

² Supplementary Information for

- The effectiveness of nudging: A meta-analysis of choice
- architecture interventions across behavioral domains
- ⁵ Stephanie Mertens, Mario Herberz, Ulf J. J. Hahnel, and Tobias Brosch
- 6 Stephanie Mertens; Tobias Brosch
- 7 E-mail: stephanie.mertens@unige.ch; tobias.brosch@unige.ch

This PDF file includes:

- ⁹ Supplementary text
- 10 Fig. S1
- Tables S1 to S4
- 12 SI References

Supporting Information Text

14 Materials and Methods

30 31

The meta-analysis was conducted in accordance with guidelines for conducting systematic reviews (1) and conforms to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; 2) standards.

Literature search and review process. Figure S1 illustrates the literature search and review process. Our initial literature search identified a total of 10,480 published articles through the electronic databases PsycINFO, PubMed, PubPsych, and ScienceDirect as well as through the reference lists of relevant review articles. In addition, 71 unpublished articles were identified through governmental and non-governmental behavioral science units, the ProQuest Dissertations & Theses database, and calls for unpublished data in academic mailing lists. The final sample comprised 455 effect sizes from 214 publications.

Effect size calculation. To integrate the results of the publications identified as part of the literature search and review process, we calculated Cohen's d (3) for a standardized effect size measure of the mean difference between control and treatment conditions. For outcome variables that were measured on a continuous scale (e.g., the amount of money donated to charity), Cohen's d was calculated as the difference between means divided by the combined standard deviation. For dichotomous outcome variables (e.g., proportion of subjects donating to charity), Cohen's dwas calculated using the arcsine transformation illustrated in the equations below, where p equals the proportion of respondents showing the heavieral outcome of integerst (4)

²⁹ respondents showing the behavioral outcome of interest (4).

$$\begin{split} \varphi &= 2 arcsin \sqrt{p} \\ \text{Cohen's } d &= \varphi_{treatment} - \varphi_{control} \end{split}$$

Positive Cohen's *d* values were coded to reflect behavior change in the predicted direction, whereas negative values reflected an unpredicted change in behavior. If more than one outcome measure were reported, we selected the outcome that was identified as the primary variable of interest by the authors of the respective study. If no clear distinction was made between outcome variables or more than one outcome was identified to be of primary interest, all relevant outcome measures were coded. In cases where a behavioral outcome was measured at multiple time points, we coded the effect closest in time to the intervention as using later follow-up measures may confound the true intervention effect with the persistence of the effect (4).

³⁹ **Missing data.** In cases where studies did not report the respective sample size of their control and treatment conditions, ⁴⁰ we estimated sample sizes by dividing the overall size of the study sample by the number of conditions. Where effect ⁴¹ sizes could not be calculated based on the information provided, we contacted authors for the missing information. ⁴² Studies for which no effect size could be calculated even after contacting authors were excluded from the analyses ⁴³ (n = 11).

Moderator coding. Studies were coded by three raters (first and second authors of this paper as well as a graduate 44 research assistant). Following an initial training phase in which raters coded and discussed a reduced set of 30 studies, 45 each rater continued to independently code an assigned part of the remaining database. Given the large number of 46 studies, this division of coding was deemed necessary to ensure a timely analysis of the data. Throughout the coding 47 process, raters followed a written protocol that outlined the inclusion and exclusion criteria for studies, definitions and 48 examples of key moderators, and detailed instructions for the extraction of data (see section *Effect size calculation* 49 above.) Interrater reliability across a random sample of 20% of the publications was high, with Cohen's κ ranging 50 from 0.76 to 1 (M = 0.87). Any disagreements in coding were resolved by discussion. Table S1 provides an overview 51 of the categorization of studies across the three key moderators intervention category, intervention technique, and 52 behavioral domain. The full dataset is publicly available on the Open Science Framework (https://osf.io/fywae/). 53

⁵⁴ Classification of choice architecture interventions. Choice architecture interventions were classified using a taxonomy ⁵⁵ developed by Münscher and colleagues (5) which distinguishes three categories of choice architecture interventions: ⁵⁶ decison information, decision structure, and decision assistance (5). Each of these categories comprises specific ⁵⁷ intervention techniques that target different aspects of the choice environment, with decision information interventions ⁵⁸ targeting the way in which choice alternatives are described (e.g., framing, social reference points); decision structure ⁵⁹ interventions targeting the way in which those choice alternatives are organized and structured (e.g., choice defaults, ⁶⁰ effort); and decision assistance interventions targeting the way in which decisions can be reinforced (e.g., reminders, ⁶¹ commitment devices). For an overview of the taxonomy including examples, see Table 1 in the manuscript.

commitment devices). For an overview of the taxonomy including examples, see Table 1 in the manuscript.

Classification of behavioral domains. Based on a previous scoping review of the choice architecture literature (6) and 62 inspection of our data, interventions were categorized to belong to one of six behavioral domains: health, food, 63 environment, finance, pro-social behavior, and other behavior (Table S2 reports the distribution of effect sizes across 64 behavioral domains). Studies were coded to fall only under a single behavioral domain (for a similar approach see 65 7-9). In cases where studies qualified for more than one domain, the more distinct domain was chosen. This was 66 primarily the case in studies that investigated choice architecture interventions in a consumer context. Here, we 67 only categorized studies under the domain of consumer choice if they did not fall under any of the other behavioral 68 domains. For example, studies that investigated the effectiveness of choice architecture interventions in promoting the 69 purchase of energy efficient appliances were categorized under the behavioral domain of environment rather than 70 consumer choice. Overall, interrater reliability for behavioral domain was very high ($\kappa = 0.97$). 71

Classification of contextual study characteristics. Table S2 reports the distribution of effect sizes across the four contextual study characteristics investigated in our meta-analysis (i.e., geographical location, target population, type of experiment, and year of publication*). Type of experiment was classified using the taxonomy by Harrison and List (10), which distinguishes between conventional lab experiments, artefactual field experiments, framed field experiments, and natural field experiments.

77 Statistical analysis. All analyses reported in the paper are publicly available on the Open Science Framework 78 (https://osf.io/fywae/).

⁷⁹ **Effect size estimation.** Since the majority of publications included in our meta-analysis reported multiple relevant ⁸⁰ outcome variables and/or more than one study, we estimated the overall effect of choice architecture interventions ⁸¹ using a three-level meta-analytic model (see below for model specification within R Package metafor, 11). This ⁸² approach allowed us to account for the hierarchical structure in our data (i.e., the nesting of effect sizes within ⁸³ publications) that would otherwise violate the assumption of independence of traditional meta-analytic approaches ⁸⁴ (4). Specifically, our three-level model accounted for variance in the observed effect sizes (level 1), variance between ⁸⁵ effect sizes within the same publication (level 2), and variance between publications (level 3).

Although this multilevel approach accounts for the hierarchical dependence among effect sizes, it does not control for any dependence in sampling errors due to overlapping samples (e.g., in cases where multiple treatment conditions are compared to the same control condition). We therefore calculated cluster-robust standard errors, confidence intervals, and statistical tests for each effect size estimate (see below for specification within R Package metafor, 11–13). Since samples only overlapped on a study level, we defined clusters on the basis of study rather than publication[†].

93

robust(rma.mv_model, cluster = df\$study_id, adjust = TRUE)

Sensitivity analysis. To test the robustness of the effect size of choice architecture interventions, we first examined the 94 data for influential outliers. Influential outliers were defined as effect sizes with standardized residual values above 95 3 (14) and Cook's distance values above 0.009. Following Fox (15), this cut-off value was based on the calculation 96 of 4/(n-k-1), where n refers to the overall number of effect sizes included in the analysis and k refers to the 97 number of parameters of interest¹. Based on these criteria, we identified three influential outliers, with Cohen's d 98 values ranging between 3.08 and 4.69 (16, 17). To analyze the extent to which these outliers drove the overall effect 99 size of choice architecture interventions, we removed them from our analysis and re-estimated the effect of choice 100 architecture interventions on behavior. Complementing the analysis of influential outliers, we ran two additional 101 robustness checks that estimated the impact of each individual effect size and publication on the overall effect of 102 choice architecture interventions. To this end, we followed a leave-one-out procedure in which the effect of choice 103 architecture was repeatedly re-estimated while leaving out one effect size or one publication at a time. 104

^{*} Note that some previously unpublished studies have been published since the literature search for this meta-analysis was completed. The year of publication reported here and in the main manuscript reflects the latest publication status of studies.

[†]Note that studies were defined based on samples rather than experiments to adequately reflect dependence. In cases where two or more independent samples were reported within the same experiment (e.g., experiments with more than one categorical independent variable or multiple intervention sites), unique study IDs were assigned to each observation; in cases where multiple treatment conditions within an experiment were compared to the same control condition, the same study ID was assigned to each observation.

¹Note that this approach produces a conservative estimate of influence; others have suggested using a Cook's distance value of > 1 as a cut-off (14).

Moderator analyses. In order to identify systematic differences between choice architecture interventions, we ran 105 multiple moderator analyses in which we independently tested for the effects of type of intervention, behavioral 106 domain, and contextual study characteristics. For these analyses, we extended our meta-analytic model to include 107 fixed effects for each moderator of interest. To analyze the effect of type of intervention, for example, we extended 108 the model to include dummy coded variables for the three intervention categories and nine intervention techniques 109 defined by Münscher et al.'s taxonomy (5), respectively. Similarly, we introduced dummy coded variables for the 110 six behavioral domains we identified during coding to analyze potential differences in the effectiveness of choice 111 architecture interventions across domains. Both models were combined to determine the specific effect of each 112 intervention category in each individual behavioral domain. In all four of these moderator analyses, we included 113 year of publication as a standardized covariate to control for contextual confounds and thus render more precise 114 effect size estimates. Introducing additional study characteristics as covariates did not improve the model fit. For 115 parsimony reasons, we therefore restrained the number of covariates in the model to year of publication (see below for 116 sample specification within R Package metafor, 11). Finally, to test the extent to which general study characteristics 117 influenced the effect of choice architecture interventions, we extended our meta-analytic model to include dummy 118 coded variables for type of location, target population, type of experiment, and a standardized variable for the year in 119 which the data were published, respectively. 120

123 Results

Heterogeneity across moderators. Introducing intervention category as a moderator in our meta-analytic model marginally decreased the ratio of true to total variability in effect sizes from $I^2 = 99.67\%$ to $I^2 = 99.57\%$. Likewise, including behavioral domain as a moderator decreased heterogeneity to $I^2 = 99.58\%$. As illustrated in Table S3, both moderators had a stronger effect on the heterogeneity between publications than within publications. Introducing general study characteristics as moderators similarly decreased heterogeneity among effect sizes to $I^2 = 99.53\%$.

Fig. S1. Flow diagram illustrating the literature search and review process.

		Categorization	
Reference	Intervention category	Intervention technique	Behavioral domain
Abhyankar et al. (2014)	Structure	Default	Health
Alemany et al. (2019)	Information	Visibility	Other
Alinia et al. (2011)	Structure	Effort	Food
Ansher et al. (2013)	Structure	Default	Health
Antonuk & Block (2006)	Information	Translation	Food
Anzman-Frasca et al. (2018)	Assistance	Reminder	Food
Araña & León (2013)	Structure	Default	Environment
Bachman & Katzev (1982)	Assistance	Commitment	Environment
Bacon & Krpan (2018), treatment 1	Information	Social reference	Food
Bacon & Krpan (2018), treatment 2	Structure	Composition	Food
Baek et al. (2014)	Structure	Default	Other
Bamberg (2002)	Assistance	Commitment	Environment
Banks (1995)	Information	Translation	Health
Barnes et al. (2021), experiment 1, treatment 1	Information	Visibility	Finance
Barnes et al. (2021), experiment 2, treatment 1	Assistance	Reminder	Finance
Bartke et al. (2017), treatment 1	Information	Social reference	Pro-social
Basu & Savani (2017), experiment 1	Structure	Composition	Other
Basu & Savani (2017), experiment 2-7	Structure	Composition	Finance
Behavioural Economics Team of the Australian Government (2017)	Information	Visibility	Other
Behavioural Economics Team of the Australian Government (2018)	Information	Translation	Environment
Behavioural Economics & Research Team, Behavioural Economics Team of the Australian Government (2018), treatment 1	Information	Visibility	Health
Economics Team of the Australian Government (2018), treatment 2	Information	Social reference	Health
Behavioural Economics Team of the Australian Government (2019), treatment 1–3	Assistance	Reminder	Finance
Behavioural Insights Team (2013), treatment 1–3	Information	Social reference	Pro-social
Behavioural Insights Team (2013), treatment 4–5	Information	Visibility	Pro-social
Bergeron et al. (2019)	Structure	Default	Food
Bhanot (2017)	Assistance	Commitment	Finance
Bogliacino et al. (2015), treatment 1	Structure	Default	Health
Böhm & Theelen (2016), experiment 1	Information	Translation	Pro-social
Böhm & Theelen (2016), experiment 2	Information	Translation	Environment

Table S1. Categorization of studies across key moderators.

	Categorization			
Reference	Intervention category	Intervention technique	Behavioral domai	
Bohnet et al. (2016)	Structure	Composition	Other	
Broman et al. (2014), experiment 1	Structure	Default	Environment	
Bronchetti et al. (2011)	Structure	Default	Finance	
Brook & Servátka (2016)	Information	Visibility	Pro-social	
Bruns et al. (2018), treatment 1	Structure	Default	Environment	
Bucher et al. (2014)	Structure	Composition	Food	
Burns & Rothman (2015), experiment 2	Structure	Composition	Food	
Byrd et al. (2018), treatment 2–3	Information	Visibility	Food	
Camilleri & Larrick (2014)	Information	Translation	Environment	
Capraro et al. (2018)	Assistance	Reminder	Pro-social	
Carrera et al. (2018)	Assistance	Commitment	Health	
Carroll et al. (2018)	Structure	Composition	Food	
Carter & González-Vallejo (2018), treatment 1	Assistance	Reminder	Food	
Castleman & Page (2015), treatment 1	Assistance	Reminder	Other	
Castleman & Page (2016)	Assistance	Reminder	Other	
Catlin & Wang (2013), experiment 1	Structure	Consequence	Environment	
Chapman et al. (2010)	Structure	Default	Health	
Chen et al. (2016)	Structure	Consequence	Pro-social	
Cheung et al. (2017)	Information	Social reference	Food	
Chou & Murnighan (2013), experiment 2	Information	Translation	Pro-social	
Courtright et al. (2017)	Structure	Composition	Health	
Coventry et al. (2016)	Information	Social reference	Other	
D'Adda et al. (2017), treatment 1	Structure	Default	Pro-social	
D'Adda et al. (2017), treatment 2	Information	Social reference	Pro-social	
Damgaard & Gravert (2018)	Assistance	Reminder	Pro-social	
De Wild et al. (2015)	Structure	Composition	Food	
Demarque et al. (2015)	Information	Social reference	Environment	
Dickerson et al. (1992), treatment 2	Assistance	Reminder	Environment	
Dickerson et al. (1992), treatment 3	Assistance	Commitment	Environment	
Diliberti et al. (2004)	Structure	Default	Food	
Dinner et al. (2011)	Structure	Default	Environment	
Dogruel et al. (2017)	Structure	Default	Other	
Dos Santos et al. (2020)	Assistance	Reminder	Food	
Ebeling & Lotz (2015)	Structure	Default	Environment	
Engell et al. (1996)	Structure	Effort	Food	
Evans et al. (2011)	Structure	Default	Finance	

		Categorization	
Reference	Intervention category	Intervention technique	Behavioral domain
Everett et al. (2015), experiment 1, 3	Structure	Default	Pro-social
Everett et al. (2015), experiment 2	Structure	Default	Environment
Faralla et al. (2017)	Information	Translation	Finance
Firmino-Machado et al. (2018)	Assistance	Reminder	Health
Fisher (2018)	Information	Visibility	Food
Frydman & Rangel (2014)	Information	Visibility	Finance
Ganzach & Karsahi (1995)	Information	Translation	Finance
Gärtner (2018)	Structure	Default	Pro-social
Geier et al. (2012)	Structure	Composition	Food
Gerend (2009)	Information	Visibility	Food
Goldstein et al. (2011), experiment 2–5	Structure	Consequence	Pro-social
Goldzahl et al. (2018), treatment 1, 3	Information	Social reference	Health
Gomez et al. (2016)	Structure	Composition	Other
Gong et al. (2017)	Information	Translation	Environment
Gopalan et al. (2014)	Information	Translation	Health
Goswami & Urminsky (2016)	Structure	Default	Pro-social
Grant et al. (2018)	Information	Translation	Health
Grépin et al. (2019), treatment 3a, 3b	Assistance	Reminder	Health
Hainmueller et al. (2018), treatment 1, 2	Assistance	Reminder	Other
Hainmueller et al. (2018), treatment 4	Structure	Effort	Other
Hallsworth et al. (2015), experiment 1, treatment 1	Structure	Effort	Health
Hallsworth et al. (2015), experiment 2, treatment 1	Information	Translation	Health
Halpern et al. (2013)	Structure	Default	Health
Handgraaf et al. (2013)	Information	Visibility	Environment
Harnack et al. (2008), treatment 1	Information	Visibility	Food
Haward et al. (2012)	Structure	Default	Health
Hedlin & Sunstein (2016)	Structure	Default	Environment
Hershfield et al. (2014), experiment 2	Information	Translation	Environment
Hilton et al. (2014), experiment 1	Assistance	Reminder	Environment
Hou (2017), experiment 1	Information	Social reference	Food
Hu et al. (2018)	Information	Social reference	Other
mpact and Innovation Unit (2018), treatment 2	Structure	Consequence	Pro-social
Impact and Innovation Unit (2018), treatment 3–4	Information	Visibility	Pro-social

		Categorization	
Reference	Intervention category	Intervention technique	Behavioral domain
Impact and Innovation Unit (2018), treatment 5–6	Information	Social reference	Pro-social
Impact and Innovation Unit (2018), treatment 7	Information	Translation	Pro-social
Isaksen et al. (2019)	Information	Translation	Pro-social
Jin (2011)	Structure	Default	Other
Johnson & Goldstein (2003)	Structure	Default	Pro-social
Johnson et al. (1993), experiment 4	Information	Translation	Finance
Johnson et al. (1993), experiment 6	Structure	Default	Finance
Johnson et al. (2002)	Structure	Default	Other
Johnston et al. (2018)	Information	Social reference	Other
Junger et al. (2017), treatment 2	Assistance	Reminder	Other
Keller et al. (2011)	Structure	Default	Health
Keller et al. (2015)	Structure	Effort	Food
Kersbergen et al. (2018)	Structure	Default	Food
Kesternich et al. (2019)	Structure	Default	Environment
Klotz et al. (2010)	Structure	Default	Environment
Knowles et al. (2019)	Structure	Effort	Food
Korn et al. (2018), treatment 1	Structure	Consequence	Health
Korn et al. (2018), treatment 2	Information	Social reference	Health
Kressel & Chapman (2007), experiment 1, treatment 1	Structure	Default	Health
Kressel & Chapman (2007), experiment 2	Structure	Default	Health
Kressel et al. (2007), treatment 1	Structure	Default	Health
Kuester et al. (2015)	Structure	Default	Environment
Kulendran et al. (2016)	Assistance	Commitment	Health
Lalor & Hailey (1989)	Information	Translation	Health
Larrick & Soll (2008), experiment 3	Information	Translation	Environment
Lehmann et al. (2016)	Structure	Default	Health
Libotte et al. (2014)	Structure	Default	Food
Lieberman et al. (2019), experiment 4	Information	Translation	Health
Liu et al. (2016), treatment 1	Assistance	Reminder	Health
Loeb et al. (2017)	Structure	Default	Health
Löfgren et al. (2012)	Structure	Default	Environment
Loibl et al. (2018), experiment 1	Assistance	Reminder	Finance
Loibl et al. (2018), experiment 2	Structure	Default	Finance
Maas et al. (2011)	Structure	Effort	Food

		Categorization	
Reference	Intervention category	Intervention technique	Behavioral domain
Mann & Bryant (2019)	Assistance	Reminder	Other
Marchiori et al. (2012), treatment 1	Structure	Default	Food
Marek (2018)	Structure	Composition	Environment
Martin & Norton (2009), experiment 4	Structure	Composition	Other
Martins & Szrek (2019)	Information	Translation	Other
McCalley & Midden (2002)	Assistance	Commitment	Environment
McCaul & Kopp (1982)	Assistance	Commitment	Environment
Meeker et al. (2014)	Assistance	Commitment	Health
Mehta et al. (2018)	Structure	Default	Health
Meng & Trudel (2017), experiment 2	Assistance	Reminder	Environment
Mertens et al. (2020), experiment 2	Information	Translation	Environment
Meyerowitz & Chaiken (1987)	Information	Translation	Health
Milkman et al. (2011)	Assistance	Commitment	Health
Miller et al. (2016), treatment 1	Assistance	Commitment	Food
Missbach & König (2016)	Structure	Effort	Food
Muñoz et al. (2017)	Assistance	Reminder	Health
Narula et al. (2014)	Structure	Default	Health
Neale & Bazerman (1985)	Information	Translation	Other
Nelson et al. (2019)	Structure	Default	Environment
Niven et al. (2019)	Information	Visibility	Food
Nyer & Dellande (2010)	Assistance	Commitment	Health
O'Leary et al. (2015)	Assistance	Reminder	Health
Or et al. (2014)	Structure	Default	Health
Paese (1995)	Information	Translation	Other
Park et al. (2010)	Information	Translation	Health
Patel et al. (2018), treatment 1	Structure	Default	Health
Pichert & Katsikopoulos (2008), experiment 3–4	Structure	Default	Environment
Prinsen et al. (2013), experiment 2-3	Information	Social reference	Food
Privitera & Zuraikat (2014)	Structure	Effort	Food
Pugatch & Wilson (2018), treatment 1	Assistance	Reminder	Other
Putnam-Farr & Riis (2016)	Structure	Default	Health
Raue et al. (2019)	Information	Social reference	Finance
Raynor & Wing (2007), treatment 1	Structure	Default	Food
Raynor & Wing (2007), treatment 2	Structure	Composition	Food
Reiter et al. (2012)	Structure	Default	Health

		Categorization	
Reference	Intervention category	Intervention technique	Behavioral domain
Rigtering et al. (2019), experiment 1, treatment 1	Structure	Default	Other
Roberto et al. (2010)	Information	Visibility	Food
Rodriguez & Saavedra (2019), treatment 1-2	Assistance	Reminder	Finance
Rohlfs Domínguez et al. (2013)	Structure	Composition	Food
Rosenkranz et al. (2017), treatment 1	Structure	Effort	Environment
Rothman et al. (1999), experiment 2	Information	Translation	Health
Ruback et al. (2014), treatment 1	Information	Visibility	Finance
Sacarny et al. (2018)	Information	Social reference	Health
Samek et al. (2016), treatment 2	Structure	Effort	Other
Saß et al. (2017)	Structure	Effort	Other
Saulais et al. (2016)	Assistance	Reminder	Food
Schram & Sonnemans (2011)	Structure	Composition	Finance
Schulz et al. (2018)	Structure	Default	Pro-social
Schwartz (2007)	Assistance	Reminder	Food
Schwartz et al. (2019), experiment 2, treatment 3 & 6	Structure	Consequence	Other
Schwartz et al. (2019), experiment 3a-3b, treatment 2	Structure	Consequence	Other
Sharif & Shu (2021), experiment 1	Structure	Consequence	Health
Sharif & Shu (2021), experiment 2–4a	Structure	Consequence	Other
Sharp & Sobal (2012)	Structure	Default	Food
Shealy & Klotz (2015)	Structure	Default	Environment
Shealy et al. (2016)	Structure	Default	Environment
Shealy et al. (2018), treatment 1	Information	Social reference	Environment
Shevchenko et al. (2014)	Structure	Default	Other
Shimizu et al. (2010)	Assistance	Reminder	Food
Shu et al. (2012), experiment 1 & 2	Assistance	Commitment	Pro-social
Small & Loewenstein (2003)	Information	Visibility	Pro-social
Sonntag & Zizzo (2015)	Assistance	Reminder	Pro-social
Soon et al. (2018)	Structure	Composition	Health
Stämpfli & Brunner (2016)	Assistance	Reminder	Food
Stämpfli et al. (2017), experiment 1	Assistance	Reminder	Food
Steffel et al. (2016), experiment 1a-b, 2a-4	Structure	Default	Other
Steffel et al. (2016), experiment 1c	Structure	Default	Food

		Categorization	
Reference	Intervention category	Intervention technique	Behavioral domai
Stephen & Lehmann (2016), experiment 1	Assistance	Reminder	Finance
Stikvoort et al. (2016)	Structure	Composition	Environment
Stok et al. (2014), treatment 1	Information	Social reference	Food
Tannenbaum et al. (2013), experiment 1a & 2	Structure	Composition	Other
Tannenbaum et al. (2013), experiment 1b	Structure	Composition	Finance
Tannenbaum et al. (2013), experiment 3–4	Structure	Composition	Food
Tasoff & Letzler (2014), treatment 1	Information	Social reference	Finance
Tasoff & Letzler (2014), treatment 2	Assistance	Reminder	Finance
Tasoff & Letzler (2014), treatment 3	Structure	Effort	Finance
Tavernier & Adam (2017)	Assistance	Reminder	Health
Taylor et al. (2015), treatment 3–4	Information	Social reference	Health
Theotokis & Manganari (2015), experiment 2	Structure	Default	Environment
Thorndike et al. (2016), treatment 1	Information	Social reference	Food
Thunström et al. (2018)	Assistance	Reminder	Other
Trevana et al. (2006)	Structure	Default	Other
Trudel et al. (2015), experiment 4	Assistance	Reminder	Food
Ubel et al. (2001)	Structure	Composition	Health
Van Bavel et al. (2019)	Assistance	Reminder	Other
Van Dalen & Henkens (2014)	Structure	Default	Pro-social
Van der Zanden et al. (2015), treatment 1	Assistance	Reminder	Food
Van Kleef, Otten, et al. (2012), experiment 1, treatment 1	Structure	Effort	Food
Van Kleef, Otten, et al. (2012), experiment 1, treatment 2	Structure	Composition	Food
Van Kleef et al. (2018), experiment 2	Structure	Default	Food
Van Kleef, Shimizu, et al. (2012)	Structure	Default	Food
Veldwijk et al. (2016)	Information	Translation	Health
Verplanken & Weenig (1993)	Information	Translation	Environment
Wansink & Hanks (2013)	Structure	Effort	Food
Wansink & Kim (2005)	Structure	Default	Food
Wansink & van Ittersum (2003)	Structure	Default	Food
Wansink, Cardello et al. (2005)	Structure	Default	Food
Wansink, Painter et al. (2005)	Structure	Default	Food
Wansink et al. (2017)	Structure	Composition	Food
Wansink et al. (2006)	Structure	Default	Food
Wansink et al. (2014), experiment 1	Structure	Default	Food
Xue et al. (2017), treatment 1	Structure	Consequence	Finance

		Categorization			
Reference	Intervention category	Intervention technique	Behavioral domain		
Yeomans & Herberich (2014)	Information	Social reference	Environment		
Young et al. (2009), experiment 2	Structure	Default	Health		
Zarghamee et al. (2017), experiment 1	Structure	Default	Pro-social		
Zarghamee et al. (2017), experiment 3	Information	Visibility	Pro-social		
Zeinstra et al. (2010)	Structure	Composition	Food		
Zikmund-Fisher et al. (2011)	Information	Social reference	Health		
Zuraikat et al. (2018)	Structure	Consequence	Food		

Moderator	% of effect sizes	Information	Structure	Assistance	Total
Behavioral domain					
Health	18.46	28	41	15	84
Food	24.40	24	69	18	111
Environment	16.70	30	33	13	76
Finance	9.89	12	18	15	45
Pro-social	14.51	23	27	16	66
Other	16.04	13	39	21	73
Consumer choice	3.08	2	10	2	14
Education	1.54	1	1	5	7
Organization	5.49	6	17	2	25
Politics	1.76	0	0	8	8
Privacy	4.18	4	11	4	19
Location					
Outside United States	40.88	71	77	38	186
Inside United States	59.12	59	150	60	269
Population					
Children and adolescents	5.93	3	11	13	27
Adults	94.07	127	216	85	428
Type of experiment					
Conventional lab	27.25	45	65	14	124
Artefactual field	35.16	45	95	20	160
Framed field	17.80	17	37	27	81
Natural field	19.78	23	30	37	90
Total	100.00	130	227	98	455

Table S2. Distribution of effect sizes across key moderators.

Table S3. Heterogeneity of effect sizes across key moderators.

Moderator	/ ^{2a}	1 ² (2) ^b	/2 ₍₃₎ c
Baseline	99.67	4.88	94.79
Intervention category	99.57	7.13	92.44
Behavioral domain	99.58	5.02	94.56
Intervention category $ imes$ behavioral domain	99.52	7.67	91.86
Study characteristics	99.62	5.27	94.35
All moderators	99.53	7.53	92.00

^a proportion of true to total heterogeneity

^b proportion of true to total heterogeneity within publications

^c proportion of true to total heterogeneity between publications

		E			
Intervention	k	d	95% CI	t	Р
	Fi	ull samp	le		
Decision information	24	0.52	[0.20, 0.84]	3.22	.001
Decision structure	69	0.86	[0.56, 1.17]	5.54	< .001
Decision assistance	18	0.44	[0.28, 0.59]	5.50	< .001
Average effect	111	0.72	[0.49, 0.95]	6.16	<.001
Samp	ole exclud	ding influ	ential outliers		
Decision information	24	0.43	[0.18, 0.67]	3.44	<.001
Decision structure	66	0.74	[0.50, 0.98]	6.07	<.001
Decision assistance	18	0.43	[0.27, 0.59]	5.37	<.001
Average effect	108	0.62	[0.44, 0.80]	6.83	< .001

Table S4. Effect size estimates across intervention categories in the food domain, with and without influential outliers.

Note. k = number of effect sizes; t = test of statistical difference to zero.

130 References

- ¹³¹ References marked with an asterisk (*) indicate studies that were included in the meta-analysis.
- 1. AP Siddaway, AM Wood, LV Hedges, How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. *Annu. Rev. Psychol.* **70**, 747–770 (2019).
- D Moher, A Liberati, J Tetzlaff, DG Altman, The PRISMA Group, Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. *PLoS Medicine* 6, 1–6 (2009).
- ¹³⁶ 3. J Cohen, *Statistical power analysis for the behavioral sciences*. (Lawrence Erlbaum Associates), (1988).
- 4. MW Lipsey, DB Wilson, *Practical meta-analysis*. (Sage Publications Inc), (2001).
- ¹³⁸ 5. R Münscher, M Vetter, T Scheuerle, A review and taxonomy of choice architecture techniques. J. Behav. Decis.
 ¹³⁹ Mak. 29, 511-524 (2016).
- 6. B Szaszi, A Palinkas, B Palfi, A Szollosi, B Aczel, A systematic scoping review of the choice architecture movement: Toward understanding when and why nudges work. J. Behav. Decis. Mak. **31**, 355–366 (2018).
- 7. J Beshears, H Kosowsky, Nudging: Progress to date and future directions. Organ. Behav. Hum. Decis. Process.
 161, 3–19 (2020).
- S DellaVigna, E Linos, RCTs to scale: Comprehensive evidence from two nudge units, (National Bureau of Economic Research), Working Paper 27594 (2020).
- 9. D Hummel, A Maedche, How effective is nudging? A quantitative review on the effect sizes and limits of
 empirical nudging studies. J. Behav. Exp. Econ. 80, 47–58 (2019).
- 10. GW Harrison, JA List, Field experiments. J. Econ. Lit. 42, 1009–1055 (2004).
- 149 11. W Viechtbauer, Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
- 150 12. AC Cameron, DL Miller, A practitioner's guide to cluster-robust inference. J. Hum. Resour. 50, 317–372 (2015).
- 13. LV Hedges, E Tipton, MC Johnson, Robust variance estimation in meta-regression with dependent effect size
 estimates. Res. Synth. Methods 1, 39–65 (2010).
- 14. J Cohen, P Cohen, SG West, LS Aiken, Applied multiple regression/correlation analysis for the behavioral sciences. (Lawrence Erlbaum Associates), 3 edition, (2003).
- 155 15. J Fox, *Regression diagnostics*. (Sage Publications Inc), (1991).
- 16. *PR Domínguez, et al., Providing choice increases children's vegetable intake. Food Qual. Prefer. 30, 108–113
 (2013).
- 17. *N Diliberti, PL Bordi, MT Conklin, LS Roe, BJ Rolls, Increased portion size leads to increased energy intake
 in a restaurant meal. Obes. Res. 12, 562–568 (2004).
- 18. *P Abhyankar, BA Summers, G Velikova, HL Bekker, Framing options as choice or opportunity: Does the
 frame influence decisions? *Med. Decis. Mak.* 34, 567–582 (2014).
- ¹⁶² 19. *J Alemany, E de Val, J Alberola, A García-Fornes, Enhancing the privacy risk awareness of teenagers in online
 ¹⁶³ social networks through soft-paternalism mechanisms. *Int. J. Human-Computer Stud.* **129**, 27–40 (2019).
- ¹⁶⁴ 20. *S Alinia, et al., A workplace feasibility study of the effect of a minimal fruit intervention on fruit intake. *Public* ¹⁶⁵ *Heal. Nutr.* 14, 1382–1387 (2011).
- ¹⁶⁶ 21. *C Ansher, et al., Better medicine by default. *Med. Decis. Mak.* **34**, 147–158 (2013).
- ¹⁶⁷ 22. *B Antonuk, LG Block, The effect of single serving versus entire package nutritional information on consumption ¹⁶⁸ norms and actual consumption of snack food. J. Nutr. Educ. Behav. 38, 365–370 (2006).
- ¹⁶⁹ 23. *S Anzman-Frasca, et al., Effects of a randomized intervention promoting healthy children's meals on children's ordering and dietary intake in a quick-service restaurant. *Physiol. & Behav.* **192**, 109–117 (2018).
- ¹⁷¹ 24. *JE Araña, CJ León, Can defaults save the climate? evidence from a field experiment on carbon offsetting
 ¹⁷² programs. *Environ. Resour. Econ.* 54, 613–626 (2013).
- ¹⁷³ 25. *W Bachman, R Katzev, The effects of non-contingent free bus tickets and personal commitment on urban bus
 ¹⁷⁴ ridership. *Transp. Res. Part A: Gen.* 16, 103–108 (1982).
- ¹⁷⁵ 26. *L Bacon, D Krpan, (not) eating for the environment: The impact of restaurant menu design on vegetarian
 ¹⁷⁶ food choice. Appetite 125, 190–200 (2018).
- 27. *YM Baek, Y Bae, I Jeong, E Kim, JW Rhee, Changing the default setting for information privacy protection:
 What and whose personal information can be better protected? *The Soc. Sci. J.* 51, 523–533 (1982).
- 28. *S Bamberg, Effects of implementation intentions on the actual performance of new environmentally friendly
 behaviours results of two field experiments. J. Environ. Psychol. 22, 399–411 (2002).
- 29. *SM Banks, et al., The effects of message framing on mammography utilization. *Heal. Psychol.* 14, 178–184 (1995).
- ¹⁸³ 30. *AJ Barnes, M Karpman, SK Long, Y Hanoch, T Rice, More intelligent designs: Comparing the effectiveness
- of choice architectures in US health insurance marketplaces. Organ. Behav. Hum. Decis. Process. 163, 142–164

- 185 (2021).
- ¹⁸⁶ 31. *S Bartke, A Friedl, F Gelhaar, L Reh, Social comparison nudges guessing the norm increases charitable
 ¹⁸⁷ giving. *Econ. Lett.* **152**, 73–75 (2017).
- 32. *S Basu, K Savani, Choosing one at a time? presenting options simultaneously helps people make more optimal
 decisions than presenting options sequentially. Organ. Behav. Hum. Decis. Process. 139, 76–91 (2017).
- 33. *Behavioural Economics Team of the Australian Government, Effective use of SMS: Improving government confirmation processes (2017).
- 34. *Behavioural Economics Team of the Australian Government, Energy labels that make cents: Testing energy rating labels on appliances sold online (2018).
- 35. *Behavioural Economics & Research Team, Behavioural Economics Team of the Australian Government, Nudge
 vs superbugs: A behavioural economics trial to reduce the overprescribing of antibiotics (2018).
- 36. *Behavioural Economics Team of the Australian Government, Credit when it's due: Timely reminders help
 consumers reduce their credit card debt (2019).
- 37. *Behavioural Insights Team, Applying behavioural insights to organ donation: Preliminary results from a
 randomised controlled trial (2013).
- 38. *S Bergeron, M Doyon, L Saulais, J Labrecque, Using insights from behavioral economics to nudge individuals
 towards healthier choices when eating out: A restaurant experiment. Food Qual. Prefer. 73, 56–64 (2019).
- 39. *SP Bhanot, Cheap promises: Evidence from loan repayment pledges in an online experiment. J. Econ. Behav.
 & Organ. 140, 246-266 (2017).
- 40. *F Bogliacino, IA Parra Forero, Behaviourally designed treatments that increase willingness to treatment from families with children suffering from autism spectrum disorder. J. Epidemiol. & Community Heal. 69, 958–962 (2015).
- 41. *R Böhm, MMP Theelen, Outcome valence and externality valence framing in public good dilemmas. J. Econ.
 Psychol. 54, 151–163 (2016).
- 42. *I Bohnet, A van Geen, M Bazerman, When performance trumps gender bias: Joint vs. separate evaluation.
 Manag. Sci. 62, 1225–1234 (2016).
- 43. *M Broman Toft, G Schuitmea, J Thøgersen, The importance of framing for consumer acceptance of the Smart Grid: A comparative study of Denmark, Norway and Switzerland. *Energy Res. & Soc. Sci.* **3**, 113–123 (2014).
- 44. *ET Bronchetti, TS Dee, DB Huffman, E Magenheim, When a nudge isn't enough: Defaults and saving among low-income tax filers, (National Bureau of Economic Research), Working paper 16887 (2011).
- 45. *R Brook, M Servátka, The anticipatory effect of nonverbal communication. Econ. Lett. 144, 45–48 (2016).
- 46. *H Bruns, E Kantorowicz-Reznichenko, K Klement, M Luistro Jonsson, B Rahali, Can nudges be transparent and yet effective? J. Econ. Psychol. 65, 41–59 (2018).
- 47. *T Bucher, M Siegrist, K van der Horst, Vegetable variety: An effective strategy to increase vegetable choice in children. *Public Heal. Nutr.* **17**, 1232–1236 (2014).
- 48. *RJ Burns, AJ Rothman, Offering variety: A subtle manipulation to promote healthy food choice throughout the day. *Heal. Psychol.* **34**, 566–570 (2015).
- 49. *K Byrd, B Almanza, RF Ghiselli, C Behnke, HA Eicher-Miller, Adding sodium information to casual dining restaurant menus: Beneficial or detrimental for consumers? *Appetite* **125**, 474–485 (2018).
- 50. *AR Camilleri, RP Larrick, Metric and scale design as choice architecture tools. J. Public Policy & Mark. 33, 108–125 (2014).
- 51. *V Capraro, G Jagfeld, R Klein, M Mul, I van de Pol, What's the right thing to do? increasing pro-sociality with simple moral nudges, Working paper (2011).
- 52. *M Carrera, H Royer, M Stehr, J Sydnor, D Taubinsky, The limits of simple implementation intentions: Evidence from a field experiment on making plans to exercise. J. Heal. Econ. 62, 95–104 (2018).
- 53. *KA Carroll, A Samek, L Zepeda, Food bundling as a health nudge: Investigating consumer fruit and vegetable
 selection using behavioral economics. Appetite 121, 237–248 (2018).
- 54. *KA Carter, C González-Vallejo, Nutrient-specific system versus full fact panel: Testing the benefits of nutrient-specific front-of-package labels in a student sample. *Appetite* **125**, 512–526 (2018).
- 55. *BL Castleman, LC Page, Summer nudging: Can personalized text messages and peer mentor outreach increase college going among low-income high school graduates? J. Econ. Behav. & Organ. 115, 144–160 (2015).
- 56. *BL Castleman, LC Page, Freshman year financial aid nudges: An experiment to increase FAFSA renewal and college persistence. J. Hum. Resour. 51, 389–415 (2016).
- 57. *JR Catlin, Y Wang, Recycling gone bad: When the option to recycle increases resource consumption. J. Consumer Psychol. 23, 122–127 (2013).
- 58. *GB Chapman, M Li, H Colby, H Yoon, Opting in vs opting out of influenza vaccination. JAMA 304, 43–44

(2010).

241

- ²⁴² 59. *J Chen, D Houser, N Montinari, M Piovesan, Beware of popular kids bearing gifts: A framed field experiment.
 ²⁴³ J. Econ. Behav. & Organ. 132, 104–120 (2016).
- 60. *TTL Cheung, FM Kroese, BM Fennis, DTD De Ridder, The hunger games: Using hunger to promote healthy choices in self-control conflicts. *Appetite* **116**, 401–409 (2017).
- 61. *EY Chou, JK Murnighan, Life or death decisions: Framing the call for help. *PLoS ONE* 8, 1–6 (2013).
- ²⁴⁷ 62. *KR Courtright, et al., A randomized trial of expanding choice sets to motivate advance directive completion.
 ²⁴⁸ Med. Decis. Mak. 37, 544–554 (2017).
- 63. *LM Coventry, D Jeske, JM Blythe, J Turland, P Briggs, Personality and social framing in privacy decision making: A study on cookie acceptance. *Front. Psychol.* 7, 1–12 (2016).
- 64. *G d'Adda, V Capraro, M Tavoni, Push, don't nudge: Behavioral spillovers and policy instruments. *Econ. Lett.*154, 92–95 (2017).
- ²⁵³ 65. *MT Damgaard, C Gravert, The hidden costs of nudging: Experimental evidence from reminders in fundraising.
 ²⁵⁴ J. Public Econ. 157, 15-26 (2018).
- 66. *VWT de Wild, C de Graaf, HC Boshuizen, G Jager, Influence of choice on vegetable intake in children: An in-home study. *Appetite* **91**, 1–6 (2015).
- ²⁵⁷ 67. *C Demarque, L Charalambides, DJ Hilton, L Waroquier, Nudging sustainable consumption: The use of
 ²⁵⁸ descriptive norms to promote a minority behavior in a realistic online shopping environment. J. Environ.
 ²⁵⁹ Psychol. 43, 166–174 (2015).
- 68. *CA Dickerson, R Thibodeau, E Aronson, D Miller, Using cognitive dissonance to encourage water conservation.
 J. Appl. Soc. Psychol. 22, 841–854 (1992).
- ²⁶² 69. *I Dinner, EJ Johnson, DG Goldstein, K Liu, Partitioning default effects: Why people choose not to choose. J.
 ²⁶³ Exp. Psychol. Appl. 17, 332–341 (2011).
- ²⁶⁴ 70. *L Dogruel, S Joeckel, J Vitak, The valuation of privacy premium features for smartphone apps: The influence of defaults and expert recommendations. *Comput. Hum. Behav.* 77, 230–239 (2017).
- ²⁶⁶ 71. *Q dos Santos, et al., Impact of a nudging intervention and factors associated with vegetable dish choice among
 ²⁶⁷ european adolescents. *Eur. J. Nutr.* 59, 231–247 (2020).
- 72. *F Ebeling, S Lotz, Domestic uptake of green energy promoted by opt-out tariffs. Nat. Clim. Chang. 5, 868–871 (2015).
- 73. *D Engell, M Kramer, T Malafi, M Salomon, L Lesher, Effects of effort and social modeling on drinking in humans. Appetite 26, 129–138 (1996).
- 74. *AM Evans, KD Dillon, G Goldin, JI Krueger, Trust and self-control: The moderating role of the default.
 Judgm. Decis. Mak. 6, 697–705 (2011).
- ²⁷⁴ 75. *JAC Everett, L Caviola, G Kahane, J Savulescu, NS Faber, Doing good by doing nothing? the role of social norms in explaining default effects in altruistic contexts. *Eur. J. Soc. Psychol.* 45, 230–241 (2015).
- ²⁷⁶ 76. *V Faralla, M Novarese, A Ardizzone, Framing effects in intertemporal choice: A nudge experiment. J. Behav.
 ²⁷⁷ Exp. Econ. **71**, 13–25 (2017).
- 77. *J Firmino-Machado, S Varela, R Mendes, A Moreira, N Lunet, Stepwise strategy to improve cervical cancer
 screening adherence (SCAN-Cervical Cancer) automated text messages, phone calls and reminders: Population
 based randomized controlled trial. *Prev. Medicine* 114, 123–133 (2018).
- 78. *G Fisher, Nutrition labeling reduces valuations of food through multiple health and taste channels. Appetite
 120, 500–504 (2018).
- 79. *C Frydman, A Rangel, Debiasing the disposition effect by reducing the saliency of information about a stock's purchase price. J. Econ. Behav. & Organ. 107, 541–552 (2014).
- 80. *S Furnell, W Khern-am nuai, R Esmael, W Yang, N Li, Enhancing security behaviour by supporting the user.
 Comput. & Secur. 75, 1–9 (2018).
- 81. *Y Ganzach, N Karsahi, Message framing and buying behavior: A field experiment. J. Bus. Res. 32, 11–17 (1995).
- 82. *M Gärtner, The prosociality of intuitive decisions depends on the status quo. J. Behav. Exp. Econ. 74, 127–138
 (2018).
- 83. *A Geier, B Wansink, P Rozin, Red potato chips: Segmentation cues can substantially decrease food intake.
 Heal. Psychol. 31, 398–401 (2012).
- 84. *MA Gerend, Does calorie information promote lower calorie fast food choices among college students? J.
 Adolesc. Heal. 44, 84–86 (2009).
- 85. *NJ Goldstein, V Griskevicius, RB Cialdini, Reciprocity by proxy: A novel influence strategy for stimulating
 cooperation. Adm. Sci. Q. 56, 441–473 (2011).

- ²⁹⁷ 86. *L Goldzahl, G Hollard, F Jusot, Increasing breast-cancer screening uptake: A randomized controlled experiment.
 ²⁹⁸ J. Heal. Econ. 58, 228–252 (2018).
- 87. *Y Gomez, V Martínez-Molés, A Urbano, J Vila, The attraction effect in mid-involvement categories: An
 experimental economics approach. J. Bus. Res. 69, 5082–5088 (2016).
- 88. *M Gong, et al., Testing the scenario hypothesis: An experimental comparison of scenarios and forecasts for
 decision support in a complex decision environment. *Environ. Model. & Softw.* 91, 135–155 (2017).
- ³⁰³ 89. *A Gopalan, et al., Translating the hemoglobin a1c with more easily understood feedback: A randomized controlled trial. J. Gen. Intern. Medicine 29, 996–1003 (2014).
- ³⁰⁵ 90. *I Goswami, O Urminsky, When should the ask be a nudge? the effect of default amounts on charitable
 ³⁰⁶ donations. J. Mark. Res. 53, 829–846 (2016).
- 91. *C Grant, J Kaler, E Ferguson, H O'Kane, LE Green, A comparison of the efficacy of three intervention trial
 types: postal, group, and one-to-one facilitation, prior management and the impact of message framing and
 repeat messages on the flock prevalence of lameness in sheep. *Prev. Vet. Medicine* 149, 82–91 (2018).
- 92. *KA Grépin, J Habyarimana, W Jack, Cash on delivery: Results of a randomized experiment to promote maternal health care in kenya. J. Heal. Econ. 65, 15–30 (2019).
- 93. *J Hainmueller, et al., A randomized controlled design reveals barriers to citizenship for low-income immigrants.
 PNAS 115, 939–944 (2018).
- 94. *M Hallsworth, et al., Stating appointment costs in sms reminders reduces missed hospital appointments:
 Findings from two randomised controlled trials. *PLoS ONE* 10, 1–14 (2015).
- 95. *SD Halpern, et al., Default options in advance directives influence how patients set goals for end-of-life care. *Heal. Aff.* 32, 408–417 (2013).
- 96. *MJJ Handgraaf, MA Van Lidth de Jeude, KC Appelt, Public praise vs private pay: Effects of rewards on
 energy conservation in the workplace. *Ecol. Econ.* 86, 86–92 (2013).
- 97. *LJ Harnack, et al., Effects of calorie labeling and value size pricing on fast food meal choices: Results from an experimental trial. Int. J. Behav. Nutr. Phys. Activity 5, 1–13 (2008).
- 98. *MF Haward, RO Murphy, JM Lorenz, Default options and neonatal resuscitation decisions. J. Med. Ethics 38, 713-718 (2012).
- 99. *S Hedlin, CR Sunstein, Does active choosing promote green energy use? experimental evidence. *Ecol. Law Q.*43, 107–142 (2016).
- 100. *HE Hershfield, HM Bang, EU Weber, National differences in environmental concern and performance are predicted by country age. *Psychol. Sci.* **25**, 152–160 (2014).
- 101. *D Hilton, L Charalambides, C Demarque, L Waroquier, C Raux, A tax can nudge: The impact of an environmentally motivated bonus/malus fiscal system on transport preferences. J. Econ. Psychol. 42, 17–27 (2014).
- ³³¹ 102. *J Hou, Can interface cues nudge modeling of food consumption? experiments on a food-ordering website. J.
 ³³² Comput. Commun. 22, 196–214 (2017).
- 103. *S Hu, Z Li, J Zhang, J Zhu, Engaging scientists in science communication: The effect of social proof and meaning. J. Clean. Prod. 170, 1044–1051 (2018).
- 104. *Impact and Innovation Unit, Using behavioural insights to encourage charitable donations (2018).
- ³³⁶ 105. *ET Isaksen, KA Brekke, A Richter, Positive framing does not solve the tragedy of the commons. J. Environ.
 ³³⁷ Econ. Manag. 95, 45–56 (2019).
- ³³⁸ 106. *L Jin, Improving response rates in web surveys with default setting: The effects of default on web survey participation and permission. *Int. J. Mark. Res.* 53, 75–94 (2011).
- ³⁴⁰ 107. *EJ Johnson, J Hershey, J Meszaros, H Kunreuther, Framing, probability distortions, and insurance decisions.
 ³⁴¹ J. Risk Uncertain. 7, 35-51 (1993).
- ³⁴² 108. *EJ Johnson, S Bellman, GL Lohse, Defaults, framing and privacy: Why opting in-opting out. Mark. Lett. 13,
 ³⁴³ 5-15 (2002).
- ³⁴⁴ 109. *EJ Johnson, DG Goldstein, Do defaults save lives? *Science* **302**, 1338–1339 (2003).
- ³⁴⁵ 110. *AW Johnston, et al., Just a nudge: Applying behavioral incentives to engage residents in quality improvement
 ³⁴⁶ education. J. Am. Coll. Surg. 227, 219-220 (2018).
- ³⁴⁷ 111. *M Junger, M L, FJ Overink, Priming and warnings are not effective to prevent social engineering attacks.
 ³⁴⁸ Comput. Hum. Behav. 66, 75–87 (2017).
- ³⁴⁹ 112. *C Keller, F Markert, T Bucher, Nudging product choices: The effect of position change on snack bar choice.
 ³⁵⁰ Food Qual. Prefer. 41, 41–43 (2015).
- ³⁵¹ 113. *PA Keller, B Harlam, G Loewenstein, KG Volpp, Enhanced active choice: A new method to motivate behavior
 ³⁵² change. J. Consumer Psychol. 21, 376–383 (2011).

- ³⁵³ 114. *I Kersbergen, et al., Reducing the standard serving size of alcoholic beverages prompts reductions in alcohol
 ³⁵⁴ consumption. Addiction 113, 1598–1608 (2018).
- ³⁵⁵ 115. *M Kesternich, D Römer, F Flues, The power of active choice: Field experimental evidence on repeated contribution decisions to a carbon offsetting program. *Eur. Econ. Rev.* 114, 76–91 (2019).
- ³⁵⁷ 116. *L Klotz, D Mack, B Klapthor, C Tunstall, J Harrison, Unintended anchors: Building rating systems and
 ³⁵⁸ energy performance goals for U.S. buildings. *Energy Policy* 38, 3557–3566 (2010).
- ³⁵⁹ 117. *D Knowles, K Brown, S Aldrovandi, Exploring the underpinning mechanisms of the proximity effect within a
 ³⁶⁰ competitive food environment. Appetite 134, 94–102 (2019).
- 118. *L Korn, C Betsch, R Böhm, NW Meier, Social nudging: The effect of social feedback interventions on vaccine
 uptake. *Heal. Psychol.* 37, 1045–1054 (2018).
- ³⁶³ 119. *LM Kressel, GB Chapman, The default effect in end-of-life medical treatment preferences. *Med. Decis. Mak.* ³⁶⁴ 27, 299–310 (2007).
- ³⁶⁵ 120. *LM Kressel, GB Chapman, E Leventhal, The influence of default options on the expression of end-of-life
 ³⁶⁶ treatment preferences in advance directives. J. Gen. Intern. Medicine 22, 1007–1010 (2007).
- 121. *S Kuester, SC Hess, A Hermann, The role of defaults in preventing innovation rejection. Int. J. Innov. Manag.
 19, 1550023 (2015).
- 122. *M Kulendran, et al., The use of commitment techniques to support weight loss maintenance in obese adolescents.
 Psychol. & Heal. 31, 1332–1341 (2016).
- 123. *KM Lalor, BJ Hailey, The effects of message framing and feelings of susceptibility to breast cancer on reported frequency of breast self-examination. Int. Q. Community Heal. Educ. 10, 183–192 (1989).
- ³⁷³ 124. *RP Larrick, JB Soll, The mpg illusion. *Science* **320**, 1593–1594 (2008).
- 125. *BA Lehmann, GB Chapman, FME Franssen, G Kok, RAC Ruiter, Changing the default to promote influenza
 vaccination among health care workers. *Vaccine* 34, 1389–1392 (2016).
- 126. *E Libotte, M Siegrist, T Bucher, The influence of plate size on meal composition. literature review and experiment. Appetite 82, 91–96 (2014).
- 127. *A Lieberman, KE Duke, O Amir, How incentive framing can harness the power of social norms. Organ. Behav.
 Hum. Decis. Process. 151, 118–131 (2019).
- 128. *CW Liu, R Agarwal, G Gao, The dark side of positive social influence, (129), pp. 1–14 (2016).
- 129. Proceedings of the 37th International Conference on Information Systems (Association for Information Systems),
 (2016).
- 130. *KL Loeb, et al., The application of defaults to optimize parents' health-based choices for children. Appetite
 113, 368–375 (2017).
- 131. *A Löfgren, P Martinsson, M Hennlock, T Sterner, Are experienced people affected by a pre-set default option
 results from a field experiment. J. Environ. Econ. Manag. 63, 66–72 (2012).
- 132. *C Loibl, L Jones, E Haisley, Testing strategies to increase saving in individual development account programs.
 J. Econ. Psychol. 66, 45–63 (2018).
- 133. *J Maas, DTD de Ridder, E de Vet, JBF de Wit, Do distant foods decrease intake? the effect of food accessibility
 on consumption. *Psychol. & Heal.* 27, 59–73 (2012).
- ³⁹¹ 134. *CB Mann, LA Bryant, If you ask, they will come (to register and vote): Field experiments with state election ³⁹² agencies on encouraging voter registration. *Electorial Stud.* **63**, 1–10 (2020).
- ³⁹³ 135. *D Marchiori, O Corneille, O Klein, Container size influences snack food intake independently of portion size.
 ³⁹⁴ Appetite 58, 814–817 (2012).
- ³⁹⁵ 136. *EM Marek, Social learning under the labeling effect: Exploring travellers' behavior in social dilemmas. Transp.
 ³⁹⁶ Res. Part F: Traffic Psychol. Behav. 58, 511–527 (2018).
- ³⁹⁷ 137. *H Marreiros, M Tonin, M Vlassopoulos, MC Schraefel, "now that you mention it": A survey experiment on
 ³⁹⁸ information, inattention and online privacy. J. Econ. Behav. & Organ. 140, 1–17 (2017).
- ³⁹⁹ 138. *JM Martin, MI Norton, Shaping online consumer choice by partitioning the web. *Psychol. & Mark.* 26, 908–926 (2009).
- ⁴⁰¹ 139. *L Martins, H Szrek, The impact of the decision environment on consumer choice of mobile service plans: An
 ⁴⁰² experimental examination. Util. Policy 56, 20–32 (2019).
- ⁴⁰³ 140. *LT McCalley, CJH Midden, Energy conservation through product-integrated feedback: The roles of goal-setting
 ⁴⁰³ and social orientation. J. Econ. Psychol. 23, 589–603 (2002).
- ⁴⁰⁵ 141. *KD McCaul, JT Kopp, Effects of goal setting and commitment on increasing metal recycling. J. Appl. Psychol.
 ⁴⁰⁶ 67, 377–379 (1982).
- ⁴⁰⁷ 142. *D Meeker, et al., Nudging guideline-concordant antibiotic prescribing: A randomized clinical trial. JAMA
 ⁴⁰⁸ Intern. Medicine 174, 425–431 (2014).

- ⁴⁰⁹ 143. *SJ Mehta, et al., A randomized controlled trial of opt-in versus opt-out colorectal cancer screening outreach.
 ⁴¹⁰ The Am. J. Gastroenterol. 113, 1848–1854 (2018).
- ⁴¹¹ 144. *MD Meng, R Trudel, Using emoticons to encourage students to recycle. *The J. Environ. Educ.* **48**, 196–204 ⁴¹² (2017).
- ⁴¹³ 145. *S Mertens, UJJ Hahnel, T Brosch, This way, please: Uncovering the directional effects of attribute translations
 on decision making. *Judgm. Decis. Mak.* 15, 25–46 (2020).
- ⁴¹⁵ 146. *BE Meyerowitz, S Chaiken, The effect of message framing on breast self-examination attitudes, intentions,
 ⁴¹⁶ and behavior. J. Pers. Soc. Psychol. 52, 500–510 (1987).
- ⁴¹⁷ 147. *KL Milkman, J Beshears, JJ Choi, D Laibson, BC Madrian, Using implementation intentions prompts to
 enhance influenza vaccination rates. *PNAS* 108, 10415–10420 (2011).
- ⁴¹⁹ 148. *GF Miller, S Gupta, JD Kropp, KA Grogan, A Mathews, The effects of pre-ordering and behavioral nudges
 ⁴²⁰ on National School Lunch Program participants' food item selection. J. Econ. Psychol. 55, 4–16 (2016).
- ⁴²¹ 149. *B Missbach, JS König, Middle choice preference and snack choice: The role of self-regulatory resources to nudge healthier food choice. *Food Qual. Prefer.* 53, 127–131 (2016).
- ⁴²³ 150. *RF Muñoz, Y Leykin, AZ Barrera, CH Brown, EL Bunge, The impact of phone calls on follow-up rates in an
 ⁴²⁴ online depression prevention study. *Internet Interv.* 8, 10–14 (2017).
- ⁴²⁵ 151. *T Narula, C Ramprasad, EN Ruggs, MR Hebl, Increasing colonoscopies? a psychological perspective on opting
 ⁴²⁶ in versus opting out. *Heal. Psychol.* **33**, 1426–1429 (2014).
- ⁴²⁷ 152. *MA Neale, MH Bazerman, The effects of framing and negotiator overconfidence on bargaining behaviors and outcomes. *Acad. Manag. J.* 28, 34–49 (1985).
- ⁴²⁹ 153. *KM Nelson, S Partelow, A Schlüter, Nudging tourists to donate for conservation: Experimental evidence on soliciting voluntary contributions for coastal management. J. Environ. Manag. 237, 30–43 (2019).
- ⁴³¹ 154. *P Niven, et al., Effects of health star labelling on the healthiness of adults' fast food meal selections: An
 ⁴³² experimental study. Appetite 136, 146–153 (2019).
- 433 155. *PU Nyer, S Dellande, Public commitment as a motivator for weight loss. Psychol. & Mark. 27, 1–12 (2010).
- ⁴³⁴ 156. *ST O'Leary, et al., Effectiveness and cost of bidirectional text messaging for adolescent vaccines and well care.
 ⁴³⁵ Pediatrics 136, 1220–1227 (2015).
- ⁴³⁶ 157. *A Or, Y Baruch, S Tadger, Y Barak, Real-life decision making of serious mental illness patients: Opt-in and
 ⁴³⁷ opt-out research participation. *The Isr. J. Psychiatry Relat. Sci.* **51**, 199–203 (2014).
- ⁴³⁸ 158. *PW Paese, Effects of framing on actual time allocation decisions. Organ. Behav. Hum. Decis. Process. 61,
 ⁴³⁹ 67-76 (1995).
- ⁴⁴⁰ 159. *P Park, RK Simmons, AT Prevost, SJ Griffin, A randomized evaluation of loss and gain frames in an invitation
 to screening for Type 2 diabetes: Effects on attendance, anxiety and self-rated health. J. Heal. Psychol. 15,
 ⁴⁴² 196-204 (2010).
- ⁴⁴³ 160. *MS Patel, et al., Effect of an automated patient dashboard using active choice and peer comparison performance
 ⁴⁴⁴ feedback to physicians on Statin prescribing: The PRESCRIBE cluster randomized clinical trial. JAMA Netw.
 ⁴⁴⁵ Open 1, 1–11 (2018).
- ⁴⁴⁶ 161. *D Pichert, KV Katsikopoulos, Green defaults: Information presentation and pro-environmental behaviour. J.
 ⁴⁴⁷ Environ. Psychol. 28, 63–73 (2008).
- ⁴⁴⁸ 162. *MC Porter, JE Heyman, We've shopped before: Exploring instructions as an influence on mystery shopper reporting. J. Retail. Consumer Serv. 45, 12–20 (2018).
- ⁴⁵⁰ 163. *S Prinsen, DTD de Ridder, E de Vet, Eating by example. effects of environmental cues on dietary decisions.
 ⁴⁵¹ Appetite **70**, 1–5 (2013).
- ⁴⁵² 164. *GJ Privitera, FM Zuraikat, Proximity of foods in a competitive food environment influences consumption of a
 ⁴⁵³ low calorie and a high calorie food. Appetite **76**, 175–179 (2014).
- ⁴⁵⁴ 165. *T Pugatch, N Wilson, Nudging study habits: A field experiment on peer tutoring in higher education. *Econ.* ⁴⁵⁵ *Educ. Rev.* 62, 151–161 (2018).
- ⁴⁵⁶ 166. *E Putnam-Farr, J Riis, "yes/no/not right now": Yes/no response formats can increase response rates even in non-forced-choice settings. J. Mark. Res. 53, 424–432 (2016).
- ⁴⁵⁸ 167. *M Raue, LA D'Ambrosio, JF Coughlin, The power of peers: Prompting savings behavior through social comparison. J. Behav. Finance 21, 1–13 (2020).
- 168. *HA Raynor, RR Wing, Package unit size and amount of food: Do both influence intake? Obesity 15, 2311–2319
 (2007).
- ⁴⁶² 169. *PL Reiter, AL McRee, JK Pepper, NT Brewer, Default policies and parents' consent for school-located HPV
 ⁴⁶³ vaccination. J. Behav. Medicine **35**, 651–657 (2012).
- 464 170. *JPC Rigtering, GU Weitzel, K Muehlfeld, Increasing quantity without compromising quality: How managerial

- framing affects intrapreneurship. J. Bus. Ventur. **34**, 224–241 (2019).
- ⁴⁶⁶ 171. *CA Roberto, PD Larsen, H Agnew, J Baik, KD Brownell, Evaluating the impact of menu labeling on food
 ⁴⁶⁷ choices and intake. Am. J. Public Heal. 100, 312–318 (2010).
- ⁴⁶⁸ 172. *C Rodriguez, JE Saavedra, The persistent effects of youth savings reminders: Experimental evidence from text-message campaigns in Colombia. J. Dev. Econ. 139, 135–156 (2019).
- ⁴⁷⁰ 173. *S Rosenkranz, et al., Using behavioral insights to make firms more energy efficient: A field experiment on the effects of improved communication. *Energy Policy* 108, 184–193 (2017).
- ⁴⁷² 174. *AJ Rothman, SC Martino, BT Bedell, JB Detweiler, P Salovey, The systematic influence of gain-and-loss⁴⁷³ framed messages on interest in and use of different types of health behavior. *Pers. Soc. Psychol. Bull.* 25, 1355–1369 (1999).
- ⁴⁷⁵ 175. *RB Ruback, AS Gladfelter, B Lantz, Paying restitution: Experimental analysis of the effects of information
 ⁴⁷⁶ and rationale. *Criminol. & Public Policy* 13, 405–436 (2014).
- ⁴⁷⁷ 176. *A Sacarny, et al., Effect of peer comparison letters for high-volume primary care prescribers of quetiapine in ⁴⁷⁸ older and disabled adults. *JAMA Psychiatry* **75**, 1003–1011 (2018).
- ⁴⁷⁹ 177. *A Sallis, H Harper, M Sanders, Effect of persuasive messages on National Health Service organ donor
 registrations: A pragmatic quasi-randomised controlled trial with one million UK road taxpayers. Trials 19,
 ⁴⁸¹ 1-10 (2018).
- ⁴⁸² 178. *A Samek, I Hur, SH Kim, JS Yi, An experimental study of the decision process with interactive technology. J.
 ⁴⁸³ Econ. Behav. & Organ. 130, 20–32 (2016).
- ⁴⁸⁴ 179. *S Saß, K Schütte, MA Lindner, Test-takers' eye movements: Effects of integration aids and types of graphical
 ⁴⁸⁵ representation. *Comput. & Educ.* 109, 85–97 (2017).
- ⁴⁸⁶ 180. *L Saulais, et al., When are "Dish of the Day" nudges most effective to increase vegetable selection? Food
 ⁴⁸⁷ Policy 85, 15–27 (2019).
- ⁴⁸⁸ 181. *A Schram, J Sonnemans, How individuals choose health insurance: An experimental analysis. *Eur. Econ. Rev.* ⁴⁸⁹ 55, 799–819 (2011).
- ⁴⁹⁰ 182. *JF Schulz, P Thiemann, C Thöni, Nudging generosity: Choice architecture and cognitive factors in charitable
 ⁴⁹¹ giving. J. Behav. Exp. Econ. 74, 139–145 (2018).
- ⁴⁹² 183. *D Schwartz, EA Keenan, A Imas, A Gneezy, Opting-in to prosocial incentives. Organ. Behav. Hum. Decis.
 ⁴⁹³ Process. 163, 132–141 (2021).
- ⁴⁹⁴ 184. *MB Schwartz, The influence of a verbal prompt on school lunch fruit consumption: A pilot study. Int. J.
 ⁴⁹⁵ Behav. Nutr. Phys. Activity 4, 1–5 (2007).
- ⁴⁹⁶ 185. *MA Sharif, SB Shu, Nudging persistence after failure through emergency reserves. Organ. Behav. Hum. Decis.
 ⁴⁹⁷ Process. 163, 17–29 (2021).
- ⁴⁹⁸ 186. *D Sharp, J Sobal, Using plate mapping to examine sensitivity to plate size in food portions and meal
 ⁴⁹⁹ composition among college students. *Appetite* **59**, 639–645 (2012).
- ⁵⁰⁰ 187. *T Shealy, L Klotz, Well-endowed rating systems: How modified defaults can lead to more sustainable
 ⁵⁰¹ performance. J. Constr. Eng. Manag. 141, 1–8 (2015).
- ⁵⁰² 188. *T Shealy, et al., Providing descriptive norms during engineering design can encourage more sustainable
 ⁵⁰³ infrastructure. Sustain. Cities Soc. 40, 182–188 (2018).
- ⁵⁰⁴ 189. *T Shealy, L Klotz, EU Weber, EJ Johnson, RG Bell, Using framing effects to inform more sustainable
 ⁵⁰⁵ infrastructure design decisions. J. Constr. Eng. Manag. 142, 1–9 (2016).
- ⁵⁰⁶ 190. *Y Shevchenko, B von Helversen, B Scheibehenne, Change and status quo in decisions with defaults: The effect
 ⁵⁰⁷ of incidental emotions depends on the type of default. Judgm. Decis. Mak. 9, 287–296 (2014).
- ⁵⁰⁸ 191. *M Shimizu, CR Payne, B Wansink, When snacks become meals: How hunger and environmental cues bias
 ⁵⁰⁹ food intake. Int. J. Behav. Nutr. Phys. Activity 7, 1–6 (2010).
- ⁵¹⁰ 192. *LL Shu, N Mazar, F Gino, D Ariely, MH Bazerman, Signing at the beginning makes ethics salient and decreases
 ⁵¹¹ dishonest self-reports in comparison to signing at the end. *PNAS* 109, 15197–15200 (2012).
- ⁵¹² 193. *DA Small, G Loewenstein, Helping a victim or helping the victim: Altruism and identifiability. J. Risk
 ⁵¹³ Uncertain. 26, 5–16 (2003).
- ⁵¹⁴ 194. *A Sonntag, DJ Zizzo, On reminder effects, drop-outs and dominance: Evidence from an online experiment on
 ⁵¹⁵ charitable giving. *PLoS ONE* **10**, 1–17 (2015).
- ⁵¹⁶ 195. *J Soon, et al., Effect of two behavioural 'nudging' interventions on management decisions for low back pain: A
 ⁵¹⁷ randomised vignette-based study in general practitioners. BMJ Qual. & Saf. 28, 547–555 (2019).
- ⁵¹⁸ 196. *AE Stämpfli, TA Brunner, The art of dieting: Exposure to thin sculptures effortlessly reduces the intake of ⁵¹⁹ unhealthy food in motivated eaters. *Food Qual. Prefer.* **50**, 88–93 (2016).
- ⁵²⁰ 197. *AE Stämpfli, S Stöckli, TA Brunner, A nudge in a healthier direction: How environmental cues help restrained

- eaters pursue their weight-control goal. Appetite **110**, 94–102 (2017).
- ⁵²² 198. *M Steffel, EF Williams, R Pogacar, Ethically deployed defaults: Transparency and consumer protection
 ⁵²³ through disclosure and preference articulation. J. Mark. Res. 53, 865–880 (2016).
- ⁵²⁴ 199. *AT Stephen, DR Lehmann, How word-of-mouth transmission encouragement affects consumers' transmission decisions, receiver selection, and diffusion speed. *Int. J. Res. Mark.* 33, 755–766 (2016).
- ⁵²⁶ 200. *B Stikvoort, T Lindahl, TM Daw, Thou shalt not sell nature: How taboo trade-offs can make us act ⁵²⁷ pro-environmentally, to clear our conscience. *Ecol. Econ.* **129**, 252–259 (2016).
- ⁵²⁸ 201. *FM Stok, DTD de Ridder, E de Vet, JBF de Wit, Don't tell me what i should do, but what others do: The
 ⁵²⁹ influence of descriptive and injunctive norms on fruit consumption in adolescents. Br. J. Heal. Psychol. 19,
 ⁵³⁰ 52-64 (2014).
- ⁵³¹ 202. *D Tannenbaum, CR Fox, NJ Goldstein, Partitioning menu items to nudge single-item choice. pp. 1–18 (2013).
- ⁵³² 203. *J Tasoff, R Letzler, Everyone believes in redemption: Nudges and overoptimism in costly task completion. J.
 ⁵³³ Econ. Behav. & Organ. 107, 107–122 (2014).
- ⁵³⁴ 204. *R Tavernier, EK Adam, Text message intervention improves objective sleep hours among adolescents: The ⁵³⁵ moderating role of race-ethnicity. *Sleep Heal.* **3**, 62–67 (2017).
- ⁵³⁶ 205. *MJ Taylor, I Vlaev, J Maltby, GDA Brown, AM Wood, Improving social norms interventions: Rank-framing
 ⁵³⁷ increases excessive alcohol drinkers' information-seeking. *Heal. Psychol.* 34, 1200–1203 (2015).
- ⁵³⁸ 206. *A Theotokis, E Manganari, The impact of choice architecture on sustainable consumer behavior: The role of
 ⁵³⁹ guilt. J. Bus. Ethics 131, 423–437 (2014).
- ⁵⁴⁰ 207. *AN Thorndike, J Riis, DE Levy, Social norms and financial incentives to promote employees' healthy food
 ⁵⁴¹ choices: A randomized controlled trial. *Prev. Medicine* 86, 12–18 (2016).
- ⁵⁴² 208. *L Thunström, B Gilbert, CJ Ritten, Nudges that hurt those already hurting distributional and unintended
 ⁵⁴³ effects of salience nudges. J. Econ. Behav. & Organ. 153, 267–282 (2018).
- ⁵⁴⁴ 209. *L Trevana, L Irwig, A Barratt, Impact of privacy legislation on the number and characteristics of people who
 ⁵⁴⁵ are recruited for research: A randomised controlled trial. J. Med. Ethics **32**, 473–477 (2006).
- ⁵⁴⁶ 210. *R Trudel, KB Murray, S Kim, S Chen, The impact of traffic light color-coding on food health perceptions and choice. J. Exp. Psychol. Appl. 21, 255–275 (2015).
- 211. *PA Ubel, J Baron, DA Asch, Preference for equity as a framing effect. Med. Decis. Mak. 21, 180–189 (2001).
- ⁵⁴⁹ 212. *R van Bavel, N Rodríguez-Priego, J Vila, P Briggs, Using protection motivation theory in the design of nudges
 ⁵⁵⁰ to improve online security behavior. Int. J. Human-Computer Stud. 123, 29–39 (2019).
- ⁵⁵¹ 213. *HP van Dalen, K Henkens, Comparing the effects of defaults in organ donation systems. Soc. Sci. & Medicine
 ⁵⁵² 106, 137–142 (2014).
- ⁵⁵³ 214. *LDT van der Zanden, H van Essen, E van Kleef, R de Wijk, HCM van Trijp, Using a verbal prompt to increase
 ⁵⁵⁴ protein consumption in a hospital setting: A field study. Int. J. Behav. Nutr. Phys. Activity 12, 1–10 (2015).
- ⁵⁵⁵ 215. *E van Kleef, K Otten, HCM van Trijp, Healthy snacks at the checkout counter: A lab and field study on the
 ⁵⁵⁶ impact of shelf arrangement and assortment structure on consumer choices. BMC Public Heal. 12, 1–10 (2012).
- ⁵⁵⁷ 216. *E van Kleef, K Seijdell, MH Vingerhoeds, R de Wijk, HCM van Trijp, The effect of a default-based nudge on
 ⁵⁵⁸ the choice of whole wheat bread. Appetite 121, 179–185 (2018).
- ⁵⁵⁹ 217. *E van Kleef, M Shimizu, B Wansink, Serving bowl selection biases the amount of food served. J. Nutr. Educ.
 ⁵⁶⁰ Behav. 44, 66-70 (2012).
- ⁵⁶¹ 218. *J Veldwijk, et al., Survival or mortality: Does risk attribute framing influence decision-making behavior in a discrete choice experiment? Value Heal. 19, 202–209 (2016).
- ⁵⁶³ 219. *B Verplanken, MWH Weenig, Graphical energy labels and consumers' decisions about home appliances: A
 ⁵⁶⁴ process tracing approach. J. Econ. Psychol. 14, 739–752 (1993).
- ⁵⁶⁵ 220. *B Wansink, AS Hanks, Slim by design: Serving healthy foods first in buffet lines improves overall meal selection.
 ⁵⁶⁶ PLoS ONE 8, 1–5 (2013).
- ⁵⁶⁷ 221. *B Wansink, J Kim, Bad popcorn in big buckets: Portion size can influence intake as much as taste. J. Nutr.
 ⁵⁶⁸ Educ. Behav. 37, 242–245 (2005).
- ⁵⁶⁹ 222. *B Wansink, K van Ittersum, Bottoms up! the influence of elongation on pouring and consumption volume. J.
 ⁵⁷⁰ Consumer Res. **30**, 455–463 (2003).
- ⁵⁷¹ 223. *B Wansink, A Cardello, J North, Fluid consumption and the potential role of canteen shape in minimizing ⁵⁷² dehydration. *Mil. Medicine* **170**, 871–873 (2005).
- ⁵⁷³ 224. *B Wansink, JE Painter, J North, Bottomless bowls: Why visual cues of portion size may influence intake.
 ⁵⁷⁴ Obes. Res. 13, 93–100 (2005).
- ⁵⁷⁵ 225. *B Wansink, D Soman, KC Herbst, Larger partitions lead to larger sales: Divided grocery carts alter purchase
 ⁵⁷⁶ norms and increase sales. J. Bus. Res. **75**, 202–209 (2017).

- ⁵⁷⁷ 226. *B Wansink, K van Ittersum, JE Painter, Ice cream illusions: Bowls, spoons, and self-served portion sizes. Am.
 ⁵⁷⁸ J. Prev. Medicine **31**, 240–243 (2006).
- ⁵⁷⁹ 227. *B Wansink, K van Ittersum, CR Payne, Larger bowl size increases the amount of cereal children request,
 ⁵⁸⁰ consume, and waste. *The J. Pediatr.* 164, 323–326 (2014).
- ⁵⁸¹ 228. *L Xue, S Sitzia, TL Turocy, Mathematics self-confidence and the "prepayment effect" in riskless choice. J.
 ⁵⁸² Econ. Behav. & Organ. 135, 239–250 (2017).
- ⁵⁸³ 229. *M Yeomans, D Herberich, An experimental test of the effect of negative social norms on energy-efficient
 ⁵⁸⁴ investments. J. Econ. Behav. & Organ. 108, 187–197 (2014).
- ⁵⁸⁵ 230. *SD Young, B Monin, D Owens, Opt-out testing for stigmatized diseases: A social psychological approach to
 ⁵⁸⁶ understanding the potential effect of recommendations for routine HIV testing. *Heal. Psychol.* 28, 675–681
 ⁵⁸⁷ (2009).
- ⁵⁸⁸ 231. *HS Zarghamee, et al., Nudging charitable giving: Three field experiments. J. Behav. Exp. Econ. 66, 137–149 (2017).
- ⁵⁹⁰ 232. *GG Zeinstra, RJ Renes, MA Koelen, FJ Kok, C de Graaf, Offering choice and its effect on dutch children's
 ⁵⁹¹ liking and consumption of vegetables: A randomized controlled trial. *The Am. J. Clin. Nutr.* **91**, 349–356
 ⁵⁹² (2010).
- ⁵⁹³ 233. *BJ Zikmund-Fisher, PD Windschitl, N Exe, PA Ubel, "i'll do what they did": Social norm information and
 ⁵⁹⁴ cancer treatment decisions. *Patient Educ. Couns.* 85, 225–229 (2011).
- ⁵⁹⁵ 234. *FM Zuraikat, LS Roe, AD Smethers, BJ Rolls, Doggy bags and downsizing: Packaging uneaten food to go
 ⁵⁹⁶ after a meal attenuates the portion size effect in women. Appetite **129**, 162–170 (2018).