory tests							

White blood cell count. 109/L	12.0 (7.8 - 16.7)	11.8 (7.2 - 17.1)	11.6 (7.7 - 15.7)	11.5 (7.5 - 16.2)		13.9 (8.7 - 20.0)
Platelets, 109/L	169 (108 - 241)	183 (106 - 258)	157 (83 - 247)	135 (80 - 211)	175 (106 - 263)	167 (96 - 247)
Creatinine, mg/dL	1.2 (0.8 - 2.0)	1.0 (0.7 - 1.5)	1.0 (0.7 - 1.7)	1.1 (0.8 - 1.7)	1.3 (0.8 - 2.2)	1.0 (0.7 - 1.7)
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.8 (0.5 - 1.6)	0.8 (0.5 - 1.5)	1.0 (0.6 - 2.1)	0.8 (0.4 - 1.5)	0.8 (0.5 - 1.4)
Arterial blood gas						
pH*	7.36 (7.30 - 7.42)	7.37 (7.30 - 7.43)	7.40 (7.34 - 7.44)	7.41 (7.35 - 7.45)	7.28 (7.19 - 7.36)	7.37 (7.31 - 7.42)
PaO2, mmHg	83 (68 - 108)	79 (67 - 100)	77 (67 - 93)	76.5 (67 - 93)	112 (81 - 155)	83 (69 - 103)
PaO2 / FiO2	125 (86 - 178)	118 (80 - 163)	134 (96 - 185)	112 (75 - 158)	112 (81 - 155)	133 (89 - 178)
PaCO2, mmHg	38 (34 - 45)	39 (34 - 45)	38 (33 - 43)	36 (31 - 41)	50 (42 - 62)	39 (34 - 45)
Bicarbonate, mmol/L	21.0 (18.0 - 25.0)	21.0 (17.4 - 25.0)	22.0 (18.0 - 26.0)	22.0 (18.0 - 25.0)	22.9 (19.4 - 26.3)	22.0 (18.0 - 25.0)
Ventilatory variables						
Tidal volume, mL	410 (360 - 470)	450 (400 - 510)	500 (420 - 600)	700 (600 - 750)	350 (308 - 400)	400 (350 - 460)
Per PBW, mL/kg PBW	6.3 (6.0 - 7.3)	7.1 (6.1 - 8.1)	7.9 (6.6 - 9.4)	10.2 (9.0 - 11.3)	5.9 (5.1 - 6.1)	6.2 (6.0 - 7.1)
Plateau pressure, cmH2O	24.0 (20.0 - 27.0)	26.0 (22.0 - 30.0)	26.0 (22.0 - 31.0)	29.0 (24.8 - 34.0)	26.0 (22.0 - 29.0)	24.0 (19.0 - 28.0)
PEEP, cmH2O	10 (5 - 12)	10 (5 - 12)	10 (5 - 12)	8 (5 - 10)	12 (10 - 14)	10 (5 - 11)
FiO2	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.74)	0.70 (0.60 - 1.00)	0.60 (0.40 - 0.70)
Clinical outcomes						
28-day mort no. (%)					594 (58.8)	
60-day mort no. (%)	227 (22.7)	268 (26.9)	144 (26.2)	141 (30.1)		199 (26.7)
90-day mort no. (%)	233 (23.3)	283 (28.6)	148 (27.5)	143 (30.8)		204 (27.4)
Ventilator-free days, day 28	20.0 (0.0 - 24.0)	17.0 (0.0 - 23.0)	18.0 (0.0 - 24.0)	13.0 (0.0 - 23.0)	0.0 (0.0 - 13.0)	20.0 (0.0 - 25.0)
Ventilator days in	7.0 (4.0 -	8.0 (5.0 -	8.0 (4.0 - 14.0)	8.0 (4.0 -	13.0 (8.0 -	6.0 (4.0 - 11.0)

Predictor variables and model selection

The correlation between the 15 variables selected for clustering is shown in **eTable 3**. The strongest correlation was between PEEP and FiO_2 (r = 0.49). The comparison of the 10 models regarding the optimal number of clusters based on both the Elbow method and the Calinski-Harabasz index is shown in **eFigure 1**. In all models and methods, two clusters were a better fit than a higher number of clusters.

BMJ Open

Across the ten models, absolute mortality difference between cluster 1 and cluster 2 ranged from 3.9% to 13.1% for the FACTT study and between 0.1% to 8.1% for EDEN (**eTable 4**). The models with the highest 60-day absolute mortality separation between the clusters for each of the two trials in the training set were then further evaluated. Models 6, 5, and 8 were consistently amongst the models with highest separation (**eTable 4**). Model 8 was selected for further investigation, as it had the fewest variables (**eTable 4**).

5).

Clinical characteristics of each cluster

Based on model 8, only nine clinical and laboratory variables were needed to identify the two distinct clusters in ARDS patients, namely: heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO₂, arterial pH, and FiO₂. For each variable in the model, opposing measurements could be observed for each cluster (**Figure 1** and **eFigure 2**). For the ARDSnet trials, the incidence of cluster 1 patients varied from 57.8% (EDEN) to 73.6% (ARMA), and 41.5% of ART patients were part of cluster 1. Across all trials, patients in cluster 2 had higher severity of illness, rate of vasopressor, heart rate, respiratory rate, creatinine, and bilirubin, as well as lower platelets, pH, BUN, and bicarbonate compared to patients in cluster 1 (**Table 2, eTables 6** and **7**). In addition, 28-, 60-, and 90-day mortality rate was higher in patients in cluster 2 in all trials (**Table 3**). Likewise, for each trial, the number of ventilator-free days at day 28 was lower in patients in cluster 1.

Table 2 - Baseline Characteristics and Clinical Outcomes According to the Clusters and Trials in the Training Set								
		FACTT		EDEN				
	Cluster 1 (n = 407)	Cluster 2 (n = 294)	p value	Cluster 1 (n = 449)	Cluster 2 (n = 328)	p value		

Age, year*	50.0 (40.0 - 63.0)	47.0 (36.0 - 58.0)	0.002	53.0 (44.0 - 63.0)	51.0 (41.0 - 62.2)	0.18
Male gender - no. (%)	223 (54.8)	151 (51.4)	0.411	233 (51.9)	168 (51.2)	0.910
Body mass index, kg/m2	27.5 (23.3 - 32.1)	27.4 (23.0 - 32.7)	0.938	29.1 (24.6 - 34.5)	28.5 (23.4 - 35.1)	0.476
Caucasian - no. (%)	269 (66.1)	177 (60.2)	0.129	349 (81.5)	237 (75.7)	0.067
Etiology - no. (%)			< 0.001			0.00
Pneumonia	201 (49.4)	139 (47.3)		296 (65.9)	217 (66.2)	
Sepsis	78 (19.2)	101 (34.4)		50 (11.1)	60 (18.3)	
Aspiration	67 (16.5)	30 (10.2)		45 (10.0)	27 (8.2)	
Trauma	24 (5.9)	8 (2.7)		24 (5.3)	5 (1.5)	
Other	37 (9.1)	16 (5.4)		34 (7.6)	19 (5.8)	
Prognostic scores						
APACHE III	69.0 (56.0 - 84.0)	91 (76.0 - 105.0)	< 0.001	66.0 (54.0 - 79.0)	84.0 (71.0 - 100.2)	< 0.0
Use of vasopressor - no. (%)	118 (29.5)	189 (64.9)	< 0.001	187 (41.6)	209 (63.7)	< 0.0
Vital signs						
Temperature, °C	37.5 (36.8 - 38.2)	37.6 (37.0 - 38.4)	0.371	37.3 (36.8 - 37.8)	37.3 (36.7 - 38.1)	0.21
Heart rate, bpm	95.0 (81.0 - 110.0)	114 (102 - 126)	< 0.001	89 (77 - 102)	101 (89 - 116)	< 0.0
Mean arterial Pressure, mmHg	76.0 (68.0 - 88.0)	71.0 (65.0 - 80.8)	< 0.001	77.0 (68.0 - 84.0)	71.0 (66.0 - 80.0)	< 0.0
SpO2, %	96 (93 - 98)	95 (92 - 97)	< 0.001	96 (94 - 98)	95 (92 - 98)	0.03
Urine output in 24 hours, mL	1785 (1192 - 2853)	1370 (842 - 2446)	< 0.001	1505 (977 - 2250)	1165 (566 - 1816)	< 0.0
Laboratory tests						
Hematocrit, %	30.0 (26.0 - 33.0)	30.0 (24.2 - 35.0)	0.272	30.0 (26.0 - 34.0)	30.0 (26.0 - 35.0)	0.91
White blood cell count, 109/L	11.6 (7.3 - 16.3)	11.7 (5.6 - 17.9)	0.972	11.4 (7.7 - 15.5)	12.7 (7.7 - 19.0)	0.01
Platelets, 109/L	195 (118.5 - 268)	158 (87 - 237)	< 0.001	163 (108 - 241)	164 (103 - 227)	0.55
Creatinine, mg/dL	0.9 (0.7 - 1.3)	1.4 (1.0 - 2.0)	< 0.001	1.0 (0.7 - 1.5)	1.6 (1.0 - 2.8)	< 0.0
Bilirubin, mg/dL	0.7 (0.5 - 1.3)	0.9 (0.5 - 2.0)	0.003	0.8 (0.5 - 1.3)	0.8 (0.5 - 1.7)	0.12
Arterial blood gas						
pH*	7.41 (7.36 - 7.45)	7.29 (7.23 - 7.35)	< 0.001	7.40 (7.35 - 7.44)	7.30 (7.24 - 7.35)	< 0.
PaO2, mmHg	78 (68 - 100)	78 (65 - 99)	0.240	83 (70 - 107)	81 (67 - 107)	0.41
PaO2 / FiO2	132 (92 - 173)	89 (65 - 126)	< 0.001	133 (98 - 193)	101 (73 - 162)	< 0.
PaCO2, mmHg	39 (34 - 44)	38.5 (33 - 47.9)	0.877	38 (34 - 44)	38 (33 - 46)	0.55
Bicarbonate, mmol/L	24.0 (21.0 - 27.0)	17.0 (14.0 - 20.0)	< 0.001	23.0 (21.0 - 26.0)	18.5 (15.0 - 21.0)	< 0.0
Ventilatory variables						
Tidal volume, mL	450 (400 - 530)	450 (382 - 500)	0.009	420 (356 - 487)	400 (350 - 450)	0.03
Per PBW, mL/kg PBW	7.1 (6.3 - 8.4)	7.0 (6.0, 8.0)	0.058	6.3 (6.0 - 7.5)	6.1 (6.0 - 7.3)	0.07
Plateau pressure, cmH2O	25.0 (20.0 - 29.0)	28.0 (24.0 - 32.0)	< 0.001	23.0 (19.0 - 27.0)	24.0 (21.0 - 28.0)	0.00
PEEP, cmH2O	8 (5 - 10)	10 (8 - 14)	< 0.001	10 (5 - 10)	10 (8 - 14)	< 0.0
Respiratory rate, breaths/min	22 (18 - 27)	30 (24 - 35)	< 0.001	22 (19 - 26)	30 (25 - 35)	< 0.0
FiO2	0.50 (0.40 - 0.70)	0.80 (0.60 -	< 0.001	0.60 (0.45 - 0.70)	0.80 (0.60 - 1.00)	< 0.0

2	
3	
4	
5	
2	
6	
7	
8	
9	
1	0
1	1
1	י ר
1.	2
1.	3
1.	4
1	5
1	6
1	7
1	, 0
1	0
T	9
2	0
2	1
2	2
2	3
2	ر ۸
2	4
2	5
2	б
2	7
2	8
2	٥ ٥
2	0
2	1
3	1
3	2
3	3
3	4
3	5
2	6
יכ ר	7
3	/
3	8
3	9
4	0
4	1
4	2
-т. Л	2
4	2
4	4
4	5
4	б
4	7
4	8
4	a
-+ 	ر م
-	0
5	1
5	2
5	3
5	4
5	5
ר. ר	5 C
5	0
5	/
5	8
5	9
6	0

	Cluster 1	Cluster 2	Difference (95% CI)	p valu
Training set				
FACTT	n = 407	n = 294		
60-day mortality - no. (%)	94 (23.1)	102 (34.7)	11.6% (4.9% to 18.3%)	0.001
90-day mortality - no. (%)	103 (25.4)	106 (36.3)	10.9% (4.1% to 17.8%)	0.002
Ventilator-free days at day 28	19.0 (0.0 - 24.0)	10.0 (0.0 - 21.0)	-9.0 (-11.9 to -6.1)	< 0.001
Duration of ventilation in survivors, days	8.0 (4.0 - 13.0)	10.0 (7.0 - 19.0)	2.0 (0.5 to 3.5)	< 0.001
EDEN	n = 449	n = 328		
60-day mortality - no. (%)	87 (19.4)	90 (27.4)	8.1% (2.1% to 14.0%)	0.010
90-day mortality - no. (%)	90 (20.0)	93 (28.4)	8.3% (2.3% to 14.3%)	0.009
Ventilator-free days at day 28	21.0 (0.0 - 25.0)	15.0 (0.0 - 22.2)	-6.0 (-8.1 to -3.9)	< 0.001
Duration of ventilation in survivors, days	6.0 (4.0 - 11.0)	8.0 (6.0 - 18.0)	2.0 (0.9 to 3.1)	< 0.001
Validation set	~			
ALVEOLI	n = 336	n = 157		
60-day mortality - no. (%)	59 (17.6)	68 (43.3)	25.8% (17.7% to 33.8%)	< 0.001
90-day mortality - no. (%)	60 (18.1)	70 (45.5)	27.3% (19.2% to 35.5%)	< 0.001
Ventilator-free days at day 28	21.0 (4.8 - 25.0)	2.0 (0.0 - 19.0)	-19.0 (-20.8 to -17.2)	< 0.001
Duration of ventilation in survivors, days	7.0 [4.0,13.0]	11.0 (6.0 - 22.2)	4.0 (2.1 to 5.9)	< 0.001
ARMA	n = 279	n = 100		
60-day mortality - no. (%)	69 (24.8)	42 (42.0)	17.2% (6.9% to 27.5%)	0.002
90-day mortality - no. (%)	70 (25.5)	42 (42.0)	16.5% (6.0% to 26.9%)	0.003
Ventilator-free days at day 28	17.0 (0.0 - 24.0)	2.0 (0.0 - 19.0)	-15.0 (-18.6 to -11.4)	< 0.001
Duration of ventilation in survivors, days	7.0 (4.0 - 13.8)	11.0 (5.0 -18.0)	4.0 (1.5 to 6.5)	0.018
SAILS	n = 319	n = 188		
60-day mortality - no. (%)	80 (25.1)	60 (31.9)	6.8% (-1.2% to 14.9%)	0.119
90-day mortality - no. (%)	81 (25.4)	63 (33.5)	8.1% (0.0% to 16.3%)	0.063
Ventilator-free days at day 28	21.0 (0.0 - 25.0)	16.0 (0.0 - 23.0)	-5.0 (-7.3 to -2.7)	< 0.001
Duration of ventilation in survivors, days	6.0 (3.0 - 10.0)	8.0 (5.0 - 14.0)	2.0 (0.7 to 3.3)	< 0.001
ART	n = 211	n = 298		
28-day mortality - no. (%)	81 (38.4)	180 (60.4)	22.0% (13.4% to 30.7%)	< 0.001
Ventilator-free days at day 28	0.0 (0.0 - 17.0)	0.0 (0.0 - 7.8)	-0.0 (-1.0 to 1.0)	< 0.001
Duration of ventilation in survivors,	12.0 (8.0 - 20.0)	13.5 (8.0 - 20.0)	2.0 (-0.3 to 4.2)	0.570

Identification of Subphenotypes

After comparing the clinical characteristics of the clusters, each cluster was assigned to represent a distinct subphenotype of ARDS, with patients in cluster 1 assigned to

subphenotype A, and patients in cluster 2 assigned to subphenotype B. Using blood biomarker information available for a subset of patients from both ARMA and ALVEOLI, subphenotype B showed increased levels of pro-inflammatory markers when compared to subphenotype A (Figure 2 and eTables 8 and 9).

<text>
DISCUSSION

This study successfully demonstrated that nine easily obtainable clinical variables: arterial pH, partial O2 pressure, creatinine, bilirubin, bicarbonate, mean arterial pressure, heart rate, respiratory rate, and FiO2 at the time of study enrollment can identify two distinct ARDS subphenotypes with different clinical and biologic characteristics as well as outcomes across the test and validation cohorts. There was good generalizability amongst diverse populations from multiple validation datasets with temporal and geographical differences.

It is understandable that researchers feel compelled to use as much information as possible to build robust models. This is supportable for two main reasons: (1) the wellknown heterogeneity of complex syndromes such as ARDS and (2) the abundance of highly granular clinical data generated by electronic health records (EHRs). It is anticipated that analyzing this vast amount of data will provide new knowledge regarding disease mechanisms by enabling researchers to find plausible hidden patterns within the data [29]. However, this data-heavy approach has the potential drawback of using predictors which are not generally obtained in a time window prior to intervention, or worse yet, using variables that are not part of the routine standard of care for patients. The rationale of using fewer and easy to collect clinical variables is not new in the field of critical care. Prognostic models have already shown that it is indeed feasible to create meaningful models using fewer predictors [30,31].

Our initial choices to define variables commonly found in the EHR at ARDS diagnosis was inspired by a recent report from the World Health Organization (WHO) which showed an enormous discrepancy of medical devices availability in a survey across

135 countries [29]. Recognizing this inconsistency is essential for widespread implementation of machine learning models regardless of varying availability of resources across countries and health systems [29]. The aim is to provide clinically relevant information within a defined and short period that might impact the delivery of effective interventions to the right patient population and to as many patients as possible [29].

Recently, Sinha *et al.* developed supervised-learning gradient boosted classifier models trained using 24 or 14 readily available clinical data elements to reproduce biomarker-derived subphenotypes which were previously identified by Calfee *et al.* [17]. Unlike Sinha *et al.*, who predicted previously identified subphenotypes, our study has identified two subphenotypes *de novo* using a small set of clinical variables.

Although the subphenotypes that we have identified and those that have been previously published look similar, our work is distinct from previous studies in several ways. We employed different training and validation datasets as well as a different and well-established unsupervised learning technique. Moreover, we utilized a process for selecting predictors which is not comparable to previous studies. Acknowledging these differences is crucial. It would not be unexpected to assume that these deviations would be relevant enough to produce different subphenotypes [32]. However, the clinical, laboratory characteristics, and the clinical outcomes of our subphenotypes show that they are remarkably similar to subphenotypes found in previous papers, regardless of methodological differences.

At this point it is not possible to go beyond this comparative analysis, as there is no gold standard definition of ARDS subphenotypes [32]. Nonetheless, our work does provide robust evidence that ARDS does indeed have two subphenotypes that can be

BMJ Open

systematically identified, despite major differences in population assessed and methodological approach used compared with previous studies. It also reinforces that we should continue to explore the underlying biological pathways of such subphenotypes to find responders to new or previously tested therapies.

Our study has several strengths. First, it is the largest cohort of patients that has been studied to develop distinct subphenotypes of ARDS patients. Moreover, our validation cohort included patients from the ART trial, allowing us to validate our model in the contemporaneous population of a large international randomized clinical trial in addition to the ARDSnet studies used in other subphenotyping studies. Second, our subphenotyping model was developed exclusively on the training set and then validated across multiple separate datasets. Nevertheless, similar separation in mortality was seen between the two subphenotypes across all trials. Third, we used the K-means algorithm to identify our subphenotypes, and the results obtained with this technique can be easily interpreted by clinicians and implemented in clinical practice. Lastly, this is the first phenotyping study that has used easily available clinical variables to identify ARDS phenotypes de novo, which allows for early identification of these patients in the clinical care at the bedside. Using this algorithm with a small number of routinely collected variables could enable our model to be applied in trials that either retrospectively or prospectively assess interventions targeted to each subphenotype.

This study also has limitations. First, we have developed our models exclusively on patients enrolled in clinical trials. Due to the strict inclusion and exclusion criteria of these clinical trials, the generalizability of these results needs to be evaluated in unselected ARDS populations. Although there are clear clinical and biomarker differences

between the identified subphenotypes, the model's clinical utility needs to be prospectively validated and further investigated. Additionally, our biomarker analysis is limited to those patients in which the data was made publicly available by the study authors, but future collection of biomarker data in a prospective study will allow more robust understanding of the underlying biology and validation of the subphenotype model. Also, K-means clustering does not handle missing data, and no approach was used to impute missing values. However, the extremely low rate of missingness in our study makes this issue less relevant. Lastly, future work should analyze previous trials to identify possible differential treatment responses for the subphenotypes of ARDS patients identified in this study.

CONCLUSIONS

This study confirms the existence of two distinct subphenotypes in ARDS patients using a novel clustering model on routinely collected clinical data. This work may allow for easier identification of ARDS subphenotypes to facilitate implementation of precision clinical trial enrollment and development of targeted therapies in a variety of settings without the added burdens of biomarker evaluation.

uti, nenotypes. .narker evaluation.

DECLARATIONS

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing Interest: AD, MS, FGZ, ABC, ISM, DMP, LNL declare no relevant financial conflicts of interest. RK, EVA, LB, JO, DR and ROD are employees of Endpoint Health, Inc. ASN reported receiving personal fees from Dräger unrelated to the submitted work. **Ethics Approval:** All patients provided informed consent in the original trials. This secondary analysis study was exempt from IRB review because it does not meet the definition of human subject as defined in 45 CFR 46.102. WIRB Work Order #1-1228617-

Availability of data and material: Data from the ARDSnet studies (EDEN, FACTT, ARMA, ALVEOLI) is publicly available from the NHLBI ARDS Network (NHLBI ARDS Network) and data from the ART trial can be requested from study authors.

Author Contributions: AD, RK, EVA, LB participated in study design and analysis, drafted, and revised the manuscript, and are the guarantor of the document. MS, DR, JO, FGZ, ABC, ISM, DMP, LNL, and ASN participated in interpretation of data analysis, drafted the manuscript, and revised it for critically important intellectual content. ROD participated in the study design, analysis, interpretation of data analysis, and final revision of the manuscript content.

Twitter: @msiuba, @f_g_zampieri, @rod_deliberato, @a_serpaneto, @l_bulgarelli, @endpointhealth

REFERENCES

- 1 ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, *et al.* Acute respiratory distress syndrome: the Berlin Definition. *JAMA* 2012;**307**:2526–33. doi:10.1001/jama.2012.5669
- 2 Thille AW, Esteban A, Fernández-Segoviano P, *et al.* Comparison of the Berlin Definition for Acute Respiratory Distress Syndrome with Autopsy. *Am J Respir Crit Care Med* 2013;**187**:761–7. doi:10.1164/rccm.201211-1981OC
- 3 Reilly J, Calfee C, Christie J. Acute Respiratory Distress Syndrome Phenotypes. *Semin Respir Crit Care Med* 2019;**40**:019–30. doi:10.1055/s-0039-1684049
- 4 Reddy K, Sinha P, O'Kane CM, *et al.* Subphenotypes in critical care: translation into clinical practice. *The Lancet Respiratory Medicine* 2020;**8**:631–43. doi:10.1016/S2213-2600(20)30124-7
- 5 Shankar-Hari M, Fan E, Ferguson ND. Acute respiratory distress syndrome (ARDS) phenotyping. *Intensive Care Med* 2019;**45**:516–9. doi:10.1007/s00134-018-5480-6
- 6 Calfee CS, Delucchi K, Parsons PE, *et al.* Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. *The Lancet Respiratory Medicine* 2014;**2**:611–20. doi:10.1016/S2213-2600(14)70097-9
- 7 Famous KR, Delucchi K, Ware LB, *et al.* Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. *Am J Respir Crit Care Med* 2017;**195**:331–8. doi:10.1164/rccm.201603-0645OC
- 8 Calfee CS, Delucchi KL, Sinha P, *et al.* Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. *The Lancet Respiratory Medicine* 2018;**6**:691–8. doi:10.1016/S2213-2600(18)30177-2
- 9 for the NHLBI ARDS Network, Sinha P, Delucchi KL, et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med 2018;44:1859–69. doi:10.1007/s00134-018-5378-3
- 10 Bos LD, Schouten LR, van Vught LA, *et al.* Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. *Thorax* 2017;**72**:876–83. doi:10.1136/thoraxjnl-2016-209719
- 11 Ferguson ND, Fan E, Camporota L, *et al.* The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. *Intensive Care Med* 2012;**38**:1573–82. doi:10.1007/s00134-012-2682-1

12 Bellani G, Laffey JG, Pham T, *et al.* Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. *JAMA* 2016;**315**:788. doi:10.1001/jama.2016.0291

- 13 Gattinoni L, Vassalli F, Romitti F. Benefits and risks of the P/F approach. *Intensive Care Med* 2018;**44**:2245–7. doi:10.1007/s00134-018-5413-4
- 14 Matthay MA, Arabi YM, Siegel ER, *et al.* Phenotypes and personalized medicine in the acute respiratory distress syndrome. *Intensive Care Med* 2020;**46**:2136–52. doi:10.1007/s00134-020-06296-9
- 15 Shankar-Hari M, Rubenfeld GD. Population enrichment for critical care trials: phenotypes and differential outcomes. *Current Opinion in Critical Care* 2019;**25**:489–97. doi:10.1097/MCC.0000000000641
- 16 Sinha P, Delucchi KL, McAuley DF, et al. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. *The Lancet Respiratory Medicine* 2020;8:247–57. doi:10.1016/S2213-2600(19)30369-8
- 17 Sinha P, Churpek MM, Calfee CS. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. *Am J Respir Crit Care Med* 2020;**202**:996–1004. doi:10.1164/rccm.202002-0347OC
- 18 Kitsios GD, Yang L, Manatakis DV, *et al.* Host-Response Subphenotypes Offer Prognostic Enrichment in Patients With or at Risk for Acute Respiratory Distress Syndrome*: *Critical Care Medicine* 2019;**47**:1724–34. doi:10.1097/CCM.000000000004018
- 19 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. *N Engl J Med* 2000;**342**:1301–8. doi:10.1056/NEJM200005043421801
- 20 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. *N Engl J Med* 2004;**351**:327–36. doi:10.1056/NEJMoa032193
- 21 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. *N Engl J Med* 2006;**354**:2213–24. doi:10.1056/NEJMoa061895
- 22 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Rice TW, Wheeler AP, *et al.* Initial Trophic vs Full

1 2	
3	
4 5	
6	
7 8	
9	
11	
12 13	
14	
15 16	
17	
18 19	
20	
22	
23 24	
25	
26 27	
28	
30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
47 48	
49	
50 51	
52	
55 54	
55 56	
57	
58 59	
60	

Enteral Feeding in Patients With Acute Lung Injury: The EDEN Randomized Trial. *JAMA: The Journal of the American Medical Association* 2012;**307**:795–803. doi:10.1001/jama.2012.137

- 23 The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Rosuvastatin for Sepsis-Associated Acute Respiratory Distress Syndrome. *N Engl J Med* 2014;**370**:2191–200. doi:10.1056/NEJMoa1401520
- 24 Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, *et al.* Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. *JAMA* 2017;**318**:1335. doi:10.1001/jama.2017.14171
- 25 Yehya N, Harhay MO, Curley MAQ, et al. Reappraisal of Ventilator-Free Days in Critical Care Research. Am J Respir Crit Care Med 2019;200:828–36. doi:10.1164/rccm.201810-2050CP
- 26 Castela Forte J, Perner A, van der Horst ICC. The use of clustering algorithms in critical care research to unravel patient heterogeneity. *Intensive Care Med* 2019;**45**:1025–8. doi:10.1007/s00134-019-05631-z
- 27 Ketchen DJ, Shook CL. The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique. *Strategic Management Journal* 1996;**17**:441–58. doi:https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
- 28 Caliński T, Harabasz J. A dendrite method for cluster analysis. *Communications in Statistics* 1974;**3**:1–27. doi:10.1080/03610927408827101
- 29 Bulgarelli L, Deliberato RO, Johnson AEW. Prediction on critically ill patients: The role of "big data." *Journal of Critical Care* 2020;**60**:64–8. doi:10.1016/j.jcrc.2020.07.017
- 30 Johnson AEW, Kramer AA, Clifford GD. A New Severity of Illness Scale Using a Subset of Acute Physiology and Chronic Health Evaluation Data Elements Shows Comparable Predictive Accuracy*: *Critical Care Medicine* 2013;**41**:1711–8. doi:10.1097/CCM.0b013e31828a24fe
- 31 Deliberato RO, Escudero GG, Bulgarelli L, *et al.* SEVERITAS: An externally validated mortality prediction for critically ill patients in low and middle-income countries. *International Journal of Medical Informatics* 2019;**131**:103959. doi:10.1016/j.ijmedinf.2019.103959
- 32 DeMerle KM, Angus DC, Baillie JK, *et al.* Sepsis Subclasses: A Framework for Development and Interpretation. *Crit Care Med* Published Online First: 15 February 2021. doi:10.1097/CCM.00000000004842

FIGURES LEGENDS

Figure 1 - Differences of the Variables Included in the Cluster Algorithm Among Clusters

Square symbols represent the study with the highest mean z score for each phenotype; Circles represent the study with the lowest mean z score for each phenotype. The colored bands are exclusively to help visualize the opposite trends of the variables on the different clusters; Art.pH: arterial pH; Bicarb: bicarbonate; MAP: mean arterial pressure; Creat: creatinine; Resp.Rate: respiratory rate

Figure 2 - Heat Map of the Biomarkers Available for the ARMA and ALVEOLI Trials For better visualization and due to difference in scales, the values were log-normalized and z-scored. Subphenotypes A and B are shown separately to highlight their differences.

Figure 1 - Differences of the Variables Included in the Cluster Algorithm Among Clusters 812x457mm (72 x 72 DPI)

Figure 2 - Heat Map of the Biomarkers Available for the ARMA and ALVEOLI Trials

812x457mm (72 x 72 DPI)

Identification of Acute Respiratory Distress Syndrome subphenotypes de novo using routine clinical data: a retrospective analysis of ARDS clinical trials

ONLINE SUPPLEMENT

Additional Methods

Number of clusters

The optimal number of clusters was chosen according to two criteria: (1) Elbow method, by selecting a number of clusters that if further increased will result in only a small increase in performance and possibly cause overfit, hence this number is commonly referenced as to being in the "elbow" of the curve (**eFigure 1**); and (2) Calinski-Harabasz index, consisting of the ratio of *within* to *between* cluster dispersion; higher scores are indication of dense and well separated clusters (**e-Figure 1**).

Ventilator-free days

Ventilator free days for ALVEOLI, EDEN, FACTT, and SAILS were calculated according to the methods outlined by Yehya et al (1). Briefly, patients who died at any time in the 28 days were assigned 0 ventilator-free days. For survivors, the number of ventilator-free days was calculated based on the date of the final successful extubation; reintubations before the final extubation were not counted toward ventilator-free days. All days after a patient was discharged home up to the 28th day with unassisted breathing were assumed to be ventilator-free days.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/ 10	
4ŏ ⊿0	
50	
51	
52	
53	
54	
55	
56	

60

	EDEN	FACTT
	(<i>n</i> = 1000)	(<i>n</i> = 999)
Age	0.0	0.0
Gender	0.0	0.0
Arterial pH	2.8	3.9
Bicarbonate	0.2	1.5
Bilirubin	8.1	26.8
Creatinine	0.0	0.0
FiO ₂	0.8	0.6
Heart Rate	0.0	0.1
Height	0.1	0.9
Mean Arterial Pressure	12.1	0.8
PaCO ₂	2.8	3.9
PaO ₂	0.2	4.0
Positive end-expiratory pressure	1.0	0.3
Platelets	8.1	6.0
Plateau pressure	32.3	30.9
Respiratory rate	0.6	0.4
Tidal volume	15.3	12.1
Tidal volume per PBW	15.4	12.8

aTable 1 - Percentage of missing data in the routinely collected

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
22	
∠_) ∧ ^	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
50	
3/	
38	
39	
40	
41	
42	
43	
ر ب	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
57	

eTable 2 - Plausible	physiological	ranges	for c	linical
measurements, close	st to time of ra	andomiz	ation	

Variables	Lower Limit	Upper Limit
Age (years)	16	89
Arterial pH	6.65	7.80
Bicarbonate (mEq/L)	1	50
Bilirubin (mg/dL)	0.1	50
Creatinine (mg/dL)	0.1	20
FiO2	0.21	1
Heart Rate (beats per minute)	20	300
Height (cm)	120	220
Mean arterial pressure (mmHg)	10	400
PaCO2 (mmHg)	20	120
PaO2 / FiO2	0	500
PaO2 (mmHg)	30	500
PEEP (cm H20)	0	60
Platelets (thousands)	1	1000
Plateau Pressure (cm H20)	10	50
Respiratory Rate (resp per minute)	1	100
Tidal Volume (cm H20)	100	1400

	Age	рН	HCO ₃	Bili	Creat	FiO ₂	Gender	HR	MAP	PaCO ₂	PaO₂	PEEP	Plat	RR	V⊤/PBW
Age	1.00	0.06	-0.04	-0.02	0.11	-0.13	0.00	-0.27	-0.12	-0.11	-0.06	-0.22	0.00	-0.11	0.03
эΗ	0.06	1.00	0.40	-0.04	-0.16	-0.26	-0.01	-0.18	0.15	-0.39	0.00	-0.20	0.05	-0.21	0.07
ICO ₃	-0.04	0.40	1.00	-0.08	-0.28	-0.05	-0.02	-0.18	0.08	0.44	0.02	-0.05	0.15	-0.24	-0.07
ili	-0.02	-0.04	-0.08	1.00	0.06	-0.03	-0.04	0.01	-0.04	-0.01	0.03	0.01	-0.20	0.04	-0.01
reat	0.11	-0.16	-0.28	0.06	1.00	-0.04	-0.08	-0.04	-0.01	-0.14	0.00	-0.06	-0.12	0.02	0.00
iO2	-0.13	-0.26	-0.05	-0.03	-0.04	1.00	0.03	0.13	-0.06	0.18	0.11	0.49	0.06	0.21	-0.02
Bender	0.00	-0.01	-0.02	-0.04	-0.08	0.03	1.00	-0.03	-0.05	-0.04	-0.06	0.02	0.09	0.09	0.19
IR	-0.27	-0.18	-0.18	0.01	-0.04	0.13	-0.03	1.00	-0.02	0.03	-0.04	0.12	-0.05	0.22	0.08
IAP	-0.12	0.15	0.08	-0.04	-0.01	-0.06	-0.05	-0.02	1.00	-0.03	0.01	-0.01	0.06	-0.04	0.00
PaCO ₂	-0.11	-0.39	0.44	-0.01	-0.14	0.18	-0.04	0.03	-0.03	1.00	-0.04	0.17	0.11	-0.05	-0.17
aO ₂	-0.06	0.00	0.02	0.03	0.00	0.11	-0.06	-0.04	0.01	-0.04	1.00	-0.09	-0.04	-0.09	0.03
EEP	-0.22	-0.20	-0.05	0.01	-0.06	0.49	0.02	0.12	-0.01	0.17	-0.09	1.00	0.00	0.33	-0.15
lat	0.00	0.05	0.15	-0.20	-0.12	0.06	0.09	-0.05	0.06	0.11	-0.04	0.00	1.00	-0.05	0.03
R	-0.11	-0.21	-0.24	0.04	0.02	0.21	0.09	0.22	-0.04	-0.05	-0.09	0.33	-0.05	1.00	-0.31
/ _⊤ /PBW	0.03	0.07	-0.07	-0.01	0.00	-0.02	0.19	0.08	0.00	-0.17	0.03	-0.15	0.03	-0.31	1.00

Data are Pearson correlation coefficients.

Abbreviations: Bili denotes bilirubin, Creat is creatinine, HR is heart rate, MAP is mean arterial pressure, PEEP is positive end-expiratory pressure, Plat is platelets, RR is respiratory rate and VT/PBW is tidal volume per predicted body weight.

		FACTT trial (<i>n</i> = 998)	EDEN trial (<i>n</i> = 1000)					
Model	Patients scored*	Mortality difference among clusters	Model	Patients scored*	Mortality difference among clusters			
6	93.5%	13.1%	7	77.7%	8.1%			
2	57.4%	12.5%	8	77.7%	8.1%			
5	65.5%	12.2%	6	84.1%	6.7%			
8	70.2%	11.6%	5	71.7%	6.5%			
7	70.2%	11.4%	9	84.7%	6.1%			
1	57.4%	11.2%	3	77.7%	4.4%			
4	70.2%	10.6%	4	77.7%	4.0%			
9	93.5%	10.4%	2	57.7%	3.9%			
3	70.2%	10.1%	10	87.3%	2.8%			
10	98.8%	3.9%	1	57.7%	0.1%			

eTable 4 - Absolute 60-day Mortality Difference Among Clusters per Trial and Model

* Number of patients without any missing data, allowing their assignment to one of the clusters.

Madal	Demo	ographics	Arte	rial Blood	Gases		Laborato	ory Values		Vi	tal Sign	s	Ven	tilator Va	ariables
wodei	Age	Gender	рН	PaO ₂	PaCO ₂	Creat	Bili	HCO ₃	Plat	MAP	RR	HR	FiO2	PEEP	V _T /PBW
1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	Х	Х	Х	Х	Х	Х	Х	Х		Х	х	Х	Х		
4	Х	Х	Х	Х		Х	Х	Х		Х	х	Х	Х		
5			Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х		
6	Х	Х	Х	X		Х		Х		Х	Х	Х	Х		
7			Х	X	Х	Х	Х	Х		х	х	Х	Х		
8			Х	x		Х	Х	Х		Х	х	Х	Х		
9			Х	x	Х			Х		Х	х	Х			
10	Х	Х								Х	х	Х			

eTable 5 - List of variables in each model assessed

Abbreviations: Bili denotes bilirubin, Creat is creatinine, HR is heart rate, MAP is mean arterial pressure, PEEP is positive end-expiratory pressure, Plat is platelets, RR is respiratory rate and V_T/PBW is tidal volume per predicted body weight.

eTable 6 - Baseline Characteristics and Clinical Outcomes According to the Clusters and Two Trials in the Validation Set

		ALVEOLI			ARMA	
	Cluster 1 (<i>n</i> = 336)	Cluster 2 (<i>n</i> = 157)	<i>p v</i> alue	Cluster 1 (<i>n</i> = 279)	Cluster 2 (<i>n</i> = 100)	<i>p v</i> alue
Age, year*	53.0 (39.0 - 66.2)	46.0 (37.0 - 60.0)	0.007	49.0 (37.0 - 64.0)	47.5 (36.0 - 61.0)	0.180
Male gender - no. (%)	188 (56.0)	86 (54.8)	0.883	169 (60.6)	61 (61.0)	0.965
Body mass index, kg/m ²	27.0 (22.9 - 31.1)	25.2 (21.7 - 30.2)	0.050	25.8 (23.0 - 30.2)	24.4 (21.5 - 29.7)	0.057
Caucasian - no. (%)	263 (78.3)	102 (65.0)	0.002	220 (78.9)	65 (65.0)	0.009
Etiology - no. (%)			0.001			< 0.001
Pneumonia	130 (38.7)	66 (42.0)		83 (29.7)	30 (30.0)	
Sepsis	63 (18.8)	50 (31.8)		64 (22.9)	43 (43.0)	
Aspiration	55 (16.4)	19 (12.1)		44 (15.8)	14 (14.0)	
Trauma	33 (9.8)	5 (3.2)		43 (15.4)	4 (4.0)	
Other	55 (16.4)	17 (10.8)		45 (16.1)	9 (9.0)	
Prognostic scores						
APACHE III	71. (59.0 - 83.0)	93.0 (80.0 - 110.0)	< 0.001	77.0 (66.0 - 90.5)	97.0 (81.8 (110.0)	< 0.001
Use of vasopressor - no. (%)	65 (20.1)	80 (51.3)	< 0.001	77 (27.6)	52 (52.5)	< 0.001
Vital signs						
Temperature, °C	37.6 (37.1 - 38.2)	37.7 (36.9 - 38.3)	0.778	37.6 (37.1 - 38.1)	37.6 (36.8 - 38.4)	0.803
Heart rate, bpm	97.5 (83.0 - 109)	111.0 (97.0 - 126)	< 0.001	101.0 (89.0 - 112.5)	118 (105.0 - 128.0)	< 0.001
Mean arterial Pressure, mmHg	77.3 (77.0 - 87.3)	73.3 (65.0 - 80.3)	< 0.001	78.0 (70.7 - 88.0)	70.5 (64.9 - 80.4)	< 0.001
SpO ₂ , %	96 (94 - 97)	95 (92 - 97)	0.005	95 (93 - 98)	95.5 (93 - 97)	0.799
Urine output in 24 hours, mL	2065 (1355 - 3255)	1433 (569 - 2189)	< 0.001	2100 (1375 - 3096)	1525 (816 - 2650)	0.001
Laboratory tests						
Hematocrit, %	31.0 (28.0 - 34.0)	31.0 (27.0 - 35.0)	0.617	30.0 (28.0 - 33.0)	31.0 (28.0 - 34.0)	0.299
White blood cell count, 10 ⁹ /L	11.7 (8.1 - 15.3)	10.7 (6.4 - 15.8)	0.166	11.9 (7.7 - 16.7)	9.8 (5.4 - 16.7)	0.057
Platelets, 10 ⁹ /L	173 (94 - 266)	141 (57 - 214)	0.001	139 (80 - 212)	125 (72 - 196)	0.260
Creatinine, mg/dL	0.9 (0.7 - 1.3)	1.5 (0.9 - 3.0)	< 0.001	1.0 (0.7 - 1.4)	1.8 (1.2 - 3.2)	< 0.001
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.9 (0.4 - 1.8)	0.289	1.0 (0.6 - 2.1)	1.1 (0.7 - 2.7)	0.106
Arterial blood gas						
pH*	7.42 (7.38 - 7.45)	7.31 (7.24 - 7.36)	< 0.001	7.42 (7.38 - 7.47)	7.33 (7.28 - 7.37)	< 0.001
PaO ₂ , mmHg	78 (68 - 93)	74 (65 - 92)	0.082	75 (66 - 91)	81 (68 - 96)	0.106
PaO_2 / FiO_2	149 (109 - 192)	103 (74 - 136)	< 0.001	118 (83 - 160)	99 (68 - 137)	0.006

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3	9 of 49		BMJ Open				
1	PaCO ₂ , mmHg	38 (34 - 43)	36 (31 - 42)	0.046	37 (31 - 41)	34 (28.8 - 39.2)	0.003
2	Bicarbonate, mmol/L	24 (21 - 27)	17 (13 - 20)	< 0.001	23 (20 - 26)	16 (13 - 19)	< 0.001
3	Ventilatory variables						
4	Tidal volume, mL	500 (437 - 600)	480 (400 - 572)	0.002	700 (600 - 750)	700 (550 - 700)	0.198
5	Per PBW, mL/kg PBW	8.0 (6.9 - 9.5)	7.4 (6.2 - 9.2)	0.006	10.1 (9.2 - 11.1)	10.6 (9.0 - 11.4)	0.383
7	Plateau pressure, cmH ₂ O	25.0 (21.0 - 30.0)	29.0 (24.0 - 33.0)	< 0.001	29.0 (24.0 - 34.0)	31.0 (27.0 - 36.0)	0.018
8	PEEP, cmH₂O	10 (5 - 10)	10 (8 - 14)	< 0.001	8 (5 - 10)	10 (5 - 12)	0.150
9 10	Respiratory rate, breaths/min	20 (15 - 25)	30 (24 - 35)	< 0.001	18 (14 - 21)	24 (18.8 - 28)	< 0.001
11	FiO ₂	0.50 (0.44 - 0.65)	0.75 (0.60 - 1.00)	< 0.001	0.60 (0.50 - 0.70)	0.70 (0.59 - 0.96)	< 0.001

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, VT/PBW denotes tidal volume per predicted body weight.

peer teriew only

	eTable 7 - Baseline	Characteristics and Clinica	I Outcomes According to t	the Clusters and Two	Trials in the Validation Set
--	---------------------	------------------------------------	---------------------------	----------------------	------------------------------

		SAILS			ART	
	Cluster 1 (<i>n</i> = 319)	Cluster 2 (<i>n</i> = 188)	<i>p v</i> alue	Cluster 1 (<i>n</i> = 211)	Cluster 2 (<i>n</i> = 298)	<i>p v</i> alue
Age, year*	57.0 (46.0 - 67.0)	53.5 (39.0 - 65.0)	0.035	54.0 (37.0 - 65.0)	50.0 (35.2 - 61.0)	0.075
Male gender - no. (%)	150 (47.0)	100 (53.2)	0.211	136 (64.5)	181 (60.7)	0.448
Body mass index, kg/m ²	28.5 (23.9 - 34.6)	29.8 (23.2 - 35.1)	0.903	28.8 (24.6 - 35.6)	28.4 (25.0 - 31.7)	0.367
Caucasian - no. (%)	250 (78.4)	140 (74.5)	0.369			
Etiology - no. (%)			0.709			0.052
Pneumonia	228 (71.5)	127 (67.6)		113 (53.6)	171 (57.4)	
Sepsis	63 (19.7)	39 (20.7)		38 (18.0)	59 (19.8)	
Aspiration	19 (6.0)	15 (8.0)		13 (6.2)	16 (5.4)	
Trauma	3 (0.9)	1 (0.5)		10 (4.7)	2 (0.7)	
Other	6 (1.9)	6 (3.2)		37 (17.5)	50 (16.8)	
Prognostic scores						
APACHE III	70.0 (56.0 - 84.0)	92.0 (75.0 - 105.8)	< 0.001			
SAPS III		40		62 (50 - 71)	66 (53 - 75)	0.010
Use of vasopressor - no. (%)	150 (47.8)	142 (78.5)	< 0.001	130 (61.6)	242 (81.2)	< 0.001
Vital signs						
Temperature, °C	37.2 (36.7 - 37.8)	37.3 (36.7 - 38.0)	0.346			
Heart rate, bpm	91.0 (80.5 - 103.0)	102.0 (88.8 - 117.0)	< 0.001	90.0 (73.0 - 103.0)	112.0 (97.2 - 126.0)	< 0.001
Mean arterial Pressure, mmHg	78.0 (69.5 - 88.0)	70.0 (63.0 - 78.)	< 0.001	80.0 (73.5 - 89.0)	75.0 (70.0 - 83.0)	< 0.001
SpO ₂ , %	96 (95 - 99)	96 (93 - 99)	0.270			
Urine output in 24 hours, mL	1570 (852 - 2383)	920 (350 - 1665)	< 0.001			
Laboratory tests						
Hematocrit, %	31 (27 - 35)	31 (28 - 37)	0.142			
White blood cell count, 10 ⁹ /L	13.6 (8.5 - 18.1)	15.4 (9.8 - 23.3)	0.009			
Platelets, 10 ⁹ /L	164 (96 - 238)	131 (80 - 223)	0.032	177 (120 - 292)	169 (90 - 256)	0.048
Creatinine, mg/dL	1.0 (0.7 - 1.5)	1.4 (0.9 - 2.6)	< 0.001	1.0 (0.7 - 1.5)	1.7 (1.0 - 2.8)	< 0.001
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.8 (0.5 - 1.6)	0.630	0.6 (0.4 - 1.2)	0.9 (0.4 - 1.7)	0.002
Arterial blood gas						
pH*	7.39 (7.35 - 7.44)	7.31 (7.24 - 7.35)	< 0.001	7.4 (7.3 - 7.4)	7.2 (7.2 - 7.3)	< 0.001
PaO ₂ , mmHg	82 (68 - 101)	86 (72 - 111.2)	0.112	118 (82 - 158)	104 (78 - 152)	0.065
č	. ,	· /		· · · · · ·		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PaO ₂ / FiO ₂	139 (98 - 195)	107 (74 - 159)	< 0.001	118 (82 - 158)	104 (78 - 152)	0.065
PaCO ₂ , mmHg	38 (34 - 45)	38 (32 - 44)	0.423	46 (41 - 56)	53 (42 - 65)	< 0.001
Bicarbonate, mmol/L	23 (20 - 26)	17 (14 - 21)	< 0.001	25.2 (22.5 - 28.8)	20.6 (17.8 - 23.4)	< 0.001
Ventilatory variables						
Tidal volume, mL	420 (360 - 480)	400 (340 - 450)	0.016	360 (320 - 400)	350 (300 - 397.8)	0.008
Per PBW, mL/kg PBW	6.4 (6.0 - 7.3)	6.1 (5.9 - 7.0)	0.030	6.0 (5.3 - 6.1)	5.9 (5.1 - 6.1)	0.034
Plateau pressure, cmH ₂ O	22.0 (18.0 - 27.0)	25.0 (20.0 - 29.0)	0.003	24.0 (21.0 - 28.0)	27.0 (23.0 - 30.0)	< 0.001
PEEP, cmH ₂ O	8 (5 - 10)	10 (8 - 13)	0.001	10 (10 - 14)	12 (10 - 14)	< 0.001
Respiratory rate, breaths/min	23 (19 - 27)	30 (24 - 35)	< 0.001	24 (20 - 28)	30 (24 - 34)	< 0.001
FiO ₂	0.50 (0.40 - 0.60)	0.70 (0.50 - 0.90)	< 0.001	0.70 (0.60 - 0.80)	0.80 (0.70 - 1.00)	< 0.001

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

Page 41 of 49

Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, V_T/PBW denotes tidal volume per predicted body weight...

1 eTable 8 - Biomarker levels by study and cluster

2		ARMA				ALVEOLI		
3 4	Subphenotype A (<i>n</i> = 279)	Subphenotype B (<i>n</i> = 100)	Median Difference (95% Cl)	p value	Subphenotype A (<i>n</i> = 336)	Subphenotype B (<i>n</i> = 157)	Median Difference (95% CI)	p value
6 ICAM-1	654.0 (399.0 - 959.4)	888.0 (550.0 - 1365.3)	234 (60.3 to 407.8)	0.002	847.9 (585.7 - 1227.1)	1070.4 (748.2 - 1588.8)	219.4 (90.4 to 348.4)	< 0.001
7 IL-6	214.0 (91.8 - 553.5)	966.0 (291.0 - 2200.0)	749.1 (589.9 to 908.2)	< 0.001	182.5 (85.5 - 435.2)	775.0 (148.0 - 2846.5)	592 (515.5 to 668.6)	< 0.001
8 PAI-1	65.3 (37.8 - 109.5)	101.7 (50.8 - 291.6)	41 (18.3 to 63.7)	0.001	Not assessed	Not assessed		
9 IL-8	46.0 (2.0 - 91.0)	106.9 (43.8 - 281.4)	60.9 (35.6 to 86.2)	< 0.001	Not assessed	Not assessed		
10 11 ^{IL-10}	16.0 (0.0 - 40.3)	47.9 (0.0 - 120.7)	31.9 (20.2 to 43.6)	< 0.001	Not assessed	Not assessed		
12 ^{TNFR-I}	2604.0 (1950.0 - 3777.0)	6897.0 (3622.5 - 12281.5)	4293 (3323.6 to 5262.4)	< 0.001	Not assessed	Not assessed		
13 TNFR-II	6581.0 (4958.0 - 9658.0)	18611.0 (12262.5 - 35652.0)	12030 (9577.5 to 14482.5)	< 0.001	Not assessed	Not assessed		
¹⁴ SPA	29.0 (11.8 - 68.0)	25.0 (10.5 - 40.0)	-4 (-19.9 to 11.9)	0.398	Not assessed	Not assessed		
15 16 ^{SPD}	76.0 (36.2 - 145.2)	59.0 (30.0 - 125.0)	-18 (-52.6 to 16.6)	0.254	Not assessed	Not assessed		
1 <u>7</u> VW	308.0 (165.5 - 431.0)	384.0 (246.0 - 549.0)	76 (-26.5 to 178.5)	0.045	Not assessed	Not assessed		

18 Data are median (quartile 25th - quartile 75th).

19 Abbreviations: 95% CI denotes 95% confidence interval, ICAM-1 is intercellular adhesion molecule-1, IL-6 is interleukin-6, PAI-1 is plasminogen activator inhibitor-1, IL-8 is interleukin-8, IL-10 is interleukin-10, TNFR-201 is tumor necrosis factor receptor 1, TNFR-II is tumor necrosis factor II, SPA is surfact protein A, SPD is surfact Protein D and VW is Von Willebrand factor.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eTable 9 - Percentage of missingness in biomarker levels measured on da	y of
randomization, on ARMA and ALVEOLI trials for patients with an assig	ned
subphenotype	

Piomarkar	AR (<i>n</i> =	8MA 379)	ALVEOLI (<i>n</i> = 493)		
Biolilai ker	Subphenotype A	Subphenotype B	Subphenotype A	Subphenotype B	
ICAM-1	43%	31%	4%	3%	
IL-6	41%	33%	4%	4%	
PAI-1	42%	32%	Not assessed	Not assessed	
IL-8	41%	33%	Not assessed	Not assessed	
IL-10	42%	33%	Not assessed	Not assessed	
TNFR-I	68%	61%	Not assessed	Not assessed	
TNFR-II	68%	61%	Not assessed	Not assessed	
SPA	67%	61%	Not assessed	Not assessed	
SPD	67%	61%	Not assessed	Not assessed	
VW	67%	61%	Not assessed	Not assessed	

Abbreviations: ICAM-1 is intercellular adhesion molecule-1, IL-6 is interleukin-6, PAI-1 is plasminogen activator inhibitor-1, IL-8 is interleukin-8, IL-10 is interleukin-10, TNFR-I is tumor necrosis factor receptor 1, TNFR-II is tumor necrosis factor II, SPA is surfact protein A, SPD is surfact Protein D and VW is Von Willebrand factor.

BMJ Open

Abbreviations: Art. pH is arterial pH, Bicarb is bicarbonate, MAP is mean arterial pressure, Creat is creatinine and Resp. Rate is respiratory rate

Reference:

 Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of Ventilator-Free Days in Critical Care Research. Am J Respir Crit Care Med.2019 Oct 1;200(7):828-836. doi: 10.1164/rccm.201810-2050CP.

tor occr terier only

Reporting checklist for prediction model development/validation.

Based on the TRIPOD guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the TRIPODreporting guidelines, and cite them as:

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.

		Page
	Reporting Item	Number
Title	4	
<u>#1</u> Abstract	Identify the study as developing and / or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
<u>#2</u>	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2
Introduction		
<u>#3a</u>	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	6
<u>#3b</u>	Specify the objectives, including whether the study describes the	6
For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

development or validation of the model or both.

2 3	Methods			
4 5 6 7 8 9	Source of data	<u>#4a</u>	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	8
10 11 12	Source of data	<u>#4b</u>	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	8
13 14 15 16	Participants	<u>#5a</u>	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	8
17 18	Participants	<u>#5b</u>	Describe eligibility criteria for participants.	8
19 20 21	Participants	<u>#5c</u>	Give details of treatments received, if relevant	8
22 23 24 25	Outcome	<u>#6a</u>	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	9
26 27	Outcome	<u>#6b</u>	Report any actions to blind assessment of the outcome to be predicted.	N/A
28 29 30 31 32	Predictors	<u>#7a</u>	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured	8
33 34 35 36	Predictors	<u>#7b</u>	Report any actions to blind assessment of predictors for the outcome and other predictors.	N/A
37 38 39	Sample size	<u>#8</u>	Explain how the study size was arrived at.	8
40 41 42 43 44	Missing data	<u>#9</u>	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	9
45 46	Statistical analysis	<u>#10a</u>	If you are developing a prediction model describe how predictors were	N/A
47 48	methods		handled in the analyses.	
49 50	Statistical analysis	<u>#10b</u>	If you are developing a prediction model, specify type of model, all	N/A
51 52 53	methods		model-building procedures (including any predictor selection), and method for internal validation.	
54 55	Statistical analysis	<u>#10c</u>	If you are validating a prediction model, describe how the predictions	N/A
56 57	methods		were calculated.	
58 59 60	Statistical analysis	<u>#10d</u> For p	Specify all measures used to assess model performance and, if relevant, beer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	10

Page 49 of 49

BMJ Open

1	methods		to compare multiple models.	
2 3 4 5	Statistical analysis methods	<u>#10e</u>	If you are validating a prediction model, describe any model updating (e.g., recalibration) arising from the validation, if done	N/A
6 7	Risk groups	<u>#11</u>	Provide details on how risk groups were created, if done.	11
8 9 10 11	Development vs. validation	<u>#12</u>	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	10
12 13	Results			
14 15 16 17 18	Participants	<u>#13a</u>	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	12
20 21 22 23 24	Participants	<u>#13b</u>	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	12
25 26 27 28 29	Participants	<u>#13c</u>	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	12
30 31 32 33	Model development	<u>#14a</u>	If developing a model, specify the number of participants and outcome events in each analysis.	12
34 35 36 37	Model development	<u>#14b</u>	If developing a model, report the unadjusted association, if calculated between each candidate predictor and outcome.	N/A
38 39 40 41 42	Model specification	<u>#15a</u>	If developing a model, present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	N/A
43 44 45 46	Model specification	<u>#15b</u>	If developing a prediction model, explain how to the use it.	N/A
47 48 49 50	Model performance	<u>#16</u>	Report performance measures (with CIs) for the prediction model.	14
50 51 52 53 54	Model-updating	<u>#17</u>	If validating a model, report the results from any model updating, if done (i.e., model specification, model performance).	N/A
55 56	Discussion			
57 58 59 60	Limitations	<u>#18</u> For p	Discuss any limitations of the study (such as nonrepresentative sample,	19

				5
			few events per predictor, missing data).	
Inter	rpretation	<u>#19a</u>	For validation, discuss the results with reference to performance in the development data, and any other validation data	17
Inte	rpretation	<u>#19b</u>	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	17
Imp	lications	<u>#20</u>	Discuss the potential clinical use of the model and implications for future research	20
Oth	er			
info	rmation			
Supj info	plementary rmation	<u>#21</u>	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	22
Fun	ding	<u>#22</u>	Give the source of funding and the role of the funders for the present study.	22
The	TRIPOD check	list is d	istributed under the terms of the Creative Commons Attribution License CC-BV	
This	checklist was c	omplet	ed on 07 May 2021 using https://www.goodreports.org/ a tool made by the	
EOI	JATOR Networl	k in col	laboration with Penelope ai	

BMJ Open

Identification of Acute Respiratory Distress Syndrome subphenotypes denovo using routine clinical data: a retrospective analysis of ARDS clinical trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-053297.R2
Article Type:	Original research
Date Submitted by the Author:	29-Nov-2021
Complete List of Authors:	Duggal, Abhijit ; Cleveland Clinic, Department of Critical Care Medicine Kast, Rachel; Endpoint Health Inc, Department of Clinical Data Science Van Ark, Emily; Endpoint Health Inc, Department of Clinical Data Science Bulgarelli, Lucas; Endpoint Health Inc, Department of Clinical Data Science Siuba, Matthew T.; Cleveland Clinic, Department of Critical Care Medicine Osborn, Jeff; Endpoint Health Inc, Department of Clinical Data Science Rey, Diego; Endpoint Health Inc, Department of Clinical Data Science Zampieri, Fernando; HCor Research Institute Cavalcanti, Alexandre ; HCor Research Institute Maia, Israel; Hospital do Coracao Paisani, Denise M; HCor Research Institute Laranjeira, Ligia N; HCor Research Institute Serpa Neto, Ary; Monash University, Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine,; Hospital Israelita Albert Einstein, Critical Care Medicine
	Data Science
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Respiratory medicine
Keywords:	Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Adult intensive & critical care < ANAESTHETICS, RESPIRATORY MEDICINE (see Thoracic Medicine)

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Identification of Acute Respiratory Distress Syndrome subphenotypes de novo using routine clinical data: a retrospective analysis of ARDS clinical trials

Abhijit Duggal MD^{1‡}, Rachel Kast PhD^{2‡}, Emily Van Ark PhD^{2‡}, Lucas Bulgarelli BSc^{2‡}, Matthew T. Siuba DO¹, Jeff Osborn², Diego Rey PhD², Fernando G Zampieri MD PhD³, Alexandre B Cavalcanti MD PhD³, Israel S Maia MD³, Denise M Paisani PhD³, Ligia N Laranjeira³, Ary Serpa Neto MD MSc PhD,^{4,5,6,7,8} Rodrigo Octávio Deliberato MD PhD²

[‡] Authors contributed equally

1. Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA.

2. Department of Clinical Data Science, Endpoint Health Inc, Palo Alto, California, USA.

3. HCor Research Institute, São Paulo, Brazil

4. Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

5. Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia.

6. Department of Intensive Care, Austin Hospital, Melbourne, Australia.

7. Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne, Australia.

8. Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.

Correspondence:

Abhijit Duggal MD Address: 9500 Euclid Ave, L2-330, Cleveland, Ohio, 44195 E-mail: <u>duggala2@ccf.org</u>

Word count (Abstract): 236 words

- Word count (Text): 2814 words
- Number of figures: 2 figures
- Number of tables: 3 tables

Supplementary Material: 01

Key words: Subphenotype, machine learning, ARDS, critical care, clinical data, clustering
ABSTRACT

Objectives: The acute respiratory distress syndrome (ARDS) is a heterogeneous condition, and identification of subphenotypes may help in better risk stratification. Our study objective is to identify ARDS subphenotypes using new simpler methodology and readily available clinical variables.

Setting: This is a retrospective Cohort Study of ARDS trials. Data from the U.S. ARDSNet trials and from the international ART trial.

Participants: 3763 patients from ARDSNet datasets and 1010 patients from the ART dataset.

Primary and secondary outcome measures: The primary outcome was 60-day or 28day mortality, depending on what was reported in the original trial. K-means cluster analysis was performed to identify subgroups. Sets of candidate variables were tested to assess their ability to produce different probabilities for mortality in each cluster. Clusters were compared to biomarker data, allowing identification of subphenotypes.

Results: Data from 4,773 patients was analyzed. Two subphenotypes (A and B) resulted in optimal separation in the final model, which included nine routinely collected clinical variables, namely: heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO₂, arterial pH, and FiO₂. Participants in subphenotype B showed increased levels of pro-inflammatory markers, had consistently higher mortality, lower number of ventilator-free days at day 28, and longer duration of ventilation compared to patients in the subphenotype A.

Conclusions: Routinely available clinical data can successfully identify two distinct subphenotypes in adult ARDS patients. This work may facilitate implementation of precision therapy in ARDS clinical trials.

to beet terren only

ARTICLE SUMMARY

Strengths and limitations of this study

- Largest cohort of patients used to identify subphenotypes of ARDS patients.
- Subphenotypes were validated in the population of a large international ARDS randomized controlled trial.
- Subphenotypes were identified by using only routinely collected clinical data.
- Our use of data exclusively from randomized controlled trials does not prove generalizability to unselected ARDS populations.
- The clinical utility of the subphenotypes has to be validated in a prospective study.

INTRODUCTION

The Berlin definition of acute respiratory distress syndrome (ARDS) encompasses acute hypoxemic respiratory failure due to a wide variety of etiologies [1]. Due to this inclusion of heterogeneous conditions within the syndrome, there are significant clinical and biological differences that make ARDS challenging to treat [2,3]. These differences amongst ARDS patients are associated with variation in risk of disease development and progression [3,4], potentially generating differential responses to treatments and interventions [5–10]. Despite evidence, clinical risk stratification of ARDS patients still solely depends on PaO₂/FiO₂ ratios [11,12], possibly misleading the interpretation of results in clinical trials and clinicians when evaluating treatment options for patients [13].

Therefore, identifying groups of patients who have similar clinical, physiologic, or biomarker traits becomes relevant [6,14] as it can help with stratification of patients producing better targeted therapies and interventions [15]. These different groups can be defined as ARDS subphenotypes [4,14]. Two ARDS subphenotypes have been consistently identified in previous studies [6–10,16–18]. However, these models are complex, and significant barriers exist in their implementation and use in clinical practice. Existing models use up to 40 predictor variables, including biomarkers and other variables that are not readily available at the bedside [6–10,16–18]. These limitations explain the current status quo of ARDS care, where clinicians must depend on the limited prognostic value of PaO₂/FiO₂ ratios instead of biologically distinct subphenotypes.

We hypothesized that the use of a simpler methodology and a small number of easily available clinical variables could identify new ARDS subphenotypes and thus provide the means to allow future implementation of bedside stratification.

METHODS

Data source and participants

We performed a retrospective study using a de-identified dataset pooling data from six randomized clinical trials in patients with ARDS, namely: ARMA, ALVEOLI, FACTT, EDEN, SAILS, and ART [19–24]. Patients in ARMA, ALVEOLI, FACTT, EDEN, and SAILS trials were eligible if they met the American-European consensus for ARDS, including patients with a PaO_2 / FiO_2 ratio < 300 up to 48 hours before enrollment. From 1996 to 2013, these trials enrolled 902, 549, 1000, 1000, and 745 patients, respectively, and tested a variety of interventions [19–23]. Between 2011 and 2017 the international ART study enrolled 1010 adult patients diagnosed with moderate to severe ARDS according to the Berlin definition (PaO_2 / FiO_2 ratio < 200) for less than 72 hours of duration and assessed two different ventilatory strategies [24]. To avoid biases due to high mortality in the high tidal volume group of the ARMA study [19], which has not been standard of care since the beginning of 2000, only 473 patients receiving low tidal volume in that study were included.

Predictors

Six clinical trials were assessed to identify a set of clinical variables recorded closest to time of randomization which were most commonly available across all datasets. The list of potential candidates was then further refined to include only those that are frequently observed in the routine care of ARDS patients at the time of its diagnosis according to judgement provided by ICU physicians who participated in this study. To develop a clustering algorithm for potential rapid translation into clinical use, elements which would not be commonly found in the electronic health records (EHR) at the time of ARDS

BMJ Open

diagnosis, such as biomarker levels, ARDS risk factors, organ support apart from mechanical ventilation settings, and severity scores, were excluded from model development. The treatment assignment in the original trials, and clinical outcomes were not considered in the model development.

After all assessment, 16 variables that are routinely collected as part of the usual care and which were uniformly present in all the trials were considered, including: age, gender, arterial pH, PaO₂, PaCO₂, bicarbonate, creatinine, bilirubin, platelets, heart rate, respiratory rate, mean arterial pressure, positive end-expiratory pressure (PEEP), plateau pressure, FiO₂, and tidal volume adjusted for predicted body weight (mL/kg PBW). The PBW was calculated as equal to 50 + 0.91 (centimeters of height – 152.4) in males, and 45.5 + 0.91 (centimeters of height – 152.4) in females [18]. These variables were grouped into five domains named demographics, arterial blood gases, laboratory values, vital signs, and ventilatory variables. Plateau pressure was excluded due to a high rate of missingness across the trials included in the training set. Amount of missing data in the training datasets is reported in **eTable 1**.

Outcomes

The primary outcome was 60-day mortality for all ARDSnet trials, and 28-day mortality for ART trial. Secondary outcomes included 90-day mortality, number of ventilator free days at day 28 [25], and the duration of mechanical ventilation in survivors within the first 28 days post enrollment.

Data preparation

Data preprocessing was performed before modeling, and the pooled dataset was assessed for completeness and consistency. Patients with values out of the plausible

physiological range for a specific variable were excluded from the final analysis (described in **eTable 2**). The training dataset was constructed using data from the two largest ARDSnet trials, EDEN and FACTT. The validation dataset was sourced from the four remaining trials: ALVEOLI, ARMA, SAILS, and ART. Means and standard deviations for *z*-scoring variables were calculated from the training dataset and subsequently applied to the validation data.

Statistical analysis

Baseline and outcome data were presented according to the assigned cluster. Continuous variables were presented as medians with their interquartile ranges and categorical variables as total number and percentage. Proportions were compared using Fisher exact tests and continuous variables were compared using the Wilcoxon rank-sum test. Study outcomes were further compared using the median and mean absolute differences for continuous and categorical values, respectively.

Model development and validation

For the model development, the K-means clustering algorithm was used. K-means is one of the simplest and most used classes of clustering algorithms. In critical care research, unsupervised machine learning techniques have already been used in several studies, attempting to find homogeneous subgroups within a broad heterogeneous population [26]. This specific algorithm identifies a K number of clusters in a dataset by finding K centroids within the n-dimensional space of clinical features [26].

For feature selection, different sets of candidate variables were tested to assess their ability to produce significantly different mortality probabilities in each cluster using the minimum amount of readily available clinical data. For each set of candidate variables,

BMJ Open

the optimal number of clusters was determined by comparing models with between 2 and 5 clusters, using the Elbow method [27] and the Calinski-Harabasz index [28]. Information about the methods for selecting the number of clusters are provided in the supplemental material.

The following steps were performed for the final model selection: 1) all predictors were assessed for correlation (**eTable 3**); and 2) ten different combinations of the proposed variables were investigated. These combinations were developed based on the perceived clinical importance of each variable and its combinations. All 10 models were tested for the optimal number of clusters based on both the Elbow method and the Calinski-Harabasz index, as described above. The models were then compared, aiming for the minimum set of variables with high 60-day mortality separation. The description of each model is shown in **eTable 4**.

Biological and clinical characteristics of the clusters were evaluated using clinical, laboratory, and (when available) biomarker data to establish subphenotypes [4]. All iterations in model development were done on the training set and the generalizability of the final model was assessed using the validation dataset. K-means clustering analysis is structured to ignore cases with missing data. No assumption was made for missingness, and we therefore conducted a complete case analysis. Model development and evaluation was performed using Python version 3.8 and scikit-learn 0.23.1.

Patient and public involvement

There was no patient involvement in this study.

Data availability

Data from the ARDSnet studies (EDEN, FACTT, ARMA, ALVEOLI and SAILS) is publicly available from the NHLBI ARDS Network and data from the ART trial can be requested from study authors.

RESULTS

Participants

Data from 4777 clinical trial patients were considered for inclusion. In total, 4 patients were excluded for having clinical measurements outside plausible range. The remaining 1998 patients from EDEN and FACTT trials were included in the training set, while the 2775 patients from ARMA, ALVEOLI, SAILS, and ART were included in the validation cohort.

Baseline characteristics of the patients in the training and validation sets are presented in **Table 1**. Pneumonia was the prevailing etiology followed by sepsis and aspiration in all trials. Between 29.3% to 72.7% of the patients were receiving vasopressors at the time of randomization. At randomization, PaO_2 / FiO_2 ratio ranged from 112 (75 - 158) to 134 (96 - 185) mmHg, and PEEP from 8 (5 - 10) to 12 (10 - 14) cmH₂O across trials. Mortality at 60 days for the ARDSnet trials ranged from 22.7% to 30.1%, while in the ART trial mortality at 28 days was 58.8%.

	Training s	et (n = 1998)		Validation set (n = 2775)			
	EDEN (n = 1000)	FACTT (n = 998)	ALVEOLI (n = 549)	ARMA (n = 472)	ART (n = 1010)	SAILS (n = 744)	
Age, year	52.0 (42.0 - 63.0)	49.0 (38.0 - 60.8)	50.0 (39.0 - 65.0)	50.0 (37.8 - 65.0)	52.0 (36.0 - 64.0)	55.0 (42.0 - 66.0)	
Male gender - no. (%)	510 (51.0)	533 (53.4)	302 (55.0)	285 (60.4)	631 (62.5)	365 (49.0)	
Etiology - no. (%)							
Pneumonia	650 (65.0)	471 (47.2)	221 (40.3)	145 (30.7)	555 (55.0)	526 (70.7)	
Sepsis	147 (14.7)	231 (23.1)	120 (21.9)	125 (26.5)	196 (19.4)	147 (19.8)	
Aspiration	96 (9.6)	149 (14.9)	84 (15.3)	72 (15.3)	58 (5.7)	49 (6.6)	
Trauma	36 (3.6)	74 (7.4)	45 (8.2)	59 (12.5)	31 (3.1)	6 (0.8)	
Other	71 (7.1)	73 (7.3)	79 (14.4)	71 (15.0)	170 (16.8)	16 (2.2)	
Severity of Illness*	73.0 (59.0 - 89.0)	78.0 (62.0 - 94.0)	78.0 (64.0 - 93.0)	83.0 (70.0 - 97.0)	63.0 (50.2 – 75.0)	76.0 (61.0 - 92.0)	
Vasopressors - no. (%)	489 (48.9)	397 (40.5)	156 (29.3)	147 (31.3)	734 (72.7)	395 (54.2)	
Laboratory tests							

White blood cell count, 109/L	12.0 (7.8 - 16.7)	11.8 (7.2 - 17.1)	11.6 (7.7 - 15.7)	11.5 (7.5 - 16.2)		13.9 (8.7 - 20.0)
Platelets, 109/L	169 (108 - 241)	183 (106 - 258)	157 (83 - 247)	135 (80 - 211)	175 (106 - 263)	167 (96 - 247)
Creatinine, mg/dL	1.2 (0.8 - 2.0)	1.0 (0.7 - 1.5)	1.0 (0.7 - 1.7)	1.1 (0.8 - 1.7)	1.3 (0.8 - 2.2)	1.0 (0.7 - 1.7)
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.8 (0.5 - 1.6)	0.8 (0.5 - 1.5)	1.0 (0.6 - 2.1)	0.8 (0.4 - 1.5)	0.8 (0.5 - 1.4)
Arterial blood gas						
pH*	7.36 (7.30 - 7.42)	7.37 (7.30 - 7.43)	7.40 (7.34 - 7.44)	7.41 (7.35 - 7.45)	7.28 (7.19 - 7.36)	7.37 (7.31 - 7.42)
PaO2, mmHg	83 (68 - 108)	79 (67 - 100)	77 (67 - 93)	76.5 (67 - 93)	112 (81 - 155)	83 (69 - 103)
PaO2 / FiO2	125 (86 - 178)	118 (80 - 163)	134 (96 - 185)	112 (75 - 158)	112 (81 - 155)	133 (89 - 178)
PaCO2, mmHg	38 (34 - 45)	39 (34 - 45)	38 (33 - 43)	36 (31 - 41)	50 (42 - 62)	39 (34 - 45)
Bicarbonate, mmol/L	21.0 (18.0 - 25.0)	21.0 (17.4 - 25.0)	22.0 (18.0 - 26.0)	22.0 (18.0 - 25.0)	22.9 (19.4 - 26.3)	22.0 (18.0 - 25.0)
Ventilatory variables		~				
Tidal volume, mL	410 (360 - 470)	450 (400 - 510)	500 (420 - 600)	700 (600 - 750)	350 (308 - 400)	400 (350 - 460)
Per PBW, mL/kg PBW	6.3 (6.0 - 7.3)	7.1 (6.1 - 8.1)	7.9 (6.6 - 9.4)	10.2 (9.0 - 11.3)	5.9 (5.1 - 6.1)	6.2 (6.0 - 7.1)
Plateau pressure, cmH2O	24.0 (20.0 - 27.0)	26.0 (22.0 - 30.0)	26.0 (22.0 - 31.0)	29.0 (24.8 - 34.0)	26.0 (22.0 - 29.0)	24.0 (19.0 - 28.0)
PEEP, cmH2O	10 (5 - 12)	10 (5 - 12)	10 (5 - 12)	8 (5 - 10)	12 (10 - 14)	10 (5 - 11)
FiO2	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.80)	0.60 (0.50 - 0.74)	0.70 (0.60 - 1.00)	0.60 (0.40 - 0.70)
Clinical outcomes						
28-day mort no. (%)					594 (58.8)	
60-day mort no. (%)	227 (22.7)	268 (26.9)	144 (26.2)	141 (30.1)		199 (26.7)
90-day mort no. (%)	233 (23.3)	283 (28.6)	148 (27.5)	143 (30.8)		204 (27.4)
Ventilator-free days, day 28	20.0 (0.0 - 24.0)	17.0 (0.0 - 23.0)	18.0 (0.0 - 24.0)	13.0 (0.0 - 23.0)	0.0 (0.0 - 13.0)	20.0 (0.0 - 25.0)
Ventilator days in	7.0 (4.0 -	8.0 (5.0 -	8.0 (4.0 - 14.0)	8.0 (4.0 -	13.0 (8.0 -	6.0 (4.0 - 11.0)

Predictor variables and model selection

The correlation between the 15 variables selected for clustering is shown in **eTable 3**. The strongest correlation was between PEEP and FiO_2 (r = 0.49). The comparison of the 10 models regarding the optimal number of clusters based on both the Elbow method and the Calinski-Harabasz index is shown in **eFigure 1**. In all models and methods, two clusters were a better fit than a higher number of clusters.

BMJ Open

Across the ten models, absolute mortality difference between cluster 1 and cluster 2 ranged from 3.9% to 13.1% for the FACTT study and between 0.1% to 8.1% for EDEN (**eTable 4**). The models with the highest 60-day absolute mortality separation between the clusters for each of the two trials in the training set were then further evaluated. Models 6, 5, and 8 were consistently amongst the models with highest separation (**eTable 4**). Model 8 was selected for further investigation, as it had the fewest variables (**eTable 4**).

5).

Clinical characteristics of each cluster

Based on model 8, only nine clinical and laboratory variables were needed to identify the two distinct clusters in ARDS patients, namely: heart rate, mean arterial pressure, respiratory rate, bilirubin, bicarbonate, creatinine, PaO₂, arterial pH, and FiO₂. For each variable in the model, opposing measurements could be observed for each cluster (**Figure 1** and **eFigure 2**). For the ARDSnet trials, the incidence of cluster 1 patients varied from 57.8% (EDEN) to 73.6% (ARMA), and 41.5% of ART patients were part of cluster 1. Across all trials, patients in cluster 2 had higher severity of illness, rate of vasopressor, heart rate, respiratory rate, creatinine, and bilirubin, as well as lower platelets, pH, BUN, and bicarbonate compared to patients in cluster 1 (**Table 2, eTables 6** and **7**). In addition, 28-, 60-, and 90-day mortality rate was higher in patients in cluster 2 in all trials (**Table 3**). Likewise, for each trial, the number of ventilator-free days at day 28 was lower in patients in cluster 1.

Table 2 - Baseline Characteristics and Clinical Outcomes According to the Clusters and Trials in the Training Set							
		FACTT		EDEN			
	Cluster 1 (n = 407)	Cluster 2 (n = 294)	p value	Cluster 1 (n = 449)	Cluster 2 (n = 328)	p value	

Age, year*	50.0 (40.0 - 63.0)	47.0 (36.0 - 58.0)	0.002	53.0 (44.0 - 63.0)	51.0 (41.0 - 62.2)	0.18
Male gender - no. (%)	223 (54.8)	151 (51.4)	0.411	233 (51.9)	168 (51.2)	0.910
Body mass index, kg/m2	27.5 (23.3 - 32.1)	27.4 (23.0 - 32.7)	0.938	29.1 (24.6 - 34.5)	28.5 (23.4 - 35.1)	0.476
Caucasian - no. (%)	269 (66.1)	177 (60.2)	0.129	349 (81.5)	237 (75.7)	0.067
Etiology - no. (%)			< 0.001			0.00
Pneumonia	201 (49.4)	139 (47.3)		296 (65.9)	217 (66.2)	
Sepsis	78 (19.2)	101 (34.4)		50 (11.1)	60 (18.3)	
Aspiration	67 (16.5)	30 (10.2)		45 (10.0)	27 (8.2)	
Trauma	24 (5.9)	8 (2.7)		24 (5.3)	5 (1.5)	
Other	37 (9.1)	16 (5.4)		34 (7.6)	19 (5.8)	
Prognostic scores						
APACHE III	69.0 (56.0 - 84.0)	91 (76.0 - 105.0)	< 0.001	66.0 (54.0 - 79.0)	84.0 (71.0 - 100.2)	< 0.(
Use of vasopressor - no. (%)	118 (29.5)	189 (64.9)	< 0.001	187 (41.6)	209 (63.7)	< 0.0
Vital signs						
Temperature, °C	37.5 (36.8 - 38.2)	37.6 (37.0 - 38.4)	0.371	37.3 (36.8 - 37.8)	37.3 (36.7 - 38.1)	0.21
Heart rate, bpm	95.0 (81.0 - 110.0)	114 (102 - 126)	< 0.001	89 (77 - 102)	101 (89 - 116)	< 0.
Mean arterial Pressure, mmHg	76.0 (68.0 - 88.0)	71.0 (65.0 - 80.8)	< 0.001	77.0 (68.0 - 84.0)	71.0 (66.0 - 80.0)	< 0.
SpO2, %	96 (93 - 98)	95 (92 - 97)	< 0.001	96 (94 - 98)	95 (92 - 98)	0.03
Urine output in 24 hours, mL	1785 (1192 - 2853)	1370 (842 - 2446)	< 0.001	1505 (977 - 2250)	1165 (566 - 1816)	< 0.0
Laboratory tests						
Hematocrit, %	30.0 (26.0 - 33.0)	30.0 (24.2 - 35.0)	0.272	30.0 (26.0 - 34.0)	30.0 (26.0 - 35.0)	0.91
White blood cell count, 109/L	11.6 (7.3 - 16.3)	11.7 (5.6 - 17.9)	0.972	11.4 (7.7 - 15.5)	12.7 (7.7 - 19.0)	0.01
Platelets, 109/L	195 (118.5 - 268)	158 (87 - 237)	< 0.001	163 (108 - 241)	164 (103 - 227)	0.55
Creatinine, mg/dL	0.9 (0.7 - 1.3)	1.4 (1.0 - 2.0)	< 0.001	1.0 (0.7 - 1.5)	1.6 (1.0 - 2.8)	< 0.
Bilirubin, mg/dL	0.7 (0.5 - 1.3)	0.9 (0.5 - 2.0)	0.003	0.8 (0.5 - 1.3)	0.8 (0.5 - 1.7)	0.12
Arterial blood gas						
pH*	7.41 (7.36 - 7.45)	7.29 (7.23 - 7.35)	< 0.001	7.40 (7.35 - 7.44)	7.30 (7.24 - 7.35)	< 0.
PaO2, mmHg	78 (68 - 100)	78 (65 - 99)	0.240	83 (70 - 107)	81 (67 - 107)	0.41
PaO2 / FiO2	132 (92 - 173)	89 (65 - 126)	< 0.001	133 (98 - 193)	101 (73 - 162)	< 0.
PaCO2, mmHg	39 (34 - 44)	38.5 (33 - 47.9)	0.877	38 (34 - 44)	38 (33 - 46)	0.55
Bicarbonate, mmol/L	24.0 (21.0 - 27.0)	17.0 (14.0 - 20.0)	< 0.001	23.0 (21.0 - 26.0)	18.5 (15.0 - 21.0)	< 0.0
Ventilatory variables						
Tidal volume, mL	450 (400 - 530)	450 (382 - 500)	0.009	420 (356 - 487)	400 (350 - 450)	0.03
Per PBW, mL/kg PBW	7.1 (6.3 - 8.4)	7.0 (6.0, 8.0)	0.058	6.3 (6.0 - 7.5)	6.1 (6.0 - 7.3)	0.07
Plateau pressure, cmH2O	25.0 (20.0 - 29.0)	28.0 (24.0 - 32.0)	< 0.001	23.0 (19.0 - 27.0)	24.0 (21.0 - 28.0)	0.00
PEEP, cmH2O	8 (5 - 10)	10 (8 - 14)	< 0.001	10 (5 - 10)	10 (8 - 14)	< 0.
Respiratory rate, breaths/min	22 (18 - 27)	30 (24 - 35)	< 0.001	22 (19 - 26)	30 (25 - 35)	< 0.0
FiO2	0.50 (0.40 - 0.70)	0.80 (0.60 -	< 0.001	0.60 (0.45 -	0.80 (0.60 -	< 0.0

2	
2	
3	
4	
5	
6	
0	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
10	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
25	
35	
36	
37	
20	
38	
39	
40	
۸ı	
41	
42	
43	
ΔΔ	
45	
45	
46	
47	
40	
48	
49	
50	
50 E 1	
21	
52	
53	
50	
54	
55	
56	
57	
57	
58	
59	
60	
00	

	Cluster 1	Cluster 2	Difference (95% CI)	p valu
Training set		•		·
FACTT	n = 407	n = 294		
60-day mortality - no. (%)	94 (23.1)	102 (34.7)	11.6% (4.9% to 18.3%)	0.001
90-day mortality - no. (%)	103 (25.4)	106 (36.3)	10.9% (4.1% to 17.8%)	0.002
Ventilator-free days at day 28	19.0 (0.0 - 24.0)	10.0 (0.0 - 21.0)	-9.0 (-11.9 to -6.1)	< 0.001
Duration of ventilation in survivors, days	8.0 (4.0 - 13.0)	10.0 (7.0 - 19.0)	2.0 (0.5 to 3.5)	< 0.001
EDEN	n = 449	n = 328		
60-day mortality - no. (%)	87 (19.4)	90 (27.4)	8.1% (2.1% to 14.0%)	0.010
90-day mortality - no. (%)	90 (20.0)	93 (28.4)	8.3% (2.3% to 14.3%)	0.009
Ventilator-free days at day 28	21.0 (0.0 - 25.0)	15.0 (0.0 - 22.2)	-6.0 (-8.1 to -3.9)	< 0.001
Duration of ventilation in survivors, days	6.0 (4.0 - 11.0)	8.0 (6.0 - 18.0)	2.0 (0.9 to 3.1)	< 0.001
Validation set		·		·
ALVEOLI	n = 336	n = 157		
60-day mortality - no. (%)	59 (17.6)	68 (43.3)	25.8% (17.7% to 33.8%)	< 0.001
90-day mortality - no. (%)	60 (18.1)	70 (45.5)	27.3% (19.2% to 35.5%)	< 0.001
Ventilator-free days at day 28	21.0 (4.8 - 25.0)	2.0 (0.0 - 19.0)	-19.0 (-20.8 to -17.2)	< 0.001
Duration of ventilation in survivors, days	7.0 [4.0,13.0]	11.0 (6.0 - 22.2)	4.0 (2.1 to 5.9)	< 0.001
ARMA	n = 279	n = 100		
60-day mortality - no. (%)	69 (24.8)	42 (42.0)	17.2% (6.9% to 27.5%)	0.002
90-day mortality - no. (%)	70 (25.5)	42 (42.0)	16.5% (6.0% to 26.9%)	0.003
Ventilator-free days at day 28	17.0 (0.0 - 24.0)	2.0 (0.0 - 19.0)	-15.0 (-18.6 to -11.4)	< 0.001
Duration of ventilation in survivors, days	7.0 (4.0 - 13.8)	11.0 (5.0 -18.0)	4.0 (1.5 to 6.5)	0.018
SAILS	n = 319	n = 188		
60-day mortality - no. (%)	80 (25.1)	60 (31.9)	6.8% (-1.2% to 14.9%)	0.119
90-day mortality - no. (%)	81 (25.4)	63 (33.5)	8.1% (0.0% to 16.3%)	0.063
Ventilator-free days at day 28	21.0 (0.0 - 25.0)	16.0 (0.0 - 23.0)	-5.0 (-7.3 to -2.7)	< 0.001
Duration of ventilation in survivors, days	6.0 (3.0 - 10.0)	8.0 (5.0 - 14.0)	2.0 (0.7 to 3.3)	< 0.001
ART	n = 211	n = 298		
28-day mortality - no. (%)	81 (38.4)	180 (60.4)	22.0% (13.4% to 30.7%)	< 0.001
Ventilator-free days at day 28	0.0 (0.0 - 17.0)	0.0 (0.0 - 7.8)	-0.0 (-1.0 to 1.0)	< 0.001
Duration of ventilation in survivors	12.0 (8.0 - 20.0)	13.5 (8.0 - 20.0)	2.0 (-0.3 to 4.2)	0.570

Identification of Subphenotypes

After comparing the clinical characteristics of the clusters, each cluster was assigned to represent a distinct subphenotype of ARDS, with patients in cluster 1 assigned to

subphenotype A, and patients in cluster 2 assigned to subphenotype B. Using blood biomarker information available for a subset of patients from both ARMA and ALVEOLI, subphenotype B showed increased levels of pro-inflammatory markers when compared to subphenotype A (Figure 2 and eTables 8 and 9).

<text>

DISCUSSION

This study successfully demonstrated that nine easily obtainable clinical variables: arterial pH, partial O2 pressure, creatinine, bilirubin, bicarbonate, mean arterial pressure, heart rate, respiratory rate, and FiO2 at the time of study enrollment can identify two distinct ARDS subphenotypes with different clinical and biologic characteristics as well as outcomes across the test and validation cohorts. There was good generalizability amongst diverse populations from multiple validation datasets with temporal and geographical differences.

It is understandable that researchers feel compelled to use as much information as possible to build robust models. This is supportable for two main reasons: (1) the wellknown heterogeneity of complex syndromes such as ARDS and (2) the abundance of highly granular clinical data generated by electronic health records (EHRs). It is anticipated that analyzing this vast amount of data will provide new knowledge regarding disease mechanisms by enabling researchers to find plausible hidden patterns within the data [29]. However, this data-heavy approach has the potential drawback of using predictors which are not generally obtained in a time window prior to intervention, or worse yet, using variables that are not part of the routine standard of care for patients. The rationale of using fewer and easy to collect clinical variables is not new in the field of critical care. Prognostic models have already shown that it is indeed feasible to create meaningful models using fewer predictors [30,31].

Unfortunately, unlike supervised algorithms (e.g., regression analyses), unsupervised algorithms such as K-means clustering do not provide one straightforward and established metric to describe feature importance. In that sense, our approach of

BMJ Open

testing multiple sets of variables was also meant to select features that were most likely to be relevant, serving as surrogate for the feature selection step normally employed in supervised algorithms. While each individual variable by itself may not be significantly different across sub-phenotypes, their interaction in the 9-dimensional space of our model may be relevant.

Our initial choices to define variables commonly found in the EHR at ARDS diagnosis was inspired by a recent report from the World Health Organization (WHO) which showed an enormous discrepancy of medical devices availability in a survey across 135 countries [29]. Recognizing this inconsistency is essential for widespread implementation of machine learning models regardless of varying availability of resources across countries and health systems [29]. The aim is to provide clinically relevant information within a defined and short period that might impact the delivery of effective interventions to the right patient population and to as many patients as possible [29].

Recently, Sinha *et al.* developed supervised-learning gradient boosted classifier models trained using 24 or 14 readily available clinical data elements to reproduce biomarker-derived subphenotypes which were previously identified by Calfee *et al.* [17]. Unlike Sinha *et al.*, who predicted previously identified subphenotypes, our study has identified two subphenotypes *de novo* using a small set of clinical variables.

Although the subphenotypes that we have identified and those that have been previously published look similar, our work is distinct from previous studies in several ways. We employed different training and validation datasets as well as a different and well-established unsupervised learning technique. Moreover, we utilized a process for selecting predictors which is not comparable to previous studies. Acknowledging these

BMJ Open

differences is crucial. It would not be unexpected to assume that these deviations would be relevant enough to produce different subphenotypes [32]. However, the clinical, laboratory characteristics, and the clinical outcomes of our subphenotypes show that they are remarkably similar to subphenotypes found in previous papers, regardless of methodological differences.

At this point it is not possible to go beyond this comparative analysis, as there is no gold standard definition of ARDS subphenotypes [32]. Nonetheless, our work does provide robust evidence that ARDS does indeed have two subphenotypes that can be systematically identified, despite major differences in population assessed and methodological approach used compared with previous studies. It also reinforces that we should continue to explore the underlying biological pathways of such subphenotypes to find responders to new or previously tested therapies.

Our study has several strengths. First, it is the largest cohort of patients that has been studied to develop distinct subphenotypes of ARDS patients. Moreover, our validation cohort included patients from the ART trial, allowing us to validate our model in the contemporaneous population of a large international randomized clinical trial in addition to the ARDSnet studies used in other subphenotyping studies. Second, our subphenotyping model was developed exclusively on the training set and then validated across multiple separate datasets. Nevertheless, similar separation in mortality was seen between the two subphenotypes across all trials. Third, we used the K-means algorithm to identify our subphenotypes, and the results obtained with this technique can be easily interpreted by clinicians and implemented in clinical practice. Lastly, this is the first phenotyping study that has used easily available clinical variables to identify ARDS

BMJ Open

phenotypes *de novo*, which allows for early identification of these patients in the clinical care at the bedside. Using this algorithm with a small number of routinely collected variables could enable our model to be applied in trials that either retrospectively or prospectively assess interventions targeted to each subphenotype.

This study also has limitations. First, we have developed our models exclusively on patients enrolled in clinical trials. Due to the strict inclusion and exclusion criteria of these clinical trials, the generalizability of these results needs to be evaluated in unselected ARDS populations. Although there are clear clinical and biomarker differences between the identified subphenotypes, the model's clinical utility needs to be prospectively validated and further investigated. Additionally, our biomarker analysis is limited to those patients in which the data was made publicly available by the study authors, but future collection of biomarker data in a prospective study will allow more robust understanding of the underlying biology and validation of the subphenotype model. Also, K-means clustering does not handle missing data, and no approach was used to impute missing values. However, the extremely low rate of missingness in our study makes this issue less relevant. Lastly, future work should analyze previous trials to identify possible differential treatment responses for the subphenotypes of ARDS patients identified in this study.

CONCLUSIONS

This study confirms the existence of two distinct subphenotypes in ARDS patients using a novel clustering model on routinely collected clinical data. This work may allow for easier identification of ARDS subphenotypes to facilitate implementation of precision clinical trial

enrollment and development of targeted therapies in a variety of settings without the added burdens of biomarker evaluation.

to been terier only

DECLARATIONS

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing Interest: AD, MS, FGZ, ABC, ISM, DMP, LNL declare no relevant financial conflicts of interest. RK, EVA, LB, JO, DR and ROD are employees of Endpoint Health, Inc. ASN reported receiving personal fees from Dräger unrelated to the submitted work. **Ethics Approval:** All patients provided informed consent in the original trials. This secondary analysis study was exempt from IRB review because it does not meet the definition of human subject as defined in 45 CFR 46.102. WIRB Work Order #1-1228617-

Availability of data and material: Data from the ARDSnet studies (EDEN, FACTT, ARMA, ALVEOLI) may be requested from the NIH-NHLBI BioLINCC repository. These are available by application through the BioLINCC website (https://biolincc.nhlbi.nih.gov/resource_overview/), subject to established review processes for their distribution to qualified investigators and data from the ART trial can be requested from study authors.

Author Contributions: AD, RK, EVA, LB participated in study design and analysis, drafted, and revised the manuscript, and are the guarantor of the document. MS, DR, JO, FGZ, ABC, ISM, DMP, LNL, and ASN participated in interpretation of data analysis, drafted the manuscript, and revised it for critically important intellectual content. ROD participated in the study design, analysis, interpretation of data analysis, and final revision of the manuscript content.

Twitter: @msiuba, @f_g_zampieri, @rod_deliberato, @a_serpaneto, @l_bulgarelli, @endpointhealth

tor per terien ont

REFERENCES

- 1 ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, *et al.* Acute respiratory distress syndrome: the Berlin Definition. *JAMA* 2012;**307**:2526–33. doi:10.1001/jama.2012.5669
- 2 Thille AW, Esteban A, Fernández-Segoviano P, *et al.* Comparison of the Berlin Definition for Acute Respiratory Distress Syndrome with Autopsy. *Am J Respir Crit Care Med* 2013;**187**:761–7. doi:10.1164/rccm.201211-1981OC
- 3 Reilly J, Calfee C, Christie J. Acute Respiratory Distress Syndrome Phenotypes. *Semin Respir Crit Care Med* 2019;**40**:019–30. doi:10.1055/s-0039-1684049
- 4 Reddy K, Sinha P, O'Kane CM, *et al.* Subphenotypes in critical care: translation into clinical practice. *The Lancet Respiratory Medicine* 2020;**8**:631–43. doi:10.1016/S2213-2600(20)30124-7
- 5 Shankar-Hari M, Fan E, Ferguson ND. Acute respiratory distress syndrome (ARDS) phenotyping. *Intensive Care Med* 2019;**45**:516–9. doi:10.1007/s00134-018-5480-6
- 6 Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. *The Lancet Respiratory Medicine* 2014;**2**:611–20. doi:10.1016/S2213-2600(14)70097-9
- 7 Famous KR, Delucchi K, Ware LB, *et al.* Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. *Am J Respir Crit Care Med* 2017;**195**:331–8. doi:10.1164/rccm.201603-0645OC
- 8 Calfee CS, Delucchi KL, Sinha P, *et al.* Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. *The Lancet Respiratory Medicine* 2018;**6**:691–8. doi:10.1016/S2213-2600(18)30177-2
- 9 for the NHLBI ARDS Network, Sinha P, Delucchi KL, et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. *Intensive Care Med* 2018;44:1859–69. doi:10.1007/s00134-018-5378-3
- 10 Bos LD, Schouten LR, van Vught LA, *et al.* Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. *Thorax* 2017;**72**:876–83. doi:10.1136/thoraxjnl-2016-209719
- 11 Ferguson ND, Fan E, Camporota L, *et al.* The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. *Intensive Care Med* 2012;**38**:1573–82. doi:10.1007/s00134-012-2682-1

י ר	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
15	
رب ۸ <i>۲</i>	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
50	
22	
00	

- 12 Bellani G, Laffey JG, Pham T, *et al.* Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. *JAMA* 2016;**315**:788. doi:10.1001/jama.2016.0291
- 13 Gattinoni L, Vassalli F, Romitti F. Benefits and risks of the P/F approach. *Intensive Care Med* 2018;**44**:2245–7. doi:10.1007/s00134-018-5413-4
- 14 Matthay MA, Arabi YM, Siegel ER, *et al.* Phenotypes and personalized medicine in the acute respiratory distress syndrome. *Intensive Care Med* 2020;**46**:2136–52. doi:10.1007/s00134-020-06296-9
- 15 Shankar-Hari M, Rubenfeld GD. Population enrichment for critical care trials: phenotypes and differential outcomes. *Current Opinion in Critical Care* 2019;**25**:489–97. doi:10.1097/MCC.0000000000641
- 16 Sinha P, Delucchi KL, McAuley DF, et al. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. *The Lancet Respiratory Medicine* 2020;8:247–57. doi:10.1016/S2213-2600(19)30369-8
- 17 Sinha P, Churpek MM, Calfee CS. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. *Am J Respir Crit Care Med* 2020;**202**:996–1004. doi:10.1164/rccm.202002-0347OC
- 18 Kitsios GD, Yang L, Manatakis DV, *et al.* Host-Response Subphenotypes Offer Prognostic Enrichment in Patients With or at Risk for Acute Respiratory Distress Syndrome*: *Critical Care Medicine* 2019;**47**:1724–34. doi:10.1097/CCM.000000000004018
- 19 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. *N Engl J Med* 2000;**342**:1301–8. doi:10.1056/NEJM200005043421801
- 20 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. *N Engl J Med* 2004;**351**:327–36. doi:10.1056/NEJMoa032193
- 21 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. *N Engl J Med* 2006;**354**:2213–24. doi:10.1056/NEJMoa061895
- 22 The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Rice TW, Wheeler AP, *et al.* Initial Trophic vs Full

Enteral Feeding in Patients With Acute Lung Injury: The EDEN Randomized Trial. *JAMA: The Journal of the American Medical Association* 2012;**307**:795–803. doi:10.1001/jama.2012.137

- 23 The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Rosuvastatin for Sepsis-Associated Acute Respiratory Distress Syndrome. N Engl J Med 2014;370:2191–200. doi:10.1056/NEJMoa1401520
- 24 Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, *et al.* Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2017;**318**:1335. doi:10.1001/jama.2017.14171
- 25 Yehya N, Harhay MO, Curley MAQ, et al. Reappraisal of Ventilator-Free Days in Critical Care Research. Am J Respir Crit Care Med 2019;200:828–36. doi:10.1164/rccm.201810-2050CP
- 26 Castela Forte J, Perner A, van der Horst ICC. The use of clustering algorithms in critical care research to unravel patient heterogeneity. *Intensive Care Med* 2019;**45**:1025–8. doi:10.1007/s00134-019-05631-z
- 27 Ketchen DJ, Shook CL. The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique. *Strategic Management Journal* 1996;**17**:441–58. doi:https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
- 28 Caliński T, Harabasz J. A dendrite method for cluster analysis. *Communications in Statistics* 1974;**3**:1–27. doi:10.1080/03610927408827101
- 29 Bulgarelli L, Deliberato RO, Johnson AEW. Prediction on critically ill patients: The role of "big data." *Journal of Critical Care* 2020;**60**:64–8. doi:10.1016/j.jcrc.2020.07.017
- 30 Johnson AEW, Kramer AA, Clifford GD. A New Severity of Illness Scale Using a Subset of Acute Physiology and Chronic Health Evaluation Data Elements Shows Comparable Predictive Accuracy*: *Critical Care Medicine* 2013;**41**:1711–8. doi:10.1097/CCM.0b013e31828a24fe
- 31 Deliberato RO, Escudero GG, Bulgarelli L, *et al.* SEVERITAS: An externally validated mortality prediction for critically ill patients in low and middle-income countries. *International Journal of Medical Informatics* 2019;**131**:103959. doi:10.1016/j.ijmedinf.2019.103959
- 32 DeMerle KM, Angus DC, Baillie JK, *et al.* Sepsis Subclasses: A Framework for Development and Interpretation. *Crit Care Med* Published Online First: 15 February 2021. doi:10.1097/CCM.00000000004842

FIGURES LEGENDS

Figure 1 - Differences of the Variables Included in the Cluster Algorithm Among Clusters

Square symbols represent the study with the highest mean z score for each phenotype; Circles represent the study with the lowest mean z score for each phenotype. The colored bands are exclusively to help visualize the opposite trends of the variables on the different clusters; Art.pH: arterial pH; Bicarb: bicarbonate; MAP: mean arterial pressure; Creat: creatinine; Resp.Rate: respiratory rate

Figure 2 - Heat Map of the Biomarkers Available for the ARMA and ALVEOLI Trials For better visualization and due to difference in scales, the values were log-normalized and z-scored. Subphenotypes A and B are shown separately to highlight their differences.

BMJ Open

Figure 1 - Differences of the Variables Included in the Cluster Algorithm Among Clusters 812x457mm (72 x 72 DPI)

812x457mm (72 x 72 DPI)

Identification of Acute Respiratory Distress Syndrome subphenotypes de novo using routine clinical data: a retrospective analysis of ARDS clinical trials

ONLINE SUPPLEMENT

Additional Methods

Number of clusters

The optimal number of clusters was chosen according to two criteria: (1) Elbow method, by selecting a number of clusters that if further increased will result in only a small increase in performance and possibly cause overfit, hence this number is commonly referenced as to being in the "elbow" of the curve (**eFigure 1**); and (2) Calinski-Harabasz index, consisting of the ratio of *within* to *between* cluster dispersion; higher scores are indication of dense and well separated clusters (**e-Figure 1**).

Ventilator-free days

Ventilator free days for ALVEOLI, EDEN, FACTT, and SAILS were calculated according to the methods outlined by Yehya et al (1). Briefly, patients who died at any time in the 28 days were assigned 0 ventilator-free days. For survivors, the number of ventilator-free days was calculated based on the date of the final successful extubation; reintubations before the final extubation were not counted toward ventilator-free days. All days after a patient was discharged home up to the 28th day with unassisted breathing were assumed to be ventilator-free days.

EDEN (<i>n</i> = 1000)	FACTT (<i>n</i> = 999)
0.0	0.0
0.0	0.0
2.8	3.9
0.2	1.5
8.1	26.8
0.0	0.0
0.8	0.6
0.0	0.1
0.1	0.9
12.1	0.8
2.8	3.9
0.2	4.0
1.0	0.3
8.1	6.0
32.3	30.9
0.6	0.4
15.3	12.1
15.4	12.8
	EDEN (n = 1000) 0.0 0.0 2.8 0.2 8.1 0.0 0.8 0.0 0.1 12.1 2.8 0.2 1.0 8.1 32.3 0.6 15.3 15.4

eTable 1	- Percentage	of missing	data in	the	routinely	collected
variables,	closest rando	mization, on	EDEN a	nd F	ACTT trials	s.

60

eTable 2 - Plausible	physiological	ranges	for clinical
measurements, close	st to time of ra	andomiz	ation

Variables	Lower Limit	Upper Limit
Age (years)	16	89
Arterial pH	6.65	7.80
Bicarbonate (mEq/L)	1	50
Bilirubin (mg/dL)	0.1	50
Creatinine (mg/dL)	0.1	20
FiO2	0.21	1
Heart Rate (beats per minute)	20	300
Height (cm)	120	220
Mean arterial pressure (mmHg)	10	400
PaCO2 (mmHg)	20	120
PaO2 / FiO2	0	500
PaO2 (mmHg)	30	500
PEEP (cm H20)	0	60
Platelets (thousands)	1	1000
Plateau Pressure (cm H20)	10	50
Respiratory Rate (resp per minute)	1	100
Tidal Volume (cm H20)	100	1400

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eTable 3 - Correlation among fifteen rout	tinely collected variables	, close to the time c	of randomization
		,	

			0					,							
	Age	рН	HCO₃	Bili	Creat	FiO ₂	Gender	HR	MAP	PaCO ₂	PaO ₂	PEEP	Plat	RR	V⊤/PBW
Age	1.00	0.06	-0.04	-0.02	0.11	-0.13	0.00	-0.27	-0.12	-0.11	-0.06	-0.22	0.00	-0.11	0.03
ъH	0.06	1.00	0.40	-0.04	-0.16	-0.26	-0.01	-0.18	0.15	-0.39	0.00	-0.20	0.05	-0.21	0.07
−ICO₃	-0.04	0.40	1.00	-0.08	-0.28	-0.05	-0.02	-0.18	0.08	0.44	0.02	-0.05	0.15	-0.24	-0.07
Bili	-0.02	-0.04	-0.08	1.00	0.06	-0.03	-0.04	0.01	-0.04	-0.01	0.03	0.01	-0.20	0.04	-0.01
reat	0.11	-0.16	-0.28	0.06	1.00	-0.04	-0.08	-0.04	-0.01	-0.14	0.00	-0.06	-0.12	0.02	0.00
FiO2	-0.13	-0.26	-0.05	-0.03	-0.04	1.00	0.03	0.13	-0.06	0.18	0.11	0.49	0.06	0.21	-0.02
ender	0.00	-0.01	-0.02	-0.04	-0.08	0.03	1.00	-0.03	-0.05	-0.04	-0.06	0.02	0.09	0.09	0.19
IR	-0.27	-0.18	-0.18	0.01	-0.04	0.13	-0.03	1.00	-0.02	0.03	-0.04	0.12	-0.05	0.22	0.08
1AP	-0.12	0.15	0.08	-0.04	-0.01	-0.06	-0.05	-0.02	1.00	-0.03	0.01	-0.01	0.06	-0.04	0.00
PaCO ₂	-0.11	-0.39	0.44	-0.01	-0.14	0.18	-0.04	0.03	-0.03	1.00	-0.04	0.17	0.11	-0.05	-0.17
PaO ₂	-0.06	0.00	0.02	0.03	0.00	0.11	-0.06	-0.04	0.01	-0.04	1.00	-0.09	-0.04	-0.09	0.03
PEEP	-0.22	-0.20	-0.05	0.01	-0.06	0.49	0.02	0.12	-0.01	0.17	-0.09	1.00	0.00	0.33	-0.15
Plat	0.00	0.05	0.15	-0.20	-0.12	0.06	0.09	-0.05	0.06	0.11	-0.04	0.00	1.00	-0.05	0.03
RR	-0.11	-0.21	-0.24	0.04	0.02	0.21	0.09	0.22	-0.04	-0.05	-0.09	0.33	-0.05	1.00	-0.31
V⊤/PBW	0.03	0.07	-0.07	-0.01	0.00	-0.02	0.19	0.08	0.00	-0.17	0.03	-0.15	0.03	-0.31	1.00

Data are Pearson correlation coefficients.

Abbreviations: Bili denotes bilirubin, Creat is creatinine, HR is heart rate, MAP is mean arterial pressure, PEEP is positive end-expiratory pressure, Plat is platelets, RR is respiratory rate and VT/PBW is tidal volume per predicted body weight.

		FACTT trial (<i>n</i> = 998)	EDEN trial (<i>n</i> = 1000)					
Model	Patients scored*	Mortality difference among clusters	Model	Patients scored*	Mortality difference among clusters			
6	93.5%	13.1%	7	77.7%	8.1%			
2	57.4%	12.5%	8	77.7%	8.1%			
5	65.5%	12.2%	6	84.1%	6.7%			
8	70.2%	11.6%	5	71.7%	6.5%			
7	70.2%	11.4%	9	84.7%	6.1%			
1	57.4%	11.2%	3	77.7%	4.4%			
4	70.2%	10.6%	4	77.7%	4.0%			
9	93.5%	10.4%	2	57.7%	3.9%			
3	70.2%	10.1%	10	87.3%	2.8%			
10	98.8%	3.9%	1	57.7%	0.1%			

eTable 4 - Absolute 60-day Mortality Difference Among Clusters per Trial and Model

* Number of patients without any missing data, allowing their assignment to one of the clusters.

BMJ Open

Madal	Demographics		Arterial Blood Gases		Laboratory Values			Vital Signs			Ventilator Variables				
wodei	Age	Gender	рΗ	PaO ₂	PaCO₂	Creat	Bili	HCO ₃	Plat	MAP	RR	HR	FiO2	PEEP	V _T /PBW
1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	Х	Х	Х	Х	Х	Х	Х	Х		Х	х	Х	Х		
4	Х	Х	Х	Х		Х	Х	Х		Х	х	Х	Х		
5			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
6	Х	Х	Х	X		Х		Х		Х	х	Х	Х		
7			Х	X	Х	Х	Х	Х		х	х	Х	Х		
8			Х	x		Х	Х	Х		Х	Х	Х	Х		
9			Х	x	Х			Х		Х	Х	Х			
10	Х	Х								Х	Х	х			

eTable 5 - List of variables in each model assessed

Abbreviations: Bili denotes bilirubin, Creat is creatinine, HR is heart rate, MAP is mean arterial pressure, PEEP is positive end-expiratory pressure, Plat is platelets, RR is respiratory rate and Vr/PBW is tidal volume per predicted body weight.

BMJ Open

ige, year* Aale gender - no. (%) Gody mass index, kg/m ² Saucasian - no. (%) Etiology - no. (%) Pneumonia Sepsis Aspiration	Cluster 1 (n = 336) 53.0 (39.0 - 66.2) 188 (56.0) 27.0 (22.9 - 31.1) 263 (78.3) 130 (38.7) 63 (18.8) 55 (16.4)	Cluster 2 (<i>n</i> = 157) 46.0 (37.0 - 60.0) 86 (54.8) 25.2 (21.7 - 30.2) 102 (65.0) 66 (42.0)	<i>p</i> value 0.007 0.883 0.050 0.002 0.001	Cluster 1 (<i>n</i> = 279) 49.0 (37.0 - 64.0) 169 (60.6) 25.8 (23.0 - 30.2) 220 (78.9)	Cluster 2 (<i>n</i> = 100) 47.5 (36.0 - 61.0) 61 (61.0) 24.4 (21.5 - 29.7) 65 (65.0)	<i>p</i> value 0.180 0.965 0.057
Age, year* Aale gender - no. (%) Body mass index, kg/m ² Caucasian - no. (%) Etiology - no. (%) Pneumonia Sepsis Aspiration	53.0 (39.0 - 66.2) 188 (56.0) 27.0 (22.9 - 31.1) 263 (78.3) 130 (38.7) 63 (18.8) 55 (16.4)	46.0 (37.0 - 60.0) 86 (54.8) 25.2 (21.7 - 30.2) 102 (65.0) 66 (42.0)	0.007 0.883 0.050 0.002 0.001	49.0 (37.0 - 64.0) 169 (60.6) 25.8 (23.0 - 30.2) 220 (78.9)	47.5 (36.0 - 61.0) 61 (61.0) 24.4 (21.5 - 29.7) 65 (65.0)	0.180 0.965 0.057
Male gender - no. (%) Body mass index, kg/m ² Caucasian - no. (%) Etiology - no. (%) Pneumonia Sepsis Aspiration	188 (56.0) 27.0 (22.9 - 31.1) 263 (78.3) 130 (38.7) 63 (18.8) 55 (16.4)	86 (54.8) 25.2 (21.7 - 30.2) 102 (65.0) 66 (42.0)	0.883 0.050 0.002 0.001	169 (60.6) 25.8 (23.0 - 30.2) 220 (78.9)	61 (61.0) 24.4 (21.5 - 29.7) 65 (65.0)	0.965 0.057
Body mass index, kg/m ² Caucasian - no. (%) Etiology - no. (%) Pneumonia Sepsis Aspiration	27.0 (22.9 - 31.1) 263 (78.3) 130 (38.7) 63 (18.8) 55 (16.4)	25.2 (21.7 - 30.2) 102 (65.0) 66 (42.0)	0.050 0.002 0.001	25.8 (23.0 - 30.2) 220 (78.9)	24.4 (21.5 - 29.7) 65 (65.0)	0.057
Caucasian - no. (%) Etiology - no. (%) Pneumonia Sepsis Aspiration	263 (78.3) 130 (38.7) 63 (18.8)	102 (65.0) 66 (42.0)	0.002 0.001	220 (78.9)	65 (65.0)	0 000
tiology - no. (%) Pneumonia Sepsis Aspiration	130 (38.7) 63 (18.8) 55 (16.4)	66 (42.0)	0.001		()	0.009
Pneumonia Sepsis Aspiration	130 (38.7) 63 (18.8) 55 (16.4)	66 (42.0)				< 0.00
Sepsis Aspiration	63 (18.8) 55 (16.4)			83 (29.7)	30 (30.0)	
Aspiration	55 (16 1)	50 (31.8)		64 (22.9)	43 (43.0)	
	JJ (10.4)	19 (12.1)		44 (15.8)	14 (14.0)	
Trauma	33 (9.8)	5 (3.2)		43 (15.4)	4 (4.0)	
Other	55 (16.4)	17 (10.8)		45 (16.1)	9 (9.0)	
Prognostic scores						
APACHE III	71. (59.0 - 83.0)	93.0 (80.0 - 110.0)	< 0.001	77.0 (66.0 - 90.5)	97.0 (81.8 (110.0)	< 0.00
Ise of vasopressor - no. (%)	65 (20.1)	80 (51.3)	< 0.001	77 (27.6)	52 (52.5)	< 0.00
/ital signs						
Temperature, ºC	37.6 (37.1 - 38.2)	37.7 (36.9 - 38.3)	0.778	37.6 (37.1 - 38.1)	37.6 (36.8 - 38.4)	0.803
Heart rate, bpm	97.5 (83.0 - 109)	111.0 (97.0 - 126)	< 0.001	101.0 (89.0 - 112.5)	118 (105.0 - 128.0)	< 0.00
Mean arterial Pressure, mmHg	77.3 (77.0 - 87.3)	73.3 (65.0 - 80.3)	< 0.001	78.0 (70.7 - 88.0)	70.5 (64.9 - 80.4)	< 0.00
SpO ₂ , %	96 (94 - 97)	95 (92 - 97)	0.005	95 (93 - 98)	95.5 (93 - 97)	0.799
Urine output in 24 hours, mL	2065 (1355 - 3255)	1433 (569 - 2189)	< 0.001	2100 (1375 - 3096)	1525 (816 - 2650)	0.001
aboratory tests						
Hematocrit, %	31.0 (28.0 - 34.0)	31.0 (27.0 - 35.0)	0.617	30.0 (28.0 - 33.0)	31.0 (28.0 - 34.0)	0.299
White blood cell count, 10 ⁹ /L	11.7 (8.1 - 15.3)	10.7 (6.4 - 15.8)	0.166	11.9 (7.7 - 16.7)	9.8 (5.4 - 16.7)	0.057
Platelets, 10 ⁹ /L	173 (94 - 266)	141 (57 - 214)	0.001	139 (80 - 212)	125 (72 - 196)	0.260
Creatinine, mg/dL	0.9 (0.7 - 1.3)	1.5 (0.9 - 3.0)	< 0.001	1.0 (0.7 - 1.4)	1.8 (1.2 - 3.2)	< 0.00
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.9 (0.4 - 1.8)	0.289	1.0 (0.6 - 2.1)	1.1 (0.7 - 2.7)	0.106
rterial blood gas						
pH*	7.42 (7.38 - 7.45)	7.31 (7.24 - 7.36)	< 0.001	7.42 (7.38 - 7.47)	7.33 (7.28 - 7.37)	< 0.00
PaO ₂ , mmHg	78 (68 - 93)	74 (65 - 92)	0.082	75 (66 - 91)	81 (68 - 96)	0.106
PaO ₂ / FiO ₂	149 (109 - 192)	103 (74 - 136)	< 0.001	118 (83 - 160)	99 (68 - 137)	0.006

Peopling Characteristics and Clinical Outcomes Assording to the Clusters and Two Trials in the Validation Set a Tabla G

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
BMJ Open

PaCO ₂ , mmHg	38 (34 - 43)	36 (31 - 42)	0.046	37 (31 - 41)	34 (28.8 - 39.2)	0.003
Bicarbonate, mmol/L	24 (21 - 27)	17 (13 - 20)	< 0.001	23 (20 - 26)	16 (13 - 19)	< 0.001
Ventilatory variables						
Tidal volume, mL	500 (437 - 600)	480 (400 - 572)	0.002	700 (600 - 750)	700 (550 - 700)	0.198
Per PBW, mL/kg PBW	8.0 (6.9 - 9.5)	7.4 (6.2 - 9.2)	0.006	10.1 (9.2 - 11.1)	10.6 (9.0 - 11.4)	0.383
Plateau pressure, cmH ₂ O	25.0 (21.0 - 30.0)	29.0 (24.0 - 33.0)	< 0.001	29.0 (24.0 - 34.0)	31.0 (27.0 - 36.0)	0.018
PEEP, cmH ₂ O	10 (5 - 10)	10 (8 - 14)	< 0.001	8 (5 - 10)	10 (5 - 12)	0.150
Respiratory rate, breaths/min	20 (15 - 25)	30 (24 - 35)	< 0.001	18 (14 - 21)	24 (18.8 - 28)	< 0.001
FiO ₂	0.50 (0.44 - 0.65)	0.75 (0.60 - 1.00)	< 0.001	0.60 (0.50 - 0.70)	0.70 (0.59 - 0.96)	< 0.001

peer review only

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, V_T/PBW denotes tidal volume per predicted body weight.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

. . .

		SAILS			ART	
	Cluster 1 (<i>n</i> = 319)	Cluster 2 (<i>n</i> = 188)	<i>p v</i> alue	Cluster 1 (<i>n</i> = 211)	Cluster 2 (<i>n</i> = 298)	<i>p v</i> alue
Age, year*	57.0 (46.0 - 67.0)	53.5 (39.0 - 65.0)	0.035	54.0 (37.0 - 65.0)	50.0 (35.2 - 61.0)	0.075
Male gender - no. (%)	150 (47.0)	100 (53.2)	0.211	136 (64.5)	181 (60.7)	0.448
Body mass index, kg/m ²	28.5 (23.9 - 34.6)	29.8 (23.2 - 35.1)	0.903	28.8 (24.6 - 35.6)	28.4 (25.0 - 31.7)	0.367
Caucasian - no. (%)	250 (78.4)	140 (74.5)	0.369			
Etiology - no. (%)			0.709			0.052
Pneumonia	228 (71.5)	127 (67.6)		113 (53.6)	171 (57.4)	
Sepsis	63 (19.7)	39 (20.7)		38 (18.0)	59 (19.8)	
Aspiration	19 (6.0)	15 (8.0)		13 (6.2)	16 (5.4)	
Trauma	3 (0.9)	1 (0.5)		10 (4.7)	2 (0.7)	
Other	6 (1.9)	6 (3.2)		37 (17.5)	50 (16.8)	
Prognostic scores						
APACHE III	70.0 (56.0 - 84.0)	92.0 (75.0 - 105.8)	< 0.001			
SAPS III		40.		62 (50 - 71)	66 (53 - 75)	0.010
Use of vasopressor - no. (%)	150 (47.8)	142 (78.5)	< 0.001	130 (61.6)	242 (81.2)	< 0.001
Vital signs						
Temperature, °C	37.2 (36.7 - 37.8)	37.3 (36.7 - 38.0)	0.346			
Heart rate, bpm	91.0 (80.5 - 103.0)	102.0 (88.8 - 117.0)	< 0.001	90.0 (73.0 - 103.0)	112.0 (97.2 - 126.0)	< 0.001
Mean arterial Pressure, mmHg	78.0 (69.5 - 88.0)	70.0 (63.0 - 78.)	< 0.001	80.0 (73.5 - 89.0)	75.0 (70.0 - 83.0)	< 0.001
SpO ₂ , %	96 (95 - 99)	96 (93 - 99)	0.270	N -7		
Urine output in 24 hours, mL	1570 (852 - 2383)	920 (350 - 1665)	< 0.001			
Laboratory tests						
Hematocrit, %	31 (27 - 35)	31 (28 - 37)	0.142			
White blood cell count, 10 ⁹ /L	13.6 (8.5 - 18.1)	15.4 (9.8 - 23.3)	0.009			
Platelets, 10 ⁹ /L	164 (96 - 238)	131 (80 - 223)	0.032	177 (120 - 292)	169 (90 - 256)	0.048
Creatinine, mg/dL	1.0 (0.7 - 1.5)	1.4 (0.9 - 2.6)	< 0.001	1.0 (0.7 - 1.5)	1.7 (1.0 - 2.8)	< 0.001
Bilirubin, mg/dL	0.8 (0.5 - 1.4)	0.8 (0.5 - 1.6)	0.630	0.6 (0.4 - 1.2)	0.9 (0.4 - 1.7)	0.002
Arterial blood gas						
pH*	7.39 (7.35 - 7.44)	7.31 (7.24 - 7.35)	< 0.001	7.4 (7.3 - 7.4)	7.2 (7.2 - 7.3)	< 0.001
PaO ₂ , mmHg	82 (68 - 101)	86 (72 - 111.2)	0.112	118 (82 - 158)	104 (78 - 152)	0.065

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

PaO ₂ / FiO ₂	139 (98 - 195)	107 (74 - 159)	< 0.001	118 (82 - 158)	104 (78 - 152)	0.065
PaCO ₂ , mmHg	38 (34 - 45)	38 (32 - 44)	0.423	46 (41 - 56)	53 (42 - 65)	< 0.001
Bicarbonate, mmol/L	23 (20 - 26)	17 (14 - 21)	< 0.001	25.2 (22.5 - 28.8)	20.6 (17.8 - 23.4)	< 0.001
Ventilatory variables						
Tidal volume, mL	420 (360 - 480)	400 (340 - 450)	0.016	360 (320 - 400)	350 (300 - 397.8)	0.008
Per PBW, mL/kg PBW	6.4 (6.0 - 7.3)	6.1 (5.9 - 7.0)	0.030	6.0 (5.3 - 6.1)	5.9 (5.1 - 6.1)	0.034
Plateau pressure, cmH ₂ O	22.0 (18.0 - 27.0)	25.0 (20.0 - 29.0)	0.003	24.0 (21.0 - 28.0)	27.0 (23.0 - 30.0)	< 0.001
PEEP, cmH₂O	8 (5 - 10)	10 (8 - 13)	0.001	10 (10 - 14)	12 (10 - 14)	< 0.001
Respiratory rate, breaths/min	23 (19 - 27)	30 (24 - 35)	< 0.001	24 (20 - 28)	30 (24 - 34)	< 0.001
FiO ₂	0.50 (0.40 - 0.60)	0.70 (0.50 - 0.90)	< 0.001	0.70 (0.60 - 0.80)	0.80 (0.70 - 1.00)	< 0.001

Data are mean ± standard deviation, median (quartile 25th - quartile 75th) or N (%)

Abbreviations: APACHE denotes Acute Physiology and Chronic Health Evaluation, V₇/PBW denotes tidal volume per predicted body weight...

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 eTable 8 - Biomarker levels by study and cluster

2		ARMA				ALVEOLI		
3 4 -	Subphenotype A (<i>n</i> = 279)	Subphenotype B (<i>n</i> = 100)	Median Difference (95% Cl)	p value	Subphenotype A (<i>n</i> = 336)	Subphenotype B (<i>n</i> = 157)	Median Difference (95% Cl)	<i>p</i> value
G ICAM-1	654.0 (399.0 - 959.4)	888.0 (550.0 - 1365.3)	234 (60.3 to 407.8)	0.002	847.9 (585.7 - 1227.1)	1070.4 (748.2 - 1588.8)	219.4 (90.4 to 348.4)	< 0.001
7 IL-6	214.0 (91.8 - 553.5)	966.0 (291.0 - 2200.0)	749.1 (589.9 to 908.2)	< 0.001	182.5 (85.5 - 435.2)	775.0 (148.0 - 2846.5)	592 (515.5 to 668.6)	< 0.001
8 PAI-1	65.3 (37.8 - 109.5)	101.7 (50.8 - 291.6)	41 (18.3 to 63.7)	0.001	Not assessed	Not assessed		
9 IL-8	46.0 (2.0 - 91.0)	106.9 (43.8 - 281.4)	60.9 (35.6 to 86.2)	< 0.001	Not assessed	Not assessed		
10 11 ^{IL-10}	16.0 (0.0 - 40.3)	47.9 (0.0 - 120.7)	31.9 (20.2 to 43.6)	< 0.001	Not assessed	Not assessed		
12 ^{TNFR-I}	2604.0 (1950.0 - 3777.0)	6897.0 (3622.5 - 12281.5)	4293 (3323.6 to 5262.4)	< 0.001	Not assessed	Not assessed		
13 TNFR-II	6581.0 (4958.0 - 9658.0)	18611.0 (12262.5 - 35652.0)	12030 (9577.5 to 14482.5)	< 0.001	Not assessed	Not assessed		
14 _{SPA}	29.0 (11.8 - 68.0)	25.0 (10.5 - 40.0)	-4 (-19.9 to 11.9)	0.398	Not assessed	Not assessed		
15 16 ^{SPD}	76.0 (36.2 - 145.2)	59.0 (30.0 - 125.0)	-18 (-52.6 to 16.6)	0.254	Not assessed	Not assessed		
1 <u>7</u> VW	308.0 (165.5 - 431.0)	384.0 (246.0 - 549.0)	76 (-26.5 to 178.5)	0.045	Not assessed	Not assessed		

18 Data are median (quartile 25th - quartile 75th).

19 Abbreviations: 95% CI denotes 95% confidence interval, ICAM-1 is intercellular adhesion molecule-1, IL-6 is interleukin-6, PAI-1 is plasminogen activator inhibitor-1, IL-8 is interleukin-8, IL-10 is interleukin-10, TNFR-20 l is tumor necrosis factor receptor 1, TNFR-II is tumor necrosis factor II, SPA is surfact protein A, SPD is surfact Protein D and VW is Von Willebrand factor.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eTable 9 - Percentage of missingness in biomarker levels measured on day of
randomization, on ARMA and ALVEOLI trials for patients with an assigned
subphenotype

Biomarker	AR (<i>n</i> =	8MA 379)	ALVEOLI (<i>n</i> = 493)			
	Subphenotype A	Subphenotype B	Subphenotype A	Subphenotype B		
ICAM-1	43%	31%	4%	3%		
IL-6	41%	33%	4%	4%		
PAI-1	42%	32%	Not assessed	Not assessed		
IL-8	41%	33%	Not assessed	Not assessed		
IL-10	42%	33%	Not assessed	Not assessed		
TNFR-I	68%	61%	Not assessed	Not assessed		
TNFR-II	68%	61%	Not assessed	Not assessed		
SPA	67%	61%	Not assessed	Not assessed		
SPD	67%	61%	Not assessed	Not assessed		
VW	67%	61%	Not assessed	Not assessed		

Abbreviations: ICAM-1 is intercellular adhesion molecule-1, IL-6 is interleukin-6, PAI-1 is plasminogen activator inhibitor-1, IL-8 is interleukin-8, IL-10 is interleukin-10, TNFR-I is tumor necrosis factor receptor 1, TNFR-II is tumor necrosis factor II, SPA is surfact protein A, SPD is surfact Protein D and VW is Von Willebrand factor.

eFigure 1 - Calinski-Harabasz Index and Elbow Method for Each of the 10 Models

different clusters.

Abbreviations: Art. pH is arterial pH, Bicarb is bicarbonate, MAP is mean arterial pressure, Creat is creatinine and Resp. Rate is respiratory rate

Reference:

1. Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of Ventilator-Free Days in Critical Care Research. Am J Respir Crit Care Med.2019 Oct 1;200(7):828-836. doi: 10.1164/rccm.201810-2050CP.

to beet terier only

Reporting checklist for prediction model development/validation.

Based on the TRIPOD guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the TRIPODreporting guidelines, and cite them as:

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.

			Page
		Reporting Item	Number
Title		4	
	<u>#1</u>	Identify the study as developing and / or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract			
	<u>#2</u>	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2
Introduction			
	<u>#3a</u>	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	6
	<u>#3b</u>	Specify the objectives, including whether the study describes the	6
	For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 49 of 50

BMJ Open

1			development or validation of the model or both.	
<u>}</u>	Methods			
	Source of data	<u>#4a</u>	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	8
0 1 2	Source of data	<u>#4b</u>	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	8
3 4 5 6	Participants	<u>#5a</u>	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	8
7 8	Participants	<u>#5b</u>	Describe eligibility criteria for participants.	8
9 20 21	Participants	<u>#5c</u>	Give details of treatments received, if relevant	8
22 23 24	Outcome	<u>#6a</u>	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	9
.5 26 27	Outcome	<u>#6b</u>	Report any actions to blind assessment of the outcome to be predicted.	N/A
8 9 0 1 2	Predictors	<u>#7a</u>	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured	8
3 4 5 6	Predictors	<u>#7b</u>	Report any actions to blind assessment of predictors for the outcome and other predictors.	N/A
7 8	Sample size	<u>#8</u>	Explain how the study size was arrived at.	8
9 0 1 2 3	Missing data	<u>#9</u>	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	9
- 5 6 7	Statistical analysis methods	<u>#10a</u>	If you are developing a prediction model describe how predictors were handled in the analyses.	N/A
8 9 0 1 2 3	Statistical analysis methods	<u>#10b</u>	If you are developing a prediction model, specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	N/A
4 5 6 7	Statistical analysis methods	<u>#10c</u>	If you are validating a prediction model, describe how the predictions were calculated.	N/A
/ 8 9	Statistical analysis	<u>#10d</u>	Specify all measures used to assess model performance and, if relevant,	10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

4 5

1	methods		to compare multiple models.	
2 3 4 5	Statistical analysis methods	<u>#10e</u>	If you are validating a prediction model, describe any model updating (e.g., recalibration) arising from the validation, if done	N/A
6 7	Risk groups	<u>#11</u>	Provide details on how risk groups were created, if done.	11
8 9 10 11	Development vs. validation	<u>#12</u>	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	10
12 13	Results			
14 15 16 17 18	Participants	<u>#13a</u>	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	12
20 21 22 23 24	Participants	<u>#13b</u>	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	12
25 26 27 28 29	Participants	<u>#13c</u>	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	12
30 31 32 33	Model development	<u>#14a</u>	If developing a model, specify the number of participants and outcome events in each analysis.	12
34 35 36 37	Model development	<u>#14b</u>	If developing a model, report the unadjusted association, if calculated between each candidate predictor and outcome.	N/A
38 39 40 41 42	Model specification	<u>#15a</u>	If developing a model, present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	N/A
43 44 45 46	Model specification	<u>#15b</u>	If developing a prediction model, explain how to the use it.	N/A
47 48 49 50	Model performance	<u>#16</u>	Report performance measures (with CIs) for the prediction model.	14
51 52 53 54	Model-updating	<u>#17</u>	If validating a model, report the results from any model updating, if done (i.e., model specification, model performance).	N/A
55 56	Discussion			
57 58 59	Limitations	<u>#18</u> For p	Discuss any limitations of the study (such as nonrepresentative sample,	19
50		- P		

Page 51 of 50			BMJ Open	
1			few events per predictor, missing data).	
2 3 4 5	Interpretation	<u>#19a</u>	For validation, discuss the results with reference to performance in the development data, and any other validation data	17
6 7 8	Interpretation	<u>#19b</u>	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	17
9 10 11 12	Implications	<u>#20</u>	Discuss the potential clinical use of the model and implications for future research	20
13 14	Other			
15 16	information			
17 18 19 20	Supplementary information	<u>#21</u>	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	22
21 22 23 24	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study.	22
25	The TRIPOD che	cklist is d	istributed under the terms of the Creative Commons Attribution License CC-BY	
26 27	This checklist wa	s complet	ed on 07. May 2021 using https://www.goodreports.org/, a tool made by the	
28 29	EQUATOR Netw	vork in col	llaboration with <u>Penelope.ai</u>	
30				
31 32				
33 34				
35				
36 37				
38				
39 40				
41 42				
43				
44 45				
46				
47 48				
49 50				
50 51				
52 53				
54				
55 56				
57 58				
50				