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S1 Numerical methods

S1.1 Discretization of the partial differential equation system

In order to solve the system 1 numerically, we employ an explicit method using a forward difference for the
time derivative at time t and a central difference for the space derivative at position x. Explicitly, the relevant
differential operators are replaced by the following expressions:

∂Y

∂t
→ Y (t, x)− Y (t−∆t, x)

∆t
, (S1a)

∂Y

∂x
→ Y (t, x+ ∆x)− Y (t, x−∆x)

2∆x
, (S1b)

∂2Y

∂x2
→ Y (t, x+ ∆x)− 2Y (t, x) + Y (t, x−∆x)

(∆x)2
, (S1c)

where ∆t and ∆x represent the discrete steps in time and space, respectively. Here Y (t, x) can represent
the concentration of food F , or wild type bacteria B, or mutant bacteria M , at time t and coordinate x.
Substituting the differential operators in Eqs. 1 using Eqs. S1 yields

F (t+ ∆t, x) = F (t, x) +D
F (t, x+ ∆x)− 2F (t, x) + F (t, x−∆x)

(∆x)2
∆t−

− vF (t, x+ ∆x)− F (t, x−∆x)

2∆x
∆t− r

α
(B(t, x) +M(t, x))

F (t, x)

k + F (t, x)
∆t, (S2a)

B(t+ ∆t, x) = B(t, x) +D
B(t, x+ ∆x)− 2B(t, x) +B(t, x−∆x)

(∆x)2
∆t−

− vB(t, x+ ∆x)−B(t, x−∆x)

2∆x
∆t+ rB(t, x)

F (t, x)

k + F (t, x)
∆t, (S2b)

M(t+ ∆t, x) = M(t, x) +D
M(t, x+ ∆x)− 2M(t, x) +M(t, x−∆x)

(∆x)2
∆t−

v
M(t, x+ ∆x)−M(t, x−∆x)

2∆x
∆t+ rM(t, x)

F (t, x)

k + F (t, x)
∆t. (S2c)

The boundary conditions in x = 0 from Eqs. 2 become

F (t, 0−∆x) = F (t, 0 + ∆x) +
2∆x

D
v [Fin − F (t, 0)] , (S3a)

B(t, 0−∆x) = B(t, 0 + ∆x)− 2∆x

D
vB(t, 0), (S3b)

M(t, 0−∆x) = M(t, 0 + ∆x)− 2∆x

D
vM(t, 0), (S3c)

while the boundary conditions in x = L from Eqs. 2 become

F (t, L+ ∆x) = F (t, L−∆x), (S4a)

B(t, L+ ∆x) = B(t, L−∆x), (S4b)

M(t, L+ ∆x) = M(t, L−∆x). (S4c)

The spatial discrete step ∆x is in general chosen to be 0.01 cm. This value is small enough to ensure convergence
for most model parameters, and to have a good spatial resolution for analysis. Note however that for some
parameters, the term [Fin − F (t, 0)] in Eq. S3a can be very large which can lead to numerical instability. To
compensate, the spatial step, ∆x, needs to be reduced. Once ∆x is chosen, the value of ∆t should satisfy the
stability condition ∆t ≤ (∆x)2/(2D) [1]. Specifically, we take ∆t = 0.8(∆x)2/(2D).

S1.2 Obtaining stationary profiles without and with mutants

Numerically, we determine the unique solution for food concentration that satisfies F (x) < Fin for all x. Thus,
the steady-state profile of food concentration is independent of the initial conditions as long as they are all
positive. In general, for our numerical integration, we choose initial conditions not too far to the steady state,
namely F (0, x) = F0 ∈ (0, Fin), B(0, x) = α[Fin−F (0, x)], and M(0, x)� B(0, x), in order to obtain faster con-
vergence. If there is no mutant bacteria, the steady state of the wild type bacteria concentration is also uniquely
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defined through the relation B(x) = α[Fin−F (x)]. However, if there are both wild type and mutant bacteria in
the system, then the steady state solution is uniquely defined only for the total bacterial concentration, while
individual concentrations depend on the initial conditions for wild type and mutant bacteria.

In practice, the stationary state in the absence of mutant bacteria is found using Eqs. S2 coded in the Fortran90
programming language (code available at https://doi.org/10.5281/zenodo.4704653 [2]) with homogeneous
initial conditions

F (0, x) = 0.9Fin, (S5a)

B(0, x) = α[Fin − F (0, x)] = 0.1αFin. (S5b)

The time used in all numerical integrations is t = 500 h, which is long enough for the system to reach the steady
state for all choices of parameters considered in this paper.

To find the mutant concentration profile that is crucial to our calculation of the fixation probability, we consider
the system without mutants at steady state, and we assume that mutants appear at one local position, xM, in
the gut segment. We again solve Eqs. S2 for time t = 500 h, but now with the initial conditions

F (0, x) = F ∗(0, x), (S6a)

B(0, x) = B∗(0, x), (S6b)

M(0, x) =

{
M0, |x− xM| ≤ ∆x/2,

0, |x− xM| > ∆x/2,
(S6c)

where F ∗ and B∗ represent steady state concentrations without mutant bacteria, while M0 � B(xM ) is
the initial local mutant concentration. More precisely, denoting by NM the total number of mutant bacteria
introduced in the system, the quantity M0 is the initial concentration in the segment [xM−∆x/2, xM + ∆x/2],
where ∆x is the spatial discrete step of our numerical resolutions. Hence, M0 satisfies NMM0S∆x, where
NM is the total number of mutants introduced in the system. Note that since we are using central difference
discretization, we need to double the M0 value on boundaries of the segment where the mutants are introduced,
in order to have the same NM there as in the rest of the segment. In practice, we choose the value NM =
3.33 × 10−11 bacteria, so that for any choice of parameters used in this paper and for any initial mutant
position xM, the relation M0 � B(xM) is satisfied. Importantly, since the stationary concentration of mutant
bacteria is proportional to M0, all results scale with it, and we are not losing generality by fixing the value of
M0.

S1.3 Conversion between food and bacteria concentrations

The initial unit of food concentration is moles per liter, and that of bacterial concentration is optical density,
OD [3], which can be converted to numbers of bacteria per volume by using the calibration curve in [3].
Specifically, the conversion factor we take is 1OD=3.33× 109 bacteria/mL. Then the parameter α allows to
convert between food and bacteria concentrations.

Importantly, because α is just a scaling factor, a change in this value will modify the bacterial concentration
quantitatively, but the spatial profile and all the other conclusions will remain identical.

S2 Stationary profiles without mutants

S2.1 Ordinary differential equation description

Without mutants, at stationary state, Eq. 1 yields:

0 = D
∂2F

∂x2
− v ∂F

∂x
− r

α

FB

k + F
, (S7)

0 = D
∂2B

∂x2
− v ∂B

∂x
+ r

FB

k + F
, (S8)

with boundary conditions in Eq. 2.

Introducing f = αF +B, we have at stationary state

C = D
∂f

∂x
− vf , (S9)
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where C is a constant. The solution reads

f(x) = −C
v

+ C ′evx/D , (S10)

where C ′ is a constant. Applying the boundary conditions yields C ′ = 0 and C = −vαFin. Thus,

αF (x) +B(x) = f(x) = αFin , (S11)

and this specific linear combination of B and F is independent from x: food effectively gets converted into
bacteria.

Now we can inject this into the equation on F to decouple it from B, yielding:

0 = D
∂2F

∂x2
− v ∂F

∂x
− rF (Fin − F )

k + F
, (S12)

which is a second order nonlinear ordinary differential equation.

S2.2 Dimensionless form

Let us make the variable change s = xv/D, and let us introduce the function φ satisfying φ(s = xv/D) =
F (x)/Fin for all x. We obtain

0 =
∂2φ

∂s2
− ∂φ

∂s
− λφ(1− φ)

κ+ φ
, (S13)

which involves the dimensionless numbers

κ =
k

Fin
, (S14)

and

λ =
rD

v2
. (S15)

The associated boundary conditions are:

φ(s = 0)− ∂φ

∂s
(s = 0) = 1 , (S16)

∂φ

∂s
(s = σ) = 0 , (S17)

where

σ =
Lv

D
(S18)

is the third dimensionless number describing the system [3], and compares transport by convection to transport
by diffusion. It has the same form as the Péclet number for mass transfer, but recall that D is an effective
diffusion coefficient modeling gut contractions.

S2.3 Some stationary profiles

In practice, the partial differential equations in Eqs. 1 with boundary conditions in Eqs. 2 and initial conditions
in Eqs. 3 were solved numerically as explained above. Examples of profiles obtained are given in Figure S1.
Note that we checked that the long-term results from their direct resolution was consistent to those obtained
by numerically solving the ordinary differential equation S12 giving the stationary state of the system.
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Figure S1: Food concentration profiles. Food concentration F normalized by the food concentration inflow Fin

versus position x along the gut for four different values of the diffusion coefficient (panels A to D) and several values of
velocity (different colors in each panel). Values of diffusion coefficients and velocity are indicated in each panel. Other
parameter values are k = 0.1 mM, r = 0.42 h−1, v Fin = 1 mM cm/h, α = 6.13× 108 bacteria/mM.
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S3 Comparison to Fisher waves

In the regime with strong spatial dependence, the present model yields at steady state an upstream zone with
few bacteria, high food concentration and rapid growth, and a downstream zone with many bacteria, little
food and little growth. Specifically, our numerical resolutions show that φ = F/Fin then monotonically decays
from a value close to one to a value close to zero, with a sigmoid-like shape (see Fig. 1B, as well as Fig. S1A-B
for intermediate velocities). This is reminiscent of Fisher waves [4], which are (among several applications) an
important model for the spread of mutant genes in populations [4], as well as for the expansion of populations
that invade a new environment [5, 6], where the dynamics of mutants has been extensively discussed [7–13].
Let us compare these two models.

The Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) equation [4, 14] is a reaction-diffusion equation of
the form [5, 15]

∂u

∂t
=
∂2u

∂x2
+ f(u) , (S19)

where f is a function satisfying f(0) = f(1) = 0. For f(u) = u(1 − u), it is known as the Fisher equation [4,
6]. Searching for a “Fisher wave” solution of Eq. S19 in the form of a traveling wave u(x, t) = U(z = x ± ct),
where c is a wave velocity to be determined [5], yields:

d2U

dz2
± cdU

dz
+ f(U) = 0 . (S20)

It is known [15] that if f ′(0) > 0, f ′(1) < 0, and f(x) > 0 for all x ∈ ]0, 1[, then monotonic wave front solutions
such that limz→−∞ U(z) = 0 or 1, and limz→∞ U(z) = 1 or 0, exist if and only if |c| ≥ c∗, where c∗ > 0
is a constant that can be determined by analyzing the stability of the fixed points at (U,U ′) = (0, 0) and
(U,U ′) = (1, 0). In particular, c∗ = 2 in the case of the Fisher equation [6].

In our model, steady-state profiles of φ are solutions of Eq. S13, and thus, using ξ = x/D instead of s = xv/D,
the function ψ = 1− φ satisfies

d2ψ

dξ2
− v dψ

dξ
+ rD

ψ(1− ψ)

κ+ 1− ψ
= 0 , (S21)

which has the form of Eq. S20, with v replacing ∓c, and with f : ψ 7→ rD ψ(1− ψ)/(κ+ 1− ψ). This function
satisfies f(0) = f(1) = 0, as well as f ′(0) > 0, f ′(1) < 0, and f(x) > 0 for all x ∈ ]0, 1[, since r, D and
κ are positive constants. Therefore, monotonic stationary solutions such that limz→−∞ ψ(z) = 0 or 1, and
limz→∞ ψ(z) = 1 or 0, exist if and only if v ≥ v∗ (recall that in our system v > 0), and the same result holds
for φ = 1− ψ.

In order to determine v∗, let us study the stability of the fixed points at (φ, φ′) = (0, 0) and (φ, φ′) = (1, 0) in
Eq. S13. Introducing χ = φ′, where the prime denotes a derivative with respect to s = xv/D, Eq. S13 becomes:{

φ′ = χ ,

χ′ = χ+ λφ(1− φ)/(κ+ φ) .
(S22)

A linear stability analysis demonstrates that (0, 0) is a saddle point, while (1, 0) is either an unstable node if
4λ < κ + 1 (see Fig. S2A) or an unstable spiral if 4λ > κ + 1 (see Fig. S2B and C). Qualitative phase space
analysis (similar to that presented e.g. in [6] for the Fisher equation) then shows that stationary solutions such
that lims→−∞ φ(s) = 1 and lims→∞ φ(s) = 0 exist in both cases, but that they are monotonic if and only if
4λ ≤ κ+ 1, or equivalently

v ≥ v∗ =

√
4rD

κ+ 1
. (S23)

Therefore, in infinite space, there exists a stationary solution to the system of partial differential equations
Eqs. 1 that is equivalent to a Fisher wave (in a moving frame), provided that Eq. S23 is satisfied. However,
the velocity v is a parameter of the system, and not a wave velocity that can adjust, in contrast to the usual
Fisher-KPP case.

The model studied in this paper employs the system of partial differential equations Eq. 1 in a finite segment x ∈
[0, L] (or equivalently, s ∈ [0, σ = Lv/D]), with the boundary conditions Eq. 2, which become in dimensionless
form: {

χ(0) = φ(0)− 1 ,

χ(σ) = 0 .
(S24)

Is there a nontrivial solution satisfying these conditions, and if yes, how does it compare to the Fisher-wave-like
monotonic solution such that lims→−∞ φ(s) = 1 and lims→∞ φ(s) = 0?
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Figure S2: Phase space analysis of the system. A: λ = 0.17 and κ = 0.05, such that v > v∗ (washout). B:
λ = 0.34 and κ = 0.05, such that v < v∗ (below washout, but close to it), corresponding to the parameters of Fig. 1B.
C: λ = 3.36 and κ = 0.05, such that v < v∗ (substantially below washout). In all panels: Arrows: stationary solutions.
Blue curve: stationary solution obtained by numerical integration of PDE Eqs. 1.Black markers: fixed points. Dashed
lines: directions of the Jacobian eigenvectors at these fixed points (at (0, 0): stable direction in red, unstable one in
black; at (1, 0) if it is an unstable node (i.e. in A): slow unstable direction in purple, fast one in green). Black line:
boundary condition in s = 0, namely χ = φ − 1. Cyan dot: Crossing of the numerical solution (blue curve) and the
boundary condition (black line). Parameters of the numerical solutions are D = 0.1, 0.2, 2.0 cm2/h in panels A , B,
and C, respectively. Other parameters are as in Fig. 1B. The inset in panel B shows a close-up in the vicinity of (1, 0).

First assume that Eq. S23 is satisfied, ensuring that the Fisher-wave-like solution exists (see Fig. S2A). Then,
(1, 0) is an unstable node and the smallest eigenvalue of the associated Jacobian is `− = [1−

√
1− 4λ/(κ+ 1)]/2.

This eigenvalue satisfies 0 ≤ `− ≤ 1/2, and is associated to the eigenvector (1, `−), yielding a slow direction
in the phase space with slope between 0 and 1/2. Close to (1, 0), the Fisher-wave-like solution follows this
slow direction, before curving upwards to finally approach the stable direction of the saddle point in (0, 0).
Therefore, it only crosses the line χ = φ− 1 corresponding to the boundary condition in s = 0 (see Eq. S24) at
the unstable node (1, 0). But this unstable node can only be approached at s → −∞ in nontrivial solutions,
which makes it impossible to find a nontrivial solution satisfying Eq. S24. And indeed, our numerical resolutions
confirm that if Eq. S23 is satisfied, bacteria are washed out (see Fig. 1C and section S4).

Let us turn to the opposite case, where v < v∗ (see Fig. S2B and C). Then, (1, 0) is an unstable spiral, and
thus the stationary solution such that lims→−∞ φ(s) = 1 and lims→∞ φ(s) = 0 is oscillatory and comprises
unphysical parts where φ > 1 (implying negative numbers of bacteria). However, this spiraling behavior means
that this special solution crosses the line χ = φ − 1 (see Eq. S24) in at least another point, say P , than
the unstable node (1, 0). Thus, there may be nontrivial and physical solutions satisfying Eq. S24, among the
solutions that intersect the line χ = φ − 1 between (1, 0) and P (examples of these intersections are shown in
cyan in Figs. S2, S3 and S4). These solutions may look quite different from the Fisher-wave like solution that
exists for v ≥ v∗. In particular, they may possess a value of φ(0) substantially smaller than 1 and a value of
φ(σ) substantially larger than 0. These differences are expected to increase as v is decreased further and further
from v∗ (i.e. more differences from the Fisher-wave-like solutions are expected in Fig. S2B than in Fig. S2C).
Consistently, Fig. 1C demonstrates that profiles with strongest spatial dependence are obtained for v not much
below the washout limit v = v∗, and Fig. S1 includes several numerical solutions with values substantially
different from 1 and 0 at the boundaries s = 0 and s = σ. Fig. S3 shows the phase portraits corresponding to
some of these cases, illustrating the diversity of solutions. Nevertheless, in the strongly spatial regime where
v is not much below the washout limit v = v∗, similarities with the Fisher-wave-like solutions that exist for
v > v∗ are expected. This case is illustrated e.g. by Fig. S3B.

Here, differences with Fisher waves are brought by the boundary conditions, and in particular by the one at
x = 0. In addition to the different parameter regime where nontrivial solutions exist, another difference is that
all horizontal translations of a traveling wave solution are also solutions in the Fisher wave case [6], while here,
they would not satisfy the boundary conditions. The boundary condition at x = 0 is quite important as it
corresponds to the transition between the small intestine and the colon. Besides, the boundary condition in
x = L also affects the solution, in particular by inducing a second washout limit, see Fig. 1C and section S4.
However, for sufficiently large σ = Lv/D, the value of σ has little impact on the solution (see Fig. S14). Fig. S4
shows phase portraits with different values of L, illustrating its impact for small L, and its lack of impact for
L ≥ 4 cm.

Note that traveling waves arising in Fisher-KPP equations Eq. S19 (including those characterizing expanding

7



A B C

0.0 0.5 1.0

-0.3

-0.2

-0.1

0.0

0.1

ϕ

χ

0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

ϕ

χ

0.99 0.995 1. 1.005

-0.010

-0.005

0.000

0.005

0.0 0.5 1.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

ϕ

χ

0.999 1.

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

Figure S3: Phase portraits for different types of spatial profiles from Fig. S1B. A: λ = 0.56 and κ =
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populations) can be either driven by the leading edge (pulled) or by the bulk of the wave (pushed) [8, 13].
Pulled waves have a velocity that depends only on f(0), and are obtained when f ′(u) ≤ f ′(0) for all u ∈ [0, 1]
and f ′(u) = f ′(0) +O(hp) for some p > 0 when u→ 0, in addition to the above conditions f ′(0) > 0, f ′(1) < 0,
and f(x) > 0 for all x ∈ ]0, 1[ [16, 17]. These conditions are all satisfied by f in Eq. S21, and thus the associated
Fisher-KPP equation would lead to pulled waves. Pushed waves have a velocity that depends on the full
nonlinearity of f , and can be obtained when growth rates are nonmonotonic with population density, which
can occur with cooperativity (Allee effect) [8, 13]. However, here, the velocity v is an imposed parameter, in
contrast to a traveling wave velocity, and the boundary conditions yield further differences, as discussed above.

Note also that it would be interesting to further investigate the stability of solutions to time-dependent pertur-
bations, as was done e.g. for the Fisher wave in the Fisher equation [6]. Here, the analysis would be different
as one would need to start from the system of partial differential equations Eqs. 1.

S4 Washout limits

The washout limits are the limits where all bacteria get washed out of the system. Mathematically, they
correspond to a bifurcation point in the parameter space where the trivial steady state solution F (x) = Fin

(and B(x) = 0) becomes stable.

In the chemostat, this limit is easy to determine. There are two steady state solutions, F c = kc/(r − c) and
F ∗ = F c

in. Eigenvalues of the Jacobian associated to Eqs. S33 and S34 for both steady states change their sign
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at same point in the parameter space, namely at

c =
r

k/F c
in + 1

≡ cwo. (S25)

The bifurcation scenario is such that at cwo the two steady state solutions collide, change stability, and one
(nontrivial) solution disappears, making it a transcritical bifurcation.

In the spatial system, a complete analytical treatment is more difficult, even though one of the washout limits
was found by our phase portrait analysis above (see Eq. S23) . Numerically, we find one positive nontrivial
solution for v < vwo, where vwo is the bifurcation point which depends on the rest of the system parameters,
and only the trivial solution for v > vwo, implying a change of the stability at v = vwo when the two steady
states collide.

It is possible to find analytical estimates for the washout limits in the spatial system by comparing key length
scales and time scales , as discussed in Ref. [3]. Let us first consider the case of large diffusion coefficients, when
concentration profiles are flat regardless of the value of v. We compare the time τflow needed for a bacterium
to travel through the system from the entrance to the exit to the minimal time τrepl taken by a bacterium to
replicate in this system (for F = Fin). If τflow < τrepl, i.e.

L

v
<
κ+ 1

r
, (S26)

bacteria get washed out, so that an estimate of the washout velocity is

vwo =
rL

κ+ 1
, (S27)

which is in good agreement with the numerical results, as shown by Figure S5, and Figure 1C in the main text.

Next, let us compare the diffusion and flow characteristic lengths at the time of replication, τrepl. Washout
occurs if Ldiff < Lflow, i.e. √

2Dτrepl < vτrepl, (S28)√
2
D(κ+ 1)

r
<
v(κ+ 1)

r
, (S29)

which gives

vwo =

√
2rD

κ+ 1
. (S30)

This second washout limit is in agreement with Eq. S23, as well as with the numerical results depicted in
Figures S5 and 1, up to a factor 2. Indeed, numerically, we find a good agreement with

vwo = v∗ =

√
4rD

κ+ 1
. (S31)

The results in Figure S5 are consistent with those of Figure 1C where (κ + 1) ≤ 1.25, and demonstrate the
robustness of these results across a wide range of κ values.
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Figure S5: Washout limits in the spatial system as a function of κ+ 1. The two washout limits are obtained
by fixing the diffusion coefficient at 0.1 cm2/h, and varying the velocity for 20 different values of κ + 1. The first
velocity for which F (L) > 1.− 10−10 is recorded as the washout velocity vwo. The process is repeated for three different
values of length L = 6, 12, 24 cm. Other parameters are v Fin = 1 mM cm/h, k = κFin mM, r = 0.42 h−1, α =
6.13× 108 bacteria/mM. The green and magenta lines correspond to the two washout limits described by Eqs. S27
and S31, respectively.
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S5 Correspondence between the spatial system and the chemostat

S5.1 Main matching condition

We wish to match the total number of divisions occurring in the spatial system and in the chemostat. At
stationary state we thus aim to match the amount of food entering and exiting these different systems, as well
as the amount of bacteria exiting them.

� Spatial system: amount of food entering: dNF,in/dt = FinvS; amount of food exiting: dNF,out/dt =
F (L)vS; amount of bacteria exiting: dNB,out/dt = B(L)vS;

� Chemostat: amount of food entering: dNF,in/dt = F c
incV ; amount of food exiting: dNF,out/dt = F ccV ;

amount of bacteria exiting: dNB,out/dt = BccV .

Here V is the volume of the chemostat, c is the dilution rate i.e. the outflow rate per unit volume of the
chemostat. Concentrations in the chemostat are indicated by a superscript c. Meanwhile, v denotes the
velocity in the spatial system, S the section and L the length of the spatial system.

Hence, our matching condition reads:

Fin

F c
in

=
F (L)

F c
=
B(L)

Bc
=
cV

vS
. (S32)

S5.2 Constraints from each separate system

In the spatial system, we have F (L) = Finφ(κ, λ, σ) andB(L) = α [Fin − F (L)], i.e. B(L) = αFin [1− φ(κ, λ, σ)],
where φ is the dimensionless function introduced above.

In the chemostat, the following equations are satisfied:

dF c

dt
= − r

α

F cBc

k + F c
+ cF c

in − cF c , (S33)

dBc

dt
= r

F cBc

k + F c
− cBc . (S34)

At stationary state

0 = − r
α

F cBc

k + F c
+ cF c

in − cF c , (S35)

0 = r
F cBc

k + F c
− cBc . (S36)

If Bc 6= 0, this yields rF c/(k+F c) = c, which means that the dilution rate c of the chemostat sets the effective
division rate of the bacteria, a fundamental chemostat property. And then (with c 6= 0)

F c =
kc

r − c
, (S37)

Bc = α (F c
in − F c) = αF c

in

(
1− k

F c
in

c

r − c

)
. (S38)

Hence, our matching condition Eq. S32 reads:

Fin

F c
in

=
Finφ(κ, λ, σ)

kc/(r − c)
=

αFin [1− φ(κ, λ, σ)]

αF c
in [1− k/F c

in c/(r − c)]
=
cV

vS
, (S39)

which reduces to two equations relating the spatial system (left hand-side) to the chemostat (right hand-side):

φ(κ, λ, σ) =
k

F c
in

c

r − c
, (S40)

vSFin = cV F c
in . (S41)

We assume that the parameters of the spatial system are given. Then we need to choose those of the chemostat
in order to have a good matching. The parameters specific to the chemostat are c, F c

in, V . Note that k and r
are assumed to be the same in both systems. In principle Eqs. S40 and S41 allow us to fix 2 out of these 3 free
chemostat parameters.
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S5.3 Additional matching conditions

We may want to impose additional matching conditions between the chemostat and the spatial system:

1. Same total volume: V = SL. This implies cV
vS = cL

v , and Eq. S32 would be modified accordingly.

2. Same volume exiting per unit time: cV = vS. This implies cV
vS = 1, and Eq. S32 would be modified

accordingly.

3. Same outflow rate relative to the total volume: c = vS
LS = v

L . This implies cV
vS = V

LS , and Eq. S32 would
be modified accordingly.

We note that if we impose two of these three conditions simultaneously, then the third one is also satisfied
automatically, but Eqs. S40 and S41 and all three conditions above can be satisfied simultaneously only when
F (L) = vk/(rL− v).

S5.4 Properties of the matching chemostats

In general, we can impose only 3 independent conditions, setting the values of c, F c
in, V . Specifically, we have

to take Eqs. S40 and S41, plus one of the three conditions numbered 1, 2 and 3 above. These three possibilities
are discussed in Table S1 and illustrated in Figure S6.

Matching condition c F c
in V

1. Same total vol-
ume

cV

vS
=
cL

v

F (L)v

2Lk

(√
4Lrk

F (L)v
+ 1− 1

)
Finv

2Lr

(
1 +

√
4Lrk

F (L)v
+ 1

)
L S

2. Same volume
exiting per unit
time

cV

vS
= 1

F (L)r

k + F (L)
Fin

v S(F (L) + k)

F (L)r

3. Same outflow
rate relative to the
total volume

cV

vS
=

V

SL

v

L

Finkv

F (L)(Lr − v)

F (L) L S(Lr − v)

kv

Table S1: Chemostat parameters c, F c
in, V as a function of the parameters of the spatial system for three different

matching conditions.
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Figure S6: Chemostat parameters. Parameters of the chemostat matching the spatial system in the conditions of
Figure 3. Each row in the figure (top to bottom) represents matching condition 1 to 3, while each column in the figure
represents a given parameter: dilution rate c (left), food inflow F c

in (middle), and volume V (right). Due to the very
small values of food concentration exiting the gut, parameters of the chemostat system can have very large or very small
values. This is particularly true for smaller diffusion constants and/or small velocities.
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Finally, table S2 gives the expression of various useful quantities for the spatial system and for the chemostat.

Spatial system Chemostat

Reproduction rate ρ(x) = r
F (x)

k + F (x)
ρc = r

F c

k + F c

Reproductions per
unit volume and
unit time

R(x) = B(x)ρ(x) Rc = Bcρc

= rα
F (x) [Fin − F (x)]

k + F (x)
= rα

F c (F c
in − F c)

k + F c

Total reproduction
rate

NR = rα S

∫ L

0

F (x) [Fin − F (x)]

k + F (x)
dx N c

R = rαV
F c (F c

in − F c)

k + F c

= αvS [Fin − F (L)] = αcV (F c
in − F c)

Total population NT = αS

∫ L

0

[Fin − F (x)] dx N c
T = αV (F c

in − F ∗)

Active population NA = αS

∫ x∗

0

[Fin − F (x)] dx, x∗ : F (x∗) = k N c
A = N c

T

Fixation probabil-
ity

F =

∫ L
0
R(xM)M(xM)

B(xM) dxM∫ L
0
R(xM)dxM

Fc =
NM

N c
T

Washout limit vwo =


rL

k/Fin+1√
4rD

k/Fin+1

c =
r

k/F c
in + 1

Table S2: Comparison of the main derived quantities in the spatial system and the chemostat.
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S6 Early dynamics of mutant bacteria concentration

Mutant M (×10
-11

bacteria /mL)

>3.330 1 2 3

Figure S7: Early dynamics of mutant concentration. Spatio-temporal evolution of mutant concentration for
xM = 0, 1, 2, 3, 4, 5, 6 cm in the first hour after mutant introduction. Black points correspond to the maximum mutant
concentration at time t, white points correspond to the maximum mutant concentration at position x, black line is
xM + vt, and white curve is xM ±

√
2Dt. The parameter values are D = 0.4 cm2/h, v = 0.5 cm/h, k = 0.1 mM, r =

0.42 h−1, v Fin = 1 mM cm/h, α = 6.13× 108 bacteria/mM and M0 = 3.33× 10−9bacteria/mL.
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S7 Stationary state of mutant bacteria concentration versus the
initial position xM of mutants
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Figure S8: Stationary distribution of mutant bacteria in the gut. Concentration of mutant bacteria as a
function of position x, and initial mutant position xM, for D =0.02 cm2/h, and for three different values of flow velocity
v, corresponding to the flat concentration profile in the well mixed regime (A), spatial concentration profile (B), and
close to the washout limit (C). In all three cases, we observe that the final concentration of the mutant bacteria is
smaller if the initial position xM is further along the gut. This figure corresponds to three points of the top curve in
Fig. 3.
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Figure S9: Stationary ratio of mutant to wild type bacteria concentrations. The ratio M/B is shown in all
three cases corresponding to Fig. S8. Consistently with our analytical predictions discussed in the main text, the M/B
ratio is constant along the gut. In addition, we observe that it monotonically decreases as a function of initial mutant
position xM, and the decrease is the most pronounced in the case of the spatial profile (panel B) where the ratio at the
beginning and at the end of the gut are several orders of magnitude apart.

16



S8 Location where most mutants that fix originate

While the position of the maximum of the ratio M/B of mutant to wild type bacteria concentrations is always
at the entrance of the gut (see main text and Figure 2), the position of the maximum of the number R
of reproduction events per unit volume and unit time depends on parameter values. We find that for flat
concentration profiles, it is located either close to the entrance of the gut (for small velocities yielding an
almost well-mixed system) or at the exit of the gut (close to the washout limit). Conversely, for spatial
concentration profiles, its location is intermediate (see Figure S10A). Because of this, in the regime with strong
spatial dependence, we find that the position of the maximum of the product RM/B of these two quantities
ranges between 0 and L/2 (see Figure S10B and C). The position of the latter maximum corresponds to the
location where most mutants that fix tend to originate.
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Figure S10: Maximum of R and RM/B. A: Number R of reproduction events per unit volume and unit time
as a function of position along the gut for three different types of concentration profiles, almost well-mixed (light blue),
spatial (red), and close to the washout limit (purple). B: Maximum of the product RM/B of the reproduction events
per unit volume and unit time and of the ratio of mutant and wild type bacteria as a function of space for the same
three concentration profiles as in A (same colors). C: Maximum value of R M/B as a function of its position for the
data set in Figure 3 of the main text.

S9 Calculation of the active population size

The active population corresponds to the bacteria in the zone where reproduction rate is significant. Concretely,
it is defined as

NA = S

∫ x∗

0

B(x)dx , (S42)

where x∗ corresponds to the point in the gut segment where the food concentration equals the Monod constant k,
i.e. F (x∗) = k, implying that the reproduction rate ρ(x∗) is equal to half of the maximal possible reproduction
rate, which is obtained if F (x)� k. Thus,

B(x∗) = α[Fin − F (x∗)] = α[Fin − k] = αFin(1− κ) . (S43)

In the active population thus defined, the reproduction rate of bacteria is at least equal to half of its maximal
possible value.
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S10 Impact of the dimensionless parameters

S10.1 Holding the dimensionless parameters fixed

To illustrate the relevance of the dimensionless parameters introduced in section S2.2 to describe the stationary
profiles, we vary system parameters so that we hold the dimensionless ones fixed. The reference for fixing them
is Figure 2:

κ =
k

Fin
=

0.1

2.0
= 0.050, (S44)

λ =
rD

v2
=

0.42× 0.2

0.52
= 0.34, (S45)

σ =
Lv

D
=

6× 0.5

0.2
= 15. (S46)

We first vary the gut length L in order to ease the discretization of the space. Once the L is chosen, the
dimensionless parameters are fixed by adjusting v, and then Fin, to keep the product v Fin constant. Other
parameters are kept fixed. Figure S11A shows the corresponding concentration profiles. They all have the
same shape, as evidenced by rescaling the food concentration by Fin and the spatial coordinate by L (see
inset of the Figure S11A). Figure S11B shows that the fixation probability for these profiles scales with active
population, F = NM/NA, consistently with our expectations, since the concentration profiles are strongly
spatially dependent.
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Figure S11: A Food concentration profiles for different system sizes and keeping nondimensional parameters, λ, κ, σ,
fixed. The profiles can be rescaled by dividing food concentration by Fin and space by L (see inset of A) showing all the
profiles are identical up to the scaling factors. B Fixation probability for the profiles in panel A. The parameters are
D = 0.2 cm2/h, v = 3./L cm/h, Fin = 1./v mM, k = 0.05/v mM, r = 1.68 · v2 h−1, α = 6.13× 108 bacteria/mM, NM =
3.33× 10−11 bacteria and the L values are listed in the panel B.
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S10.2 Varying each dimensionless parameter

Finally, we systematically investigate the impact of each dimensionless parameter by varying one of them while
holding the other two fixed. We keep parameters v, D and Fin fixed throughout, and vary k, r, and L one at
a time in order to change κ, λ, and σ, respectively. Results in Figures S13, S12 and S14 show that the fixation
probability is well described by F = NM/NA except in cases where the food concentration profile is less spatial
because food is substantially depleted even at the entrance of the gut, which occurs for the four largest values
of r in Figure S13.
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Figure S12: Varying κ. A Food profiles for different values of κ and fixed λ = 0.336 and σ = 15. B Fixation
probability as a function of total population NT and active population NA (in the inset). Different colors correspond
to different values of κ (k) and different symbols are used for overlapping data points. Parameters are v = 0.5 cm/h,
D = 0.2 cm2/h, L = 6.0 cm, r = 0.42 h−1, α = 6.13× 108 bacteria/mM, and NM = 3.33× 10−11 bacteria. k values are
listed in the panel B.
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Figure S13: Varying λ. A Food profiles for different values of λ and fixed κ = 0.05 and σ = 15. B Fixation probability
as a function of total population NT and active population NA (in the inset). Different colors correspond to different
vales of λ (r). Parameters are v = 0.5 cm/h, D = 0.2 cm2/h, k = 0.1 mM, k = 0.1 mM, α = 6.13× 108 bacteria/mM,
and NM = 3.33× 10−11 bacteria. r values are listed in the panel B.
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Figure S14: Varying σ. A Food profiles for different values of σ and fixed λ = 0.336 and κ = 0.05. The inset
shows rescaled food profiles, for easier comparison of the spatial dependence. B Fixation probability as a function of
total population NT and active population NA (in the inset). Different colors correspond to different values of σ (L)
and different symbols are used for overlapping data points. Parameters are v = 0.5 cm/h, D = 0.2 cm2/h, L = 6.0 cm,
r = 0.42 h−1, α = 6.13× 108 bacteria/mM, and NM = 3.33× 10−11 bacteria. k values are listed in the panel B.

S10.3 Range of the dimensionless parameters and relevance for the human colon

In this section, we discuss the range of values of the dimensionless parameters κ, λ and σ, which are the only
parameters of the model that may change the behavior of the system and affect our conclusions (recall that α is
just a scaling factor that does not affect spatial profiles and conclusions, see section S1.3). We first summarize
the range of values that these dimensionless parameters take in our study and in Refs. [3, 18]. Next, we discuss
the realistic range of values that they can take in the human colon, and show that the range studied here is
relevant for the human colon .

The parameter values employed in this paper correspond to the mini gut described in [3], where it has been
proven that the mathematical model describes well the experimental setup. In [18], the same model was used
to describe microbiota growth and composition in the human colon, and parameter values were thus altered to
match the properties of the human gut, which is several times bigger than the mini gut. However, this change
of parameter values did not significantly modify the values of the dimensionless parameters. As illustrated in
Figure S11, holding the dimensionless parameters fixed fully preserves the properties of the system, including
the spatial profiles of concentrations, and our conclusions on the active population remain true. Table S3
summarizes the range of dimensionless parameter values considered in Figure 3 of this paper, and compares
them to those of Refs. [3, 18].

Dimensionless
parameter

Figure 3 Figure 3;
F (0)−F (L)

Fin
> 0.9

Ref. [3] Ref. [18]

κ =
k

Fin
10−4 − 0.21 0.014− 0.083 0.05 2.5× 10−4

λ =
rD

v2
0.19− 8.4× 106 0.24− 0.42 0.036− 9.3 0.29

σ =
Lv

D
3× 10−4 − 57 7.59− 56 1.5− 25 9.6

Table S3: Dimensionless parameter values used in Figure 3 of this paper and in Refs. [3] and [18].

Let us now discuss the realistic range of values of the dimensionless parameters κ, λ and σ in the human colon.
Let us start by considering κ = k/Fin, and for this, let us first estimate Fin. Bacteria in the large intestine
consume a mix of different nutrients that have not (or not completely) been absorbed in the small intestine. A
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large component of them are fibers, and a human typically ingests 25 to 100 g a day of fibers [19]. The colon
input also includes a smaller or similar quantity of unabsorbed sugars and starch [20]. Given that the inflow of
digesta in the colon is about 2 liters per day [21], the order of magnitude of the incoming food concentration
Fin in the colon is in the range of 15 to 100 g/L. The Monod constant k depends on many factors, including
the substrate and the bacterial strain. Even for glucose, it can range from 0.03 to 5 mg/L depending on how
well adapted the bacteria are to growing on glucose [22], and it is typically higher for other substrates (20 to
300 mg/L for acetate [23]; 5 to 900 mg/L for different substrates [24]). Realistic values for κ = k/Fin are thus
in a wide range, but in all cases, they are much smaller than 1, at least as small as 0.1. In the next section
where dimensionless parameter values are systematically varied, Figure S12 demonstrates that such values of
κ give very similar outcomes, and all results collapse in the limit κ→ 0.

The two other dimensionless parameters, λ and σ, both involve the effective diffusion coefficient D, which
models mixing and is thus hard to measure directly. However, it is empirically well demonstrated that there
is a strong gradient of bacterial concentration along the colon [25, 26], and that most nutrients that could be
used by bacteria are consumed by the end of the gut [20]. This requires that λ = rD/v2 be larger than 1/4
(washout limit, see section S4), and less than a few units (since above, diffusion is strong enough for the system
to be almost well mixed). This can be seen on Figure 1C. Accordingly, Table S3 demonstrates that despite the
wide range of parameters used in our study, the range of λ is very narrow in the regime that yields strongly
spatial profiles (specifically, λ is between 0.24 and 0.42 when [F (0)−F (L)]/Fin > 0.9). This is in line with the
estimate from [18].

Let us finally turn to σ. We notice that σ = Lv/D = Lr/(vλ). Avoiding washout requires L/v > (κ+1)/r & 1/r
(see section S4), where the last inequality is rather tight because κ � 1. Since in addition 1/λ is of the order
of 2 to 4 in the very spatial regime, σ = Lr/(vλ) then has to be greater than a few units. Another way to
estimate σ is to employ Lr/v = τdig/τrep where τrep = 1/r is the minimal bacterial replication time (within the
colon), and τdig = L/v is the typical time spent in the system. While the total transit time ranges from one to
several days [27], the time spent by the digesta in the ascending colon, which is the upstream part of the colon
where the strong gradients of food and bacterial concentrations are located [18], is substantially shorter, of the
order of 4 hours [28], and thus τdig ≈ 4 h. Let us now estimate τrep. Feces weigh about 130 g/day and contain
25–50% of bacteria in mass [19]. The typical mass of a bacteria being 1 pg, this means that about 3–6×1013

bacteria per day are lost in feces, to be compared with about 4×1013 bacteria in the colon [29], leading to about
one renewal per day, which means that τrep ≤ 24 h. However, as it is likely that bacteria actively replicate only
in the upper part of the colon, while r represents the maximal reproduction rate in the gut, the actual value
of τrep is expected to be substantially smaller than this upper bond. A lower bound for τrep is given by the
minimal doubling time of fast replicating bacteria such as Escherichia coli in good conditions, which can be as
low as 20 minutes [30]. To summarize, σ = τdig/(λτrep), with 1/λ of the order of 2–4 and τdig/τrep & 1, and
τdig/τrep ≈ 10 when considering the ascending colon and the maximal replication rate. This matches well the
range of values of σ considered in the present work (see Table S3).

S11 Relevance of neutral mutations

In this study, we focused on neutral mutations, as a first step towards understanding evolution in the gut. What
fraction of spontaneous mutations is expected to be effectively neutral in gut bacteria? Despite the importance
of beneficial mutations for adaptation, they are expected to be a small fraction of spontaneous mutations, at
least in reasonably well-adapted organisms. Therefore, let us introduce the fitness cost δ of a mutation, defined
by fM/fW = 1 − δ where fM is mutant fitness and fW wild-type fitness (beneficial mutations then have a
negative δ). Mutations are effectively neutral if their fitness cost satisfies N |δ| � 1 where N is the effective
population size [31], which is the active population size here.

Let us estimate active population size in the human colon, where the total bacterial population is of the order
of 4 × 1013 bacteria [29]. The total rate of bacterial divisions in the gut is given by the ratio of the total
population size to the renewal time. This rate can also be expressed as the active population size divided by
the minimal replication time τrep, because bacteria in the active population reproduce at rates close to the
maximal one. Thus, the ratio of active to total population size is equal to the ratio of minimal replication
time to renewal time, which, as discussed in previous section, can be as small as 20/(24 × 60) = 1.4 × 10−2,
and is likely to be of order 0.1 (also consistent with [32]). In addition, fixation of a mutant occurs within a
strain. Different strains may compete for resources, but here, for simplicity, we do not consider this aspect,
which is possible if diversity is stable or if different strains employ different resources. There are at least tens
of thousands of bacterial phylotypes in the gut, exact diversity characterizations being limited by sequencing
depth [33]. Among all these types, some are much more abundant than others, and multiple rare types exist.
Let us consider an active population size of order N = 107 bacteria.
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Let us now discuss the range of δ values. Estimating the full distribution of fitness effects of mutations is
difficult [34], and many studies focus on beneficial mutations [35] because of their importance in adaptation. A
recent microfluidic mutation accumulation experiment [36] performed in Escherichia coli allowed to suppress
the effect of selection and to study all spontaneous mutations. The average fitness cost 〈δ〉 was found to be
3×10−3, but it largely arises from a minority of strongly deleterious mutations. The skewness of the distribution
of fitness costs was found to be positive and large, of about 17. Accurate measurements of extremely small
fitness effects are highly challenging, but a Gamma distribution of the same mean and skewness would yield
10% of all mutations with a fitness cost δ smaller than 10−7. Thus, a substantial fraction of all spontaneous
mutations occurring in gut bacteria is expected to be effectively neutral.

S12 Validation by stochastic simulations

S12.1 Stochastic simulation methods

In our stochastic simulations, space and time are discretized. We denote the discrete steps in space and time
used in these stochastic simulations by δx and δt. Recall that our model is one-dimensional and therefore the
only spatial dimension to be considered is x, along the gut main axis. To simplify notations, in this section we
denote by F (x) the linear concentration of food and by B(x) that of bacteria (which amounts to taking a gut
section with unit area).

Discretizing transport. To represent transport in our discrete simulations, rates of exchange of food and
bacteria between adjacent segments of lengths δx are defined.

First, to represent diffusive flow, let us introduce the rate rd at which food moves from one segment to each
one of its two closest neighboring segments (upstream or downstream). For the discrete model to converge to
our continuous equations as δx→ 0, rd has to satisfy:

lim
δx→0

rd δx [F (x+ δx)− F (x)] = D
∂F

∂x
, (S47)

where we expressed the diffusive flow per unit time from the segment at x to its immediate downstream neighbor
both in the discrete and in the continuous descriptions. This leads to:

rd =
D

δx2
. (S48)

Similarly, to represent convective flow, let us define the rate rv at which food moves from one segment to its
downstream neighbor. For the discrete model to converge to our continuous equations as δx → 0, rv has to
satisfy:

lim
δx→0

rv δxF (x) = v F (x) , (S49)

where we expressed the convective flow per unit time from the segment at x to its immediate downstream
neighbor both in the discrete and in the continuous descriptions. This leads to:

rv =
v

δx
. (S50)

Then overall, in the discrete model, during δt, the amount of food moving from one segment to its upstream
neighbor is r−δtF (x)δx where r− is the rate of upstream transport:

r− = rd =
D

δx2
. (S51)

Meanwhile, the amount of food moving from one segment to its downstream neighbor is r+δtF (x)δx where r+

is the rate of upstream transport:

r+ = rd + rv =
D

δx2
+

v

δx
. (S52)

Note that the mapping with the continuous equations is obtained for δx→ 0, and thus results may deviate for
finite δx.

Similarly, during δt, individual bacteria have a probability r−δt to jump upstream, and r+δt to jump down-
stream.
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Discretizing growth. Let us start from our continuous equations on concentrations of bacteria and food, and
map them to a description with discrete bacteria. Recall that in this section, B and F are linear concentrations
of bacteria and food. Restricting to the terms of Eq. 1 modeling growth, we have:

dB

dt
= rB

F

F + k
,

dF

dt
= − 1

α
rB

F

F + k
.

(S53)

Denoting by b(x) = B(x)δx (resp. f(x) = F (x)δx) the average number of bacteria (resp. the quantity of food
in moles) present in the segment [x, x+ δx], these equations become:

db

dt
= rb

f

f + k̃
,

df

dt
= − 1

α
rb

f

f + k̃
,

(S54)

k̃ = kδx. Similarly, let us introduce fin = Finδx.

Each individual bacterium has a reproduction rate of rf(x)/[f(x) + k̃], so during δt it has a probability
rδt f(x)/[f(x) + k̃] to reproduce. If one bacterium reproduces, then f(x) is decreased by 1/α, thereby ensuring
the mapping with Eqs. S54. Note that, since this quantity is fixed, for small values of δx, it may lead to
transient negative local values of f(x), due to discretization and to the assumption that food is only consumed
in the segment where replication occurs. When this happens, we set the local reproduction rate of bacteria to
zero, and thanks to diffusion, such unrealistic states are short-lived.

Simulation steps.

� Initialization: The initial discrete numbers nb(x) of bacteria in each segment [x, x+δx] are obtained from
the steady-state numerical solution B(x) of the continuous equations through nb(x) = db(x)e = dB(x)δxe,
where d.e denotes the ceiling function.

� Equilibration without mutants:

1. During δt, a bacterium in [x, x + δx] has a probability rf(x)/[f(x) + k̃] of reproducing. For each
bacterium, a random number is drawn in a uniform distribution on the interval [0, 1], and compared
to the reproduction probability. This determines whether this bacterium reproduces.

2. For each bacterium within [x, x+δx] that reproduces, the quantity of food f(x) is decreased by 1/α.

3. After the steps above, food is updated according to the following rule: f(x)← f(x) [1− (r+ + r−)δt]+
f(x + δx)r−δt + f(x − δx)r+δt, where the rates r− and r+ are given respectively by Eq. S51 and
Eq. S52. On the boundaries, f(0)← f(0) [1− (r+ + r−)δt] + f(δx)r−δt+ [vfin/δx+ r−f(0)] δt, and
f(L)← f(L) (1− r+δt) + f(L− δx)r+δt.

4. For each bacterium at each site x a random number is drawn from a uniform distribution on an
interval [0, 1], and compared to the probability to move to the right, r+δt, to move to the left, r−δt,
or to stay, 1− (r+ + r−) δt. Bacteria move accordingly.

The above steps 1 to 4 are repeated until time t reaches 1000 hours. A new initial state of bacteria and
food is obtained by taking the average in the time interval t ∈ [100, 1000] h. Then, steps 1 to 4 are
repeated for 100 more hours.

� Mutation: At the next replication of one bacterium, we assign to it one mutant daughter bacterium. If
more than one bacterium replicates during δt, the mutant daughter bacterium is assigned to one of them,
chosen uniformly at random.

� Evolution to fixation or extinction: The above steps 1 to 4 are repeated until extinction or fixation of the
mutant bacteria, keeping track of what bacteria are mutant and wild-type. 141,681 different stochastic
replicates were run.

Choice of the discretization parameters. Three parameters describe the discrete nature of this stochastic
simulation: the discrete spatial step δx, the discrete time step δt, and the finite total number of bacteria

NT =
∑
x b(x) =

∫ L
0
B(x)dx. In the numerical resolutions of the main text, we focused on large bacterial

population sizes. But here, as we aim to validate the results from our deterministic model using a stochastic
one, we consider less realistic small population sizes, which allows for shorter computation times. However, NT
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should not be too small in order to avoid spontaneous extinctions of bacteria due to fluctuations within the
time of the simulations. In practice, to control population size, we tune the conversion factor α between food
and bacteria. In addition, taking δx or δt not small enough leads to shifts in the food profile compared to the
continuous case, as demonstrated in Fig. S15.
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Figure S15: Dependence of the stochastic profiles on the discretization parameters, δx, δt, and NT (via
α). Numbers of bacteria and rescaled food quantities at time 103 h are shown in the stochastic and in the deterministic
description versus position x in the gut. Initial conditions are the same in all panels and are taken as described in
the “Initialization” item of our simulation steps. The only difference between panels is the value of the discretization
parameters. Other parameters of the system are as in Fig. 1B, apart from v = 0.514 cm/h (and α which is specified in
each panel).

In order to keep simulation times reasonably short, we chose the parameters corresponding to Fig. S15B. Note
that this case exhibits a small shift in the spatial profile compared to the continuous case. However, this shift
is stable, the steady state relation B = α(Fin−F ) holds on average, and the source of the shift with respect to
the continuous case is known to be the choice of δx and δt. The fluctuations caused by the choice of NT (via
α) in Fig. S15B are also stable and are not causing extinctions or changes of spatial regimes.

S12.2 Stochastic simulation results

Here, we present results obtained over 141,681 different stochastic replicates of the simulation described above,
with discretization parameters corresponding to Fig. S15B.

Fig. S16 shows the fate of neutral mutants appearing at various locations in the gut. We observe a good
agreement between panels A and B, obtained from our stochastic simulations, and panels C and D, obtained
from our numerical resolution of the deterministic system (analogous to Fig. 2). In particular, the black curve
in Fig. S16A, showing the proportion p(xM) of mutant bacteria that fix versus their introduction position xM,
matches the black curve in Fig. S16C, which shows the steady-state ratio M/B of mutant to wild-type bacteria
concentrations. This corroborates the fact that the deterministic steady-state ratio M/B in the deterministic
description behaves as the mutant fixation probability in the stochastic case, for each given mutant introduction
position xM.
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Figure S16: Fate of neutral mutants appearing at various locations in the gut: stochastic and deter-
ministic descriptions. A: Black: proportion p(xM) of mutant bacteria that fix versus their introduction position
xM, computed as p(xM) = NMF (xM)/NMA(xM), where NMF (xM) is the number of mutants that fix in the seg-
ment at xM, while NMA(xM) is the number of mutants that appeared in that bin. Gray shaded boxes correspond
to p(xM) ±

√
NMF (xM)/NMA(xM). Pink: histogram of the number of mutant apparition events at each introduction

position xM. B: Histogram of the number of apparition events of mutant bacteria that eventually fix versus their
introduction position xM. In panels A and B, parameter values are as in Fig. 1B, except α = 184 bacteria/mM and
v = 0.514 cm/h. Discretization parameters are δx =0.02 cm, δt =2× 10−4 h. The bin size used is 0.5 cm. C and D:
Corresponding numerical solutions of the deterministic system. In panels C and D, parameter values are as in Fig. 1B,
except v = 0.514 cm/h. For direct comparison with the stochastic results shown in panels A and B, curves have been
rescaled, the black one by αd/(M0,dαs), the pink one by αs/αd, and the purple one by 1/M0,d, where αd is the value
of α used in the deterministic case (see Fig. 1B), while αs is the one employed in the stochastic case, and M0,d is the
initial local mutant concentration at xM in the deterministic description.

One of the main results of our study is that the fixation probability of a mutant is given by 1/NA instead of
1/NT. Fig. S17 demonstrates that this result is validated by our numerical simulations.
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Figure S17: Fixation probability is equal to the inverse active population size. The curve shows the average
profile of the bacterial population in the stochastic simulations run in panels A and B of Fig. S16. The total population
size is proportional to the total area below this curve, while the active population size (defined in section S9, see also
Fig. 4 of main text) is proportional to the area shaded in gray. The fixation probability F is computed from our
stochastic simulation results as F = NF /NR, where NF is the number of fixation events and NR the number of runs.
The associated confidence interval is given by (NF ±
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size are also given, averaged over realizations and over time. The associated confidence intervals are estimated via
standard deviations.

Furthermore, Fig. S18A-B shows the distribution of mutant extinction times and mutant fixation times. Most
extinction times are relatively short. The peak of the distribution of the position of mutant apparition (pink
curve of panel A of Fig. S16) is about 2 cm from the downstream boundary, which takes about 4 h to cross at the
velocity v employed here. Consistently, this is also the peak time for extinction events. Fixation times are much
longer. Since the effective population size is the active population size, of the order of 470 and the replication
rate is r = 0.42 h−1, the fixation time is expected to be of the order of NA/r ' 1000 h, which is indeed the right
order of magnitude. As bacterial populations in the gut are very large, fixation times will accordingly be very
large. Fig. S18C shows the average proportion of mutants versus time. At the time of mutant apparition, it is
the inverse of the total population size, but very quickly this mutant proportion becomes close to the inverse
of the active population size. Therefore, the effect of active versus total population size matters much earlier
than the fixation time.
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Figure S18: Time scales in stochastic simulations. A: Histogram of mutant extinction times. B: Histogram of
mutant fixation times. C: Curve: average proportion of mutants versus time after mutant apparition. Dashed line:
〈1/NA〉. Dotted line: 〈1/NT〉. Upon mutant apparition, as there is one mutant, the mutant proportion is 1/NT. In
the long term, as the population will be either all wild-type or all mutant, the average mutant proportion tends to the
fixation probability. But the time scale over which the mutant proportion becomes close to 1/NA is small compared to
the time to fixation.
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