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Foreword 

 
This Supplementary Materials for the manuscript “Machine Learning-driven Multiscale 

Modeling Reveals Lipid-Dependent Dynamics of RAS Signaling Proteins” covers a range of 

topics and we advise accessing it: directly by referenced section from the main text, through the 

contents lists below, or by topic.  

 

The document is split up into two main sections the supplementary materials and methods (pages 

6-30) and the supplementary notes and discussion (pages 31-74). These are followed by 

supplementary References, and Appendix A (pages 75-80). Sections one and two are further split 

up into several distinct subsections by topic.  

 

Section one is the method section and split in four main parts:  
 

- Section 1.1.  The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) (page 

6), gives a complete introduction to MuMMI and all its subcomponents, detailing those 

that have not been described before and summarizing and referenced those that have.  
 

- Section 1.2.  Creation of Models (page 12), goes through all the preliminary work needed 

for starting the multiscale simulation campaign described in this work. This includes the 

selection of lipids mixture, determinization of RAS structure, CG and macro model 

parameterization and training of ML framework.  
 

- Section 1.3.  Analytics details (page 22), details the different methods used for data 

analysis of the simulations. 
 

- Section 1.4.  Experimental methods (page 26), details all the different experimental 

methods used for accessing RAS structure and dynamics.  

 

Section two goes into more detail on the different results presented in the manuscript. This 

section has nine subsections which roughly belong to two catagories:  
 

- Sections 1-3 (pages 31-45) cover details on the multiscale simulation, lengths, sampling 

and comparison between the macro and CG scales. 
 

- Sections 4-9 (pages 45-74) discuss different aspects of RAS membrane dynamics and 

aggregation. 
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1. Supplementary Materials and Methods 
 

1.1.   The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) 
The multiscale simulation of RAS-lipid biology discussed in this paper is facilitated by the 

MuMMI framework. MuMMI is capable of orchestrating massive simulations using a 

sophisticated workflow (1), and utilizes a dynamic-importance sampling approach (2) based on 

machine learning (ML) to couple macro (continuum) and micro (CG) model simulations. Fig. S1 

shows the conceptual schema that MuMMI implements to coordinates macro and micro scale 

simulations. The macro model simulates biologically relevant time- and length- scales, which are 

currently intractable using higher-fidelity models. From the macro simulation, MuMMI extracts 

smaller neighborhoods of RAS, called patches, which are candidates for simulation at the CG 

resolution. Patches with highest importance (greatest novelty) are then selected using the ML-

driven sampler and simulated at a higher-fidelity using CG molecular dynamics (MD). 

 

 
 

Fig. S1:  MuMMI overview. MuMMI performs massively parallel multiscale simulations using an ML-

driven sampling framework. The first layer is a macro scale (DDFT model) with an overlaid MD 

simulation of RAS particles. 30×30 nm2 patches are extracted from the 1×1 m2 macro snapshots and are 

simulated at the CG MD level. Each selected patch is run concurrently occupying available resources as 

much as possible. 

 

A MuMMI simulation is seeded using a dynamic density functional theory (DDFT) simulation 

that is coupled with MD responsible for moving RAS beads along the DDFT-generated 

concentration plane. As the macro model runs, patches are extracted around the mobile RAS 

beads, creating a set of local subregions that can be sampled at the CG scale. The ML-driven 

dynamic-importance sampling framework is pre-trained to prioritize these local subregions based 

on criteria of scientific interest. Each CG simulation comprises two major phases: set up and 

simulation. For CG set up, each selected macro model patch is mapped to a corresponding CG 

molecular configuration and then equilibrated in preparation for simulation. Each CG simulation 

is accompanied with in situ analysis and runs for at least one s of simulation time. The analyses 

are responsible for saving full-system coordinate data to disk at a specified cadence because a 

higher frequency would otherwise be infeasible to store. Finally, MuMMI implements an on-the-

fly feedback mechanism that improves macro model parameters using data collected from the the 

analyses of the higher-fidelity, CG simulations. 

 

In the remainder of this section, we cover the different components of MuMMI. We start with 

the central workflow, hardware, and ddcMD (the MD simulation engine) (3) used to run our 
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campaign, followed by descriptions of the macro model, micro model, ML-based dynamic-

importance sampler, and in situ analysis. 

 

1.1.1. Workflow Management and Hardware 

A new workflow management tool (1) was developed to coordinate MuMMI because no existing 

workflow tools are capable of supporting our target, ML-driven multiscale simulations. The 

MuMMI workflow manager (WM) manages the state and execution of the simulation, including 

generation and ingestion of patches, their selection using ML, management of CG simulations, 

and feedback from in sity analysis of CG simulations to the macro model. 

 

The WM continuously polls for incoming new data from a running macro model simulation and 

uses them to generate patches, which are local neighborhoods of RAS proteins. These patches 

are then evaluated by a pre-trained ML model and selected for novelty (see Section 1.1.5) to 

spawn new CG simulations when resources become available. The WM monitors the available 

resources, starts new simulation tasks when needed, monitors running tasks, and restarts any that 

fail due to hardware issues or simulation instability. The WM is designed to provide robustness 

against hardware failures through extensive checkpointing and restoring capabilities. The WM 

also manages the feedback mechanism that updates macro model parameters. The WM collects 

the RAS-lipid radial distribution functions (RDFs) from the in situ analyses of CG simulations 

through the filesystem, aggregates them using appropriate ML weighting (see Section 1.2.7), and 

converts to the free-energy functionals needed for the macro model (see Section 1.1.3). 

 

Fig. S2 highlights how MuMMI couples several diverse components to create the unique 

capabilities required by our scientific campaign. The WM is written in Python and interfaces 

with Maestro (4), an open-source workflow tool with abstracted scheduler APIs to support 

portability. Maestro further interfaces with Flux (5), a scalable resource manager that provides 

hierarchical scheduling and supports submitting and monitoring tens of thousands of jobs. 

 

 
Fig. S2:  MuMMI component scheme. MuMMI couples the macro scale (DDFT and MD) model with the 

micro scale (CG model) using a ML-based dynamic-importance sampling framework. Data resulting from 

the macro scale simulation is analyzed by ML, and interesting subregions are simulated at the micro scale. 

CG simulations are analyzed in situ and used to improve the macro model via on-the-fly feedback. The 

central workflow uses Flux as the resource manager, as abstracted using Maestro, and coordinates with 

each of the software components using in-memory and on-disk communication. Modules in orange are 

the core, specially-developed components of the MuMMI framework, and other colors represent external 
software extended for MuMMI. 
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MuMMI allows the creation of a simulation campaign of unprecedented scale. The work 

presented in this paper effectively utilized all of the 4000 nodes of Sierra, the second most-

powerful supercomputer in the world (6) when the campaign was ran. MuMMI is easily scalable 

and can be deployed on small clusters as well with as few as 5 computational nodes. A Sierra 

node contains four NVIDIA® Tesla® V100 GPUs and two IBM® POWER9TM CPUs with 22 

cores each. When sufficient work is available, MuMMI utilizes all four GPUs and 40 out of the 

44 CPU cores available on each node by assigning them to the various components in our 

framework. Out of the 44 CPU cores available, four are used for the four CG simulations 

(ddcMD; see Section 1.1.4), three cores each for analysis of these simulations (see Section 

1.1.6), and 24 cores for a single CG setup process (see Section 1.1.4). The remaining four cores 

were reserved for handling system processes and filesystem interaction for CG simulations. A 

breakdown of a typical 2,040 node run is shown in Fig. S3. 

 

 
Fig. S3:  MuMMI node breakdown. A breakdown of a typical 2,040 node run of MuMMI on Sierra. 

MuMMI utilizes the heterogeneous mix of GPUs and CPUs on Sierra by running CG setup and analysis 

on the POWER9 CPUs while simultaneously running ddcMD CG simulations on the GPUs. 

 

1.1.2. The ddcMD Molecular Dynamics Engine 

The main MD simulation software used within MuMMI is ddcMD (3, 7). This code has been 

applied in studying various problems in different research areas including biology, material 

science, fluid flows, and plasma physics (1, 8) and has twice won the Gordon Bell Prize (8, 9). 

For this work, ddcMD was significantly extended to take advantage of heterogenous architecture 

capabilities.  

 

MuMMI utilizes ddcMD in two different ways. An existing CPU-only version is used to 

integrate protein equations in the macro model (see Section 1.1.3) and a specially-designed 

GPU-enabled ddcMD for micro model simulations (see Section 1.1.4). The new GPU 

capabilities were added to accelerate the Martini CG force field (10). The code not only supports 

GPU-enabled high-throughput MD but crucially also minimizes CPU utilization. Minimizing 

CPU usage is critical when working on architectures with low CPU to GPU resources or when 

executing frameworks, like MuMMI, with high CPU demand from other tasks (Fig. S3). The 

GPU-enabled ddcMD (3) has been released on GitHub (11).  

 

1.1.3. Macro Model 

In order to rapidly explore the bilayer system and the associated RAS proteins over long time- 

and length-scales, a macro scale model was designed where this macro model uses a continuum 

description of the lipids that is less-detailed than the Martini MD model. The macro model feeds 
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into the ML-based, dynamic-importance sampling framework, which identifies important 

patches to promote to CG MD simulations. 
 

The macro model formalism and equations are described by Stanton et al. (12). In the macro 

model, the equations of motion for the lipid species are based on a DDFT formalism (13), where 

the corresponding free energy functional was constructed entirely from measurements of Martini 

MD (CG) simulations. The Ornstein-Zernike (OZ) equation (14) is used to convert the lipid-lipid 

radial distribution functions (RDFs) from CG simulations to direct correlation functions (DCFs), 

which are used to compute lipid-lipid interactions in the continuum DDFT formulation. Lipid 

self-diffusion coefficients measured in CG training simulations (see Section 1.2.6) are used to 

obtain mobility parameters for the macro model. The macro model represents each RAS protein 

as a single bead, which interact with the lipids through potentials of mean force (PMFs) that are 

also extracted from CG simulations using the OZ equation and the Hypernetted Chain (HNC) 

closure relation (15). Finally, RAS-RAS interactions are modeled by a pair potential, which is 

discussed below. In contrast to the multiplicative noise in (12) we chose a additive noise term 

(still mass-conserving). To solve the system of partial differential equations resulting from the 

DDFT formalism, the parallel finite element code MOOSE (16) was used in conjunction with the 

original CPU-only version of the ddcMD (see Section 1.1.2) MD code to integrate the equations 

of motion for RAS particles. 
 

In this simulation campaign, the macro model included 8 lipid types that mimic the plasma 

membrane (PM) composition (see Section 1.2.1) and comprised a 1×1 µm2 bilayer at a resolution 

of 1200×1200 cubic-order elements. The membrane had 300 RAS molecules. The macro model 

was run on a relatively small number of nodes (50-500) and used only CPUs. On 900 cores, it 

can perform 6.3 µs per day in this setting. 

 

In order to support on-the-fly feedback, the implementation of the macro model allows for 

updating the parameter set of the macro model in real time. By reading the improved RDFs 

accumulated by the workflow via CG simulations, PMFs are calculated using the OZ and HNC 

equations, and periodically loaded into the macro model simulation. 

 

1.1.4. Micro Model 

When a region of the macro model is defined to be of interest, it is scheduled for CG MD 

simulation setup and initial equilibration. After a simulation is setup and equilibrated, it is run 

using a CUDA-based GPU version of the ddcMD MD program. 

 

The setup module transforms a selected patch of the macro model into a particle-based micro 

representation (see Fig. S4). Each selected macro model patch is 30×30 nm2 with one RAS 

molecule at the center and may include additional RAS. The patch is instantiated and 

equilibrated for a Martini simulation. Within a patch, the macro model indicates the 

concentration and asymmetry of all membrane lipids, which are resolved down to a 5×5 subgrid 

(with a subgrid spacing of 6 nm), and indicates the number, states (Section 1.2.5), and locations 

of included RAS proteins. The proteins, lipids, ions, and water molecules are placed in their 

initial x,y,z coordinates using a modified version of the insane membrane building tool (17). The 

modification to the insane tool allows lipid concentrations to be specified with subgrid resolution 

in each membrane leaflet. For the 30×30 nm2 patches a maximum of 3,200 lipids were placed, 

1,600 in each leaflet, with 64 lipids randomly arranged within each subgrid. The macro model 
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lipid densities were averaged within the 5×5 subgrids and rounded to integer values, with the 

residuals amortized between the subgrids. The difference in total densities between the inner and 

outer leaflets in the macro model for that patch were used to adjust the total lipid count between 

the two leaflets, accounting for the difference in lipid area between the two leaflets due to the 

composisional asymmetry of the patch. Initial RAS conformations were generated from a set of 

30 CG MD simulations of standard patch size, with one RAS molecule each, and run for ~33 μs 

each (see Section 1.2.4 for details). RAS states (Section 1.2.5) were defined for this simulation 

set and a library of 1000 confirmations was saved for each state. For each RAS in a patch during 

MuMMI CG simulation, the initial conformation is randomly sampled from these preconstructed 

libraries based on the RAS molecules’ conformational state. The location dictated by the macro 

model determines the farnesyl position in the bilayer plane (x,y). Apart from the farnesyl, all 

RAS proteins are moved away from the membrane by 2.25 nm. The RAS proteins are placed one 

at a time. Each protein is randomly rotated at the farnesyl in place around the z axes (same as the 

membrane normal for the initial flat bilayer). If there is no overlap with other proteins, the RAS 

is placed with that orientation. Otherwise, the rotation is repeated for as many as 20 attempts for 

placements. If all attempts are unsuccessful, the new RAS is translated out along the bilayer 

plane away from the already placed RAS by 0.5 nm and the rotation process is repeated. After all 

RAS have been placed, the initial coordinates are energy minimized, equilibrated, and the RAS 

molecules are pulled towards the membrane. The GROMACS MD package v5.1.4 (18) (CPU-

only version) is used for energy minimization, equilibration, and pulling (using only the CPU 

cores allows the workflow to set up new CG simulations without competing with production CG 

simulations, which utilize the GPUs). 

 

 
Fig. S4:  Macro to micro simulation setup. Particle-based micro simulations are created based on input 

from the macro model. Micro model, CG MD simulations are instantiated based on protein locations, 

protein states (Section 1.2.5), and spatially resolved lipid concentrations. Snapshots of a representative 

patch with one RAS molecule are shown after construction and initial protein/bilayer equilibration.  

 

The setup process includes particle creation, 1,500 steps of energy minimization, 5,000 steps 

with a short 1 fs time step and 20,000 steps with a 5 fs time step, where the proteins are away 

from the bilayers and both proteins and lipid anchors are constrained. The proteins are then 

pulled to the bilayer with each protein having its own umbrella pull group (z-axes only, 0.0006 

nm/ps, 1,000 kJ mol-1 nm-2) in a 400,000 step MD simulation with a 10 fs time step. After 

pulling, a further 2 ns of equilibration is run (100,000 time steps with a 20 fs time step) with only 

weak (10 kJ mol-1 nm-2) position restraints on protein beads in x and y dimensions. For these 

system sizes, ∽140,000 particles, one CG setup takes ~1.5±0.1 h on up to 24 POWER9 CPU 

cores. 

inital setup 

protein pull to the membrane

Complex asymmetric bilayers setup 

with sub-grid concentration gradients
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After setup and initial equilibration, GPU-enabled ddcMD (see Section 1.1.2) is used for MD 

production simulations. All CG simulations (equilibrium and production runs) were run using the 

new-rf Martini parameter set (19) with a final time step of 20 fs, at 310 K and 1 bar semiisotropic 

pressure coupling. The nonbonded interaction is calculated using Lennard-Jones potential with a 

cut-off radius of 11 Å. The electrostatic interaction is treated by the reaction field method (20). 

The dielectric constant within the cut-off 11 Å is 15 and beyond the cut-off is infinite. The 

velocity Verlet algorithm is employed in integrating the Newtonian equations (21). The 

RATTLE method is used for the molecules with constraints (22). The Langevin thermostat is 

used with a friction coefficient of 1 ps-1  (23). The Berendsen barostat is used for the pressure 

calculation with a compressibility constant of 3.010-4 bar-1 . Position restraints are applied to the 

POPC lipids of the outer leaflet to limit large scale bilayer undulations, these are weak (2 kJ mol-

1 nm-2) harmonic potentials applied to the z-direction of each lipid PO4 bead. The orthorhombic 

periodic boundary condition is applied to the system. The MD trajectory is saved every 25,000 

steps or 0.5 ns. For these system sizes, ∽140,000 particles, ddcMD produces on average 

1.02±0.002 μs of MD simulation per day using 1 CPU core and 1 GPU. 

 

1.1.5. Machine Learning Based Dynamic-Importance Sampling 

Given limited computational resources and millions of potentially important patches (local 

macro configurations), MuMMI must decide how to best invest its resources by simulating at the 

micro scale only those patches that are most likely to provide new insights. At the core of our 

multiscale simulation lies the ML-based dynamic-importance (DynIm) sampling approach (2) 

that investigates all patches and decides which micro simulations to spawn. 

 

The DynIm framework (2) comprises two key steps. First, it uses an autoencoder — an 

unsupervised deep neural network — that is trained to encode lipid configurations (within 

patches) into a reduced dimensional latent space that decouples the inherent correlations and 

captures the characteristic behavior of lipids. This latent space provides a more-pertinent 

similarity metric that can be used to compare patches. Second, DynIm uses this similarity metric 

to identify in real-time the most “novel” lipid configurations, i.e., the most dissimilar to the ones 

that have already been selected. A pretrained autoencoder, along with the sampling framework, 

was deployed in MuMMI for real-time selection of patches for CG simulations. 

 

Exploring the space of macro configurations includes two related but separate aspects. First, the 

macro model explores common, low-energy lipid configurations significantly-more frequently 

than others. Our ML-based sampling approach facilitates a more uniform sampling of the 

underlying configuration space (as compared to a random sampling) and, therefore, identifies 

infrequently-occurring configurations. Understanding the likelihood of any given configuration 

is crucial for any subsequent analysis, and the DynIm framework records this likelihood for all 

selected and nonselected configurations. Second, the resulting likelihood may be used to 

reconstruct the distribution in the configuration space at any instant in time. MuMMI utilizes this 

information to remove the bias introduced by novelty sampling and aggregate statistics from 

ongoing MD simulations. This results in MuMMI’s capability to augment the macro model 

information with insights from the micro scale to accumulate higher-fidelity data. 
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Note that the selection algorithm works dynamically as the multiscale simulation proceeds; the 

framework makes the best selection at a given point a time, according to the current state of the 

previous selections. Consequently, different resource constraints, e.g., choosing 5 patches per 

minute vs. 10 patches per minute, might result in somewhat different sequences of patches being 

selected. Nevertheless, given enough time and resources, the framework converges to a uniform 

sampling of the configuration space. As a result, the sampling framework can adapt to the scale 

of the multiscale simulation, covering a wide range from ~5 computational nodes all the way 

through several thousands. 

 

1.1.6. In situ Analysis  

A key enabling technology in MuMMI is the in situ analysis capability for the MD simulations, 

allowing for high-frequency analysis of specific properties of interest and on-the-fly feedback 

from the micro simulations to the running macro model. In situ analysis is particularly useful 

when dealing with such vast numbers of simulations as network filesystems may struggle to cope 

with the required I/O bandwidth or storage requirements. MuMMI contains a custom Python 

analysis module that is run for each running micro simulations locally on the same node. Newly 

generated simulation snapshots are saved to an on-node RAM disk, which provides high I/O 

throughput, and consumed immediately by the corresponding analysis. Each frame is read using 

an extended version of the MDAnalysis package (24, 25) that is able to parse the native ddcMD 

binary and ASCII data formats. In the current campaign, in situ analysis was performed every 0.5 

ns of the CG MD simulations and simulation frames were saved for offline analysis every 2 ns. 

The saved frames, results of online analysis and simulation restart files, were synced from local 

RAM disks to the network filesystem every 40 ns of simulation time. The online analyses 

performed were chosen to support the on-the-fly feedback to update the macro model, and a 

number of RAS and lipid properties of interest. The features extracted were lipid leaflet location, 

lipid concentration fields per leaflet and for each RAS:RAS state, RAS lipid RDFs, RAS-RAS 

contacts, and RAS-lipid contacts. The different analyses are described in Section 1.3. We note 

that the RAS states are defined with Markov state analysis of the RAS tilt and rotation with 

respect to the membrane (see Section 1.2.5). The RAS-membrane tilt and rotation are defined as 

shown in Fig. 5a. We use two angles to define the orientation of RAS’ G-domain with respect to 

the membrane surface. The tilt angle represents the deflection of the long axis of helix 5 (α5) 

away from the bilayer normal Fig. 5a (top panel) and the rotation angle represents the direction 

in which that tilt occurs Fig. 5a (bottom panel). All analysis routines are optimized such that 

using 3 POWER9 CPU cores for each simulation the online analysis can keep up with the 

frequency of incoming frames from ddcMD. 

 

 

1.2.   Creation of Models 
Akihiro Kusumi has proposed a model of the plasma membrane that is hierarchical and dynamic 

in nature (26). Within different length-scales from microns to nanometers, lipids, proteins, such 

as RAS, and associated structures interact and form transitory complexes that regulate or activate 

major cell processes including cell signaling. Existing structural biology and biophysical 

techniques, including imaging, are unable to resolve the precise molecular details of these 

interactions. It is crucial to bridge the temporal and resolution gaps to understand the biology, 

and the multiscale simulation framework, MuMMI is designed for this purpose. 
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For this framework to provide biologically relevant information, care needs to be taken in 

identifying the input parameters for the model. A variety of estimates for the number of RAS 

molecule/cell are available based on several experimental approaches, providing a range of 

46,000 – 820,000 KRAS molecules per cell (27-29). Assuming the diameter of these cells to be 

20 μm and all RAS proteins are localized to the PM, the total number of PM-localized KRAS 

molecules is between 38 and 678 KRAS molecules/μm2. In this work 300 RAS molecules/μm2 is 

selected to be within the range of experimentally measured values and allows for sampling of 

RAS-RAS interactions.  

 

RAS membrane dynamics are captured at the micro scale by using the CG Martini force 

field (10, 28, 29) with a created PM model (Section 1.2.1). Martini has been shown to be well 

suited to capture membrane dynamics and membrane lipid interactions (31-33), but as with any 

CG force field there is a balance of pros and cons; when evaluating results, all model limitations 

need to be carefully considered (10, 34-36). RAS protein parameters were optimized (Section 

1.2.3) from our solved active state structure of RAS (Section 1.2.2). In the following subsections 

we list the control and parameterization simulations that were run in advance of the MuMMI 

campaign (Section 1.2.4), how the parameters for the macro model were derived (Section 1.2.5), 

and the optimizations needed for the machine learning guided selection of patches (Section 

1.2.6).  

 

1.2.1. Plasma Membrane Model 

Cellular PMs consist of hundreds of different types of lipids that are actively regulated by the 

cell (37, 38) and asymmetrically distributed between the leaflets (39). Recent MD efforts using 

biologically relevant complex lipid models at the CG Martini resolution have started to reveal 

details of the lipid organization of PMs (40-43). Due to their high complexity (~60 lipid types) 

these compositions are not directly applicable to either modeling at the macro scale or to in vitro 

experimental investigation. Therefore, we used a simpler CG PM mimic using 8 lipid types that 

maintains the overall PM character and properties (44). 

 

The RAS minimal PM mimic model is composed of 8 different lipid types: two phosphocholine 

(PC) lipids (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPC and 1-palmitoyl-2-

arachidonoyl-sn-glycero-3-phosphocholine; PAPC), two phosphoethanolamine (PE) lipids (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; POPE and 1,2-dilinoleoyl-sn-glycero-3-

phosphoethanolamine; DIPE), one sphingomyelin (SM) lipid (N-stearoyl-D-erythro-

sphingosylphosphorylcholine, DPSM), one phosphatidylserine (PS) lipid (1-palmitoyl-2-

arachidonoyl-sn-glycero-3-phosphatidylserine, PAPS), one phosphatidylinositol (PIP) lipid 

(phosphatidylinositol 4,5-bisphosphate with a stearoyl and arachidonoyl tails, hereon referred to 

as PIP2 or PAP6), and cholesterol (CHOL). Note, in Martini both stearoyl and palmitoyl are 

mapped to the same tail denoted with P. We refer to the global macro model lipid composition as 

the average-RAS lipid composition or ARC (Fig. S5).  
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Fig. S5:  Average-RAS minimal plasma membrane mixture (ARC). (A) The percentage of each of the 
lipid species is given within each leaflet in the ARC. Due to the leaflet asymmetry and the difference in 

the sizes of different types of lipids, the inner leaflet has fewer lipids than the outer leaflet (in a 0.926:1 

ratio). Each lipid type is given a default color, which will be maintained throughout this manuscript. (B) 

The pie-charts show the lipid headgroup distribution and the levels of tail unsaturation for the outer and 

inner leaflets. 

 

The Martini lipid parameters for the RAS minimal PM model are available online at 

https://bbs.llnl.gov/data.html as well as on the Martini portal, http://cgmartini.nl. The lipid 

parameters were originally constructed according to the standard Martini 2.0 lipid building 

blocks and rules (10, 45) and are detailed by Ingólfsson et al. (46) and Wassenaar et al. (17) The 

updated Martini cholesterol model was used (47), except for production MD simulations in 

ddcMD. Currently, virtual sites are not supported in ddcMD; therefore, a hybrid model was 

constructed based on the original non-virtual site Martini cholesterol (10), but with updates to the 

cholesterol shape to reflect that of the never-virtual sites model (47) in order to maintain the 

improved lipid phase behavior of the newer model. Using a 20 fs timestep in ddcMD, the 

updated cholesterol model was generally stable and when instabilities emerged they could 

always be resolved by restarting from the last checkpoint.  

 

PIP2 is a phosphatidylinositol 4,5-bisphosphate lipid with stearoyl and arachidonoyl tails. The 

tail parameters are from the standard Martini building blocks (10, 17) and the headgroup 

parameters are the newly extended Martini PIP parameters described by Sun et al. (48), which 

are based on the original PIP parameters (49). 

 

1.2.2. RAS Structure 

Considering that a structure of active KRAS4b was not available in the Protein Data Bank at the 

start of this work, we solved the crystal structure of KRAS bound to GMPPNP at 2.5 Å 

resolution (PDB 6VC8). The overall structure resembles the structures of other RAS isoforms 

and contains a central -sheet formed by six -strands (1-6), which is surrounded by five -

helices (1-5) (50). In this active KRAS structure, the switch I region (residues 30-38) is 

present in the conformation (state 2; (51)) that is compatible for binding to effector proteins (Fig. 

S6). In contrast to a recently resolved structure of wild-type KRAS (52), this structure represents 

an active conformation in which switch I adheres to the bound GTP analog and magnesium ion, 

https://bbs.llnl.gov/data.html
http://cgmartini.nl/
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making RAS compatible with effector binding (state 2; (51)), similar to another recent active 

state KRAS structure (53) (Fig. S6A).  

 

 
 

Fig. S6:  RAS structures. (A) The crystal structures of wild-type KRAS in active (green and blue; 

GppNHp-bound) and inactive (grey; GppCH2p-bound configurations). The nucleotide analogue and Mg2+ 

are shown in stick and sphere representation, respectively. (B) The all-atom structure conformation 

constructed from 6VC8. The nucleotide analogue and Mg2+ are shown in ball-and-stick representations 

and colored according to the CPK atom colors. The protein secondary structure elements -strands, 

helices and loops are colored in yellow, magenta and white, respectively. The switch I and II regions are 

colored blue and green, respectively. (C) The same coloring scheme and representation for (B) is used to 

show the equivalent coarse-grained Martini structure, as used in the simulations. The HVR and farnesyl 

tail modeled into the structure. (D) The same structure as (C) is illustrated in a globular, volume-filling 

representation. The G-domain is colored yellow, and the HVR and farnesyl tail are orange. For both (C) 

and (D), the location of the membrane is illustrated. 

 

For a few residues in the helix 2 and switch II region of chain B, no electron density is observed. 

Using the Loop Modeler function integrated in the commercial software Molecular Operation 

Environment (MOE) (54), these missing residues are modeled to complete the G-domain of the 

KRAS structure. First, the missing sequence (Q61-R68) is added, followed by modeling the 

secondary structure. Both a PDB (database) template approach and a de novo approach are used, 

and the model associated with the best score is chosen for subsequent modeling and MD 

simulations. For optimal loop modeling performance, A59, G60, Q70 and Y71 are also included, 

resulting in a total of 12 modeled residues. The backbone atoms of selected residues are 

constructed as indicated by the Loop Modeler and subsequently sidechains are added. The 

resulting system is then modeled using CHARMM36 FF (55), with explicit solvent modeled 

using TIP3P water model (56) with CHARMM modification. A short minimization followed by 

100 ns equilibration was performed using AMBER PMEMD (57), with positional restraints 

applied to backbone heavy atoms, except for those modeled using Loop Modeler.  

 

1.2.3. RAS CG Model  

The initial coordinates used for KRAS4b are as described above (Section 1.2.2). These 

coordinates are transformed into CG beads using martinize.py v2.6 (see http://cgmartini.nl) and 

standard parameters based on the Martini 2.2 protein force field (58). The first residue, G1, 

which is retained after cleavage of the expression tag, is removed as this is a non-native amino 

acid. Furthermore, mass spectrometry indicates that the N-terminal methionine residue of KRAS 

http://cgmartini.nl/


   

 

   

 

16 

is cleaved in mammalian cells, with subsequent N-terminal backbone acetylation of threonine 

2 (59). Therefore, the N-terminal residue of our CG RAS model is the biologically relevant 

backbone-acetylated threonine 2. In addition to C-terminal side chain farnesylation (see below), 

the C-terminus is also backbone methylated. Therefore, in our Martini model, both the N and C 

terminal are capped using a CG representation of acetylation and methylation chemical 

modifications. Thus, the N-terminal Qd bead is replaced by a P3 bead and the C-terminal Qa 

bead is replaced by a C5 bead. In either case, the capped regions are maintained neutral (zero 

charge). 

 

Stability of folded RAS is preserved using an internal elastic network, which is applied to the 

residues forming the G-domain (threonine 2 to histidine 166), bound guanosine triphosphate 

(GTP), and Mg2+
, using the default elastic network (cutoff of 0.9 nm and restraint force constant 

of 500 kJ mol-1 nm-2). Parameters for the Martini representation of GTP were provided by 

Carsten F. E. Schroer (University of Groningen) and were derived from the Martini DNA/RNA 

parameters (60, 61). The accompanying Mg2+ was modeled with a Martini Qd particle of +2 

charge.  

 

The protein is anchored to the membrane via a farnesyl group, which is post-translationally 

attached to C-terminal residue cysteine 185. Parameters (62) for such chemical modification are 

obtained via thorough calibration using the general Martini philosophy. Thus, internal CG 

dynamics is iteratively incorporated using atomistic derived data using the general CHARMM36 

force field. In order to consistently represent the behavior of the molecule according to the 

Martini approach, its preferential octanol/water partition coefficient was calibrated and directly 

compared with the partitioning obtained with the CHARMM36 force field. Preferential 

partitioning and localization of the farnesyl group was also tested in the context of a simple 

POPC membrane. Both properties proved to be in very good agreement when compared with the 

AA resolutions, giving enough confidence and reliability for its application in combination with 

the protein topology. Note that a different set of parameters for the CG simulation of farnesylated 

cysteine is currently available (63). However, for our purpose, parameters were derived from an 

improved atomistic representation, which has been previously published (64). 

 

1.2.4. Control and Parameterization Simulations 

Extensive sets of CG simulations were carried out in order to validate the behavior of mixed lipid 

systems with and without RAS, as well as to provide input parameters for the macro model. 

Simulation systems were composed of the 8 lipid ARC mimic described in Section 1.2.1, using 

the RAS model parameters described in Section 1.2.3, and the simulation parameters defined in 

Section 1.1.4. Four distinct sets of simulations were completed: (a) ‘standard’ size (~3,200 lipids, 

30×30 nm2) systems of the ARC, (b) standard size systems of the ARC with a single RAS 

molecule, (c) ‘smaller’ size (~430 lipids, 11×11 nm2) systems of the ARC, and (d) smaller size 

systems of the ARC with a single RAS molecule (See Table S1). A mixture of different-sized 

systems was used as a way to both replicate the environment for the production run simulations, 

as well as to generate as much data as possible using smaller representations. For certain 

parameters (such as RAS-lipid RDFs), the standard-size systems were required to achieve better 

sampling of low populations of different components of the system. The standard-size system 

was also required to allow long-range measurements of the RDFs. Cross validation was also 

carried out to ensure that parameters calculated using the smaller systems were not subject to 
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size effects. Table S1 summarizes the different simulations used to generate the initial macro 

model parameters; lipid-lipid RDFs, RAS-lipid RDFs, RAS states, initial RAS conformations, 

RAS and lipid diffusion coefficients. 

 

 
Table S1: Sets of parameterization simulations. 

Set Name # lipids # RAS # simulations Length 

(s) 

Parameters calculated from 

simulations 

Standard PM ~3,200 0 30 30 Lipid-lipid RDFs 

Standard PM + RAS ~3,200 1 30 30 Initial RAS conformation libraries, 

RAS-lipid RDFs, RAS diffusion 

Small PM ~430 0 100 10 Lipid diffusions 

Small PM + RAS ~430 1 200 10 Definition of states, RAS diffusion 

 

1.2.5. RAS States 

In order to describe the orientational states of RAS, we used Hidden Markov Models 

(HMMs) (65), which build upon the architecture of Markov state models (MSMs) (66-68). In 

MSMs, the state space is discretized into n discrete states (also called microstates), and the 

system’s dynamics is modeled by a n×n transition probability matrix, where an element ij in the 

transition matrix represents the probability of switching from state i to state j at time t (also 

called the lag-time). The lag-time is chosen to ensure that the system has lost its memory, 

inferred using the shape of the relaxation time-scale vs. lag-time plot, also called the implied 

time-scales plot. The analysis of the MSM transition matrix gives information on the slowest 

time-scales and processes in the system, the metastable states, and the transition pathways. Since 

MSMs can consist of several hundreds (or thousands) of microstates, they are post-processed to 

provide a coarse-grained model that can be explained in terms of a few metastable states and is 

more easily interpreted. Therefore, Perron Cluster-Cluster analysis (PCCA) (69) is usually 

applied to obtain the most-metastable set of macrostates. The number of metastable sets is 

specified by the user based on a separation of time-scales between the (M−1)th process and the 

Mth process, then M metastable sets are sufficient for understanding the system’s kinetics. 

However, MSM's accuracy hinges on the input subspace and the quality of discretization. Thus, 

results obtained from MSMs may differ with different order parameters and clustering methods. 

 

In this work, this limitation was overcome by using HMMs, which consists of a M×M transition 

matrix describing the dynamics between the metastable states and an output probability matrix 

with dimensions M×n, where the row vector gives the probability that the metastable state will 

output to one of the n discrete states. HMMs can be estimated by Baum-Welsch Expectation-

Maximization algorithm (70). All thermodynamic and kinetic properties calculated from MSMs 

can also be computed using HMMs. Furthermore, even with a poor discretization quality, it has 

been shown that the metastable dynamics can be exactly described using HMMs (65). All 

MSM/HMM construction and analysis in this work is performed with PyEmma software 

package (71). 
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In order to apply the HMM technique to our preliminary CG simulation data, the orientational 

state of RAS in the 8 lipid PM mimic system was analyzed based on both the tilting and rotation 

angles obtained from the training data Fig. 5a. K-means clustering algorithm (72) was used to 

discretize the tilt-rotation space into 2,000 microstates, and the implied time-scales were 

calculated as a function of lag-time. Fig. S7A shows the population map in the tilting and 

rotation space, and Fig. S8 shows the implied time-scales plot obtained from MSM analysis of 

the training data, where the relaxation time-scales (calculated from the eigenvalues of the 

transition matrix) are plotted as a function of the lag-time. The figure shows a separation of time-

scales between the first (solid blue line) and the second relaxation time-scale (solid red line), 

indicating that the dynamics in our preliminary simulations can be fully described by two 

metastable states, which we refer to as 𝛼 and 𝛽 states. Therefore, a maximum-likelihood HMM 

was constructed using two states and a lag time of 1 µs. Fig. S7B shows HMM macrostate 

boundaries obtained by crisp assignment of microstates to metastable sets along with their 

relative equilibrium populations and Fig. S7C shows the effect of adding a third macrostate to the 

HMM calculation. The third state, refered to as state t, has a population of just ~6% implying 

that, from our preliminary simulations, only two metastable states are necessary to describe 

RAS’ orientational dynamics on the membrane. 

 

 
Fig. S7:  HMM analysis of training data. (A) Population map in tilt-rotation space. (B) Two metastable 

states obtained from HMM. The microstates are colored according to the macrostates they belong to. The 

populations of the states are: 𝛼: 43%, 𝛽: 57%. (C) Three metastable states obtained from HMM, with the 

corresponding populations as: 𝛼: 40%, 𝑡: 6%, 𝛽: 54%. 
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Fig. S8:  Implied time scales from training data. Relaxation times calculated as a function of lag time are 

shown in different colors. Any relaxation process below the black line (y=x) cannot be reliably estimated 

as the time-scales of these processes have already decayed.  

 

1.2.6. Macro Model Parameterization 

Initial parameters for the macro model were calculated from CG MD Martini parameterization 

simulations (described in Section 1.2.4). The parameters to the macro model consist of: 

a) diffusion coefficients for the different lipids, 

b) additive noise magnitude for the lipids, 

c) diffusion coefficients for RAS in the two different orientational states, 

d) lipid-lipid correlation functions, 

e) potentials for lipid-RAS and RAS-RAS interactions, and 

f) state change rates for RAS. 

 

For the RAS-RAS interactions we used a 9-6 Kihara potential parameterized to be mildly 

attractive and with distance parameters estimated from Martini simulations with two RAS 

molecules (see Section 1.1.3). Based on the RAS state analysis (Section 1.2.5), the macro model 

has two states for KRAS, labeled α and β. State changes are modeled by a Markov model with 

transition rates computed from observed state changes in 2-RAS Martini simulations. The 

transition rates used are: α  β = 0.03 µs-1, and β  α  = 0.0042 µs-1. 

 

Diffusion coefficients for RAS and the different lipids were calculated from the mean-square 

displacement of the respective molecule as a function of time. Our diffusion coefficients given in 

nm2/µs are as follows. 

 

 
Table S2: Macro model diffusion coefficients (nm2/µs). 

Leaflet Species 

 CHOL POPC PAPC POPE DIPE DPSM PAPS PIP2 α-state β-state 

Inner 42.9 46.0 44.0 39.0 49.0 45.0 49.0 32.0 8.0 18.0 

Outer 42.9 36.0 36.0 31.0 34.0 35.0 n/a n/a n/a n/a 
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The additive noise terms for the lipids were adjusted so that the density fluctuations were similar 

to observations in Martini simulations. 

 

The lipid-lipid correlation functions were computed from lipid-lipid radial distribution functions 

(RDF’s) using the OZ equation (see Section 1.1.3). Our macro model is two dimensional; the 2D 

correlation functions required by the model were computed for each lipid type by selecting a 

bead that stays at a relatively constant height close to the membrane surface in CG simulations 

(see Section 1.3.1). The horizontal positions of these selected beads were used to compute 

radially-averaged RDF’s to use in the 2D OZ relations. Given these RAS-lipid RDFs, the RAS-

lipid PMFs are derived using the HNC. The horizontal position of the F1 bead of the farnesylated 

cysteine is used to represent the RAS position for RDF calculations. 

 

Initial testing revealed that the PIP2-PIP2 DDFT model from the lipid-lipid RDF’s creates 

islands of PIP2 with very sharp interfaces and with unphysically high densities — over 5 

lipids/nm2, which is more than twice as high as a pure PIP2 membrane patch. Inspection of the 

PIP2-PIP2 RDF shows a secondary tail feature extending to over 3 nm within which PIP2 has 

enhanced probability of PIP2 neighbors. This kind of long-range tail is not found in any other 

lipid-lipid RDFs in our Martini simulations of the ARC mixture, and all lipids except PIP2 are 

well-behaved in our DDFT model without intervention. In order to resolve the PIP2-aggregation 

and create a physically reasonable model, we chose to replace the Martini PIP2-PIP2 RDF in the 

OZ equations (see Section 1.1.3) with a scaled version of a more normally appearing lipid-lipid 

RDF, see Fig. S9. We chose the PIP2-DIPE as a source for this scaling, since it has a very similar 

undulation wavelength and primary structure. We then applied a logarithmic scaling of it to 

match the height of the first peak to the original PIP2-PIP2 first peak while keeping zeros and 

ones at zero and one respectively. Specifically, for the PIP2-PIP2 RDF in the OZ equations (see 

Section 1.1.3) we used: 

𝑅𝐷𝐹𝑃𝐼𝑃2−𝑃𝐼𝑃2
𝑂𝑍 = (𝑅𝐷𝐹𝑃𝐼𝑃2−𝐷𝐼𝑃𝐸)log(𝑚𝑎𝑥 𝑅𝐷𝐹𝑃𝐼𝑃2−𝑃𝐼𝑃2) log(𝑚𝑎𝑥 𝑅𝐷𝐹𝑃𝐼𝑃2−𝐷𝐼𝑃𝐸)⁄  

The resulting DDFT model is well behaved, and, with the exception of PIP2-PIP2 neighbors, 

represents lipid neighbors counts with an average error of 4%, and 9% in the worst case. PIP2-

PIP2 neighbors are underrepresented (Fig. S23), preseumably largely due to the scaling 

procedure. Details can be seen in Section 2.3.3. 
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Fig. S9:  PIP2-PIP2 RDFs. The lipid-lipid PIP2-PIP2 RDF calculated from Martini lipid parameterization 

simulations (blue curve) and the scaled PIP2-DIPE RDF used to replace the PIP2-PIP2 RDF in the OZ 

equations (red curve). 

 

The macro model is run at a large length-scale and long time-scales. Therefore, its spatial 

resolution must be limited. In running the macro model, third-order rectangular elements and 16 

Gauss quadrature points per element were used to describe the membrane. Each element was a 

square with a side of 5/6 nm. The correlations functions from CG MD, however, have features at 

finer scales, which cannot be represented at this resolution. Therefore, the correlation functions 

were smoothed for better representation using our finite elements. The smoothed correlation 

functions were determined so that the interaction between two points is equal to the interaction 

that the original unsmoothed functions would yield for the source points smeared into Gaussians. 

The Gaussian width was 0.707 nm. Specifically, the smoothed function was calculated from the 

given function as  

𝑓smooth(𝑟) =  
1

√𝜔2𝜋
∫ ∫ 𝑓 (√(𝑟 + 𝑥)2 + 𝑦2) exp (−

(𝑟 + 𝑥)2 + 𝑦2

𝜔2
) 𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 

with 𝜔 = 0.707 nm. 

 

1.2.7. Autoencoder Design for ML-based Sampling 

As detailed by Bhatia et al. (2), a variational autoencoder (VAE) (73) was designed to facilitate 

novelty sampling of patches for CG simulations. A VAE is a type of deep neural network that 

learns a reduced representation of data through attempting to reconstruct the data from the 

reduced representation. A suitable VAE was trained prior to the MuMMI simulation using 

302,000 patches generated from similarly-parameterized macro model. The VAE learned to 

encode a 350-dimensional (5×5×14) patch into a 15D latent space and represents the best trade-

off between preserving the spatial correlations among lipid concentrations, the saliency of the 

resulting latent space, and computational benefits of the reduced dimensionality. A key benefit to 

reducing the dimensionality using an autoencoder is that the Euclidian distance in the latent 

space defines a more-pertinent similarity metric between patches than any pixel-wise norm --- a 

feature leveraged by MuMMI for performing novelty sampling. 
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1.3.  Analytics Details 
This section describes the specific details and criteria used to calculate many parameters and 

measurements discussed within the main text of this paper. 

 

1.3.1. Lipid-lipid and Lipid-RAS Radial Distribution Functions 

Two-dimensional (within the plane of the membrane) RDFs are calculated between RAS 

molecule(s) and the eight types of lipids, as well as between the lipids themselves. For the RAS 

protein, the F1 bead of the farnesylated cysteine is used as the reference for the RDFs. For the 

phospholipid species, the first bead of the Martini ‘A’ tail is chosen (C1A, D1A, or T1A), 

whereas for cholesterol the R1 bead is chosen. The same criteria are used to calculate the initial 

RDFs from the parameterization simulations (Section 1.2.4) as the in situ analysis (Section 

1.1.6). 

 

1.3.2. Topological Analysis of Spatial Dynamics of Lipids 

Topological techniques are useful in analyzing threshold-based segmentations, i.e., connected 

regions of high or low value. For example, they correspond to a friends-of-friends clustering 

when applied to distance fields or describe regions of lipid enrichment as areas of high 

concentration fields. To easily explore such segmentation with respect to different thresholds and 

across time, and to assemble summary statistics, the Topological Analysis of Large-Scale 

Simulations (TALASS) framework (74, 75) is used to process the data. TALASS-based analysis is 

applied to explore lipid-dependent RAS clustering (Sections 1.3.3 and 2.2.2). 

 

1.3.3. Lipid-dependent RAS Clustering 

To investigate the relationship between local lipid composition and the clustering of RAS, we 

explore the distributions of average lipid densities underneath each RAS using topological 

techniques. In particular, the PM, as expressed by the macro simulation, is decomposed into RAS 

clusters. Neighborhoods of RAS are extracted and RAS clusters are defined if two or more 

neighborhoods overlap. In order to identify an appropriate size of neighborhoods, TALASS (see 

Section 1.3.2) is used to explore different neighborhood sizes and the corresponding clusters. 

Through this analysis, a 5 nm distance cutoff was chosen. Next, these RAS clusters are described 

by the average densities of the 8 inner leaflet lipids as well as the number of RAS within the 

cluster. 

 

To explore whether different lipid compositions encourage or discourage the clustering behavior, 

a two-step process based on Function Preserving Projections (FPP) (76) is used. First, the 

concentrations of the 8 inner leaflet lipids are extracted for all neighborhoods of RAS captured 

from the macro model. Each set of concentrations is labeled with the corresponding number of 

RAS within the selected neighborhood. Lipid-dependent clustering is then phrased as a 

regression function from 8-dimensional space representing the densities of the eight inner leaflet 

lipid types to the number of RAS proteins. FPP is designed to find optimal linear projections, 

such that a given function appears as a simple, low-order signal in the projected space. This 

approach can produce a two-dimensional embedding of the patches that focuses on preserving 

the relationship between the number of RAS proteins and the lipid composition. 
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1.3.4. Lipid-dependent RAS State Prediction 

A key step in exploring the relationship between lipids and RAS is to understand whether the 

state of RAS can be predicted using the lipid concentrations. We remind the reader that the 

macro model distinguishes between two RAS states (Section 1.2.5), whereas the CG simulations 

allowed us to refine this parameterization into three states (Fig. 5). For the purpose of state 

prediction, analysis is performed on data from both the macro model and the CG simulations to 

classify RAS states from the lipid densities around RAS using supervised ML. 

 

In the case of the macro model, the simulation provides, for about 7000 time steps, the lipid 

concentrations for the 14 types of lipids (both the 8 inner and 6 outer leaflet lipid types) as well 

as the state of each of the 300 RAS proteins. To construct the ML dataset, regions spanning 

30×30 nm2 regions on the PM centered on the RAS are extracted and expressed as a 36×36 grid. 

These regions occupy the same physical area as a patch, but they are resolved at the native 

resolution of the macro model’s grid. To predict the state of individual RAS, only the regions 

with a single RAS protein are considered. Each data sample, thus, consists of a 36×36×14 data 

grid of lipid concentration values and a label that denotes the state of the RAS. To understand the 

relationship between different lipid species and RAS states, we develop several ML models to 

predict the states using individual or subset of all lipids. During training, the trajectories for 90% 

of the qualified RAS proteins are randomly selected as a training set, and the remaining 10% are 

assigned to the test set. 

 

The supervised ML model for the macro model data consists of two consecutive convolutional 

layers, each with 5×5 kernels and 20 features, and a 2×2 max-pooling layer, then two 

consecutive convolutional layers with 3×3 kernels and 20 features and a 2×2 max-pooling layer, 

followed by a 50D dense layer, a 10D dense layer, and terminating with a 2-way softmax. Each 

of the dense layers uses ReLU activation and is followed by a 50%-dropout layer. Variations 

with more or fewer convolutional layers, dense layers, features, kernel sizes, and maxpooling 

layers were also explored. 

 

To explore CG simulations, the resulting molecular data is converted into a format that is more 

amenable to ML. First, all CG simulation frames are translated to a consistent frame of reference 

by bringing the RAS C185 backbone bead to the center of the simulation frame. Next, the center 

of mass of the RAS G-domain is aligned with a unique direction across all frames (the positive x 

direction) by rotating the RAS and the PM about the normal to the membrane surface. Finally, 

the lipid positions are used to define lipid concentrations through the kernel density estimation 

(KDE) approach, where the positional coordinates are convolved with a Gaussian kernel. Using a 

kernel with variance of 1 nm2, 13×13 concentration grids are generated, spanning 10×10 nm2 

areas (matching the native resolution of the macro model) for all 14 types of lipids (see Fig. 

S10). To identify the state of RAS, its tilt and rotation angles relative to the PM are used to 

define the likelihood of being in any of the three states using the HMM approach described in 

Section 1.2.5. 
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Fig. S10:  Representation of CG data as concentration fields. Supervised ML is applied to the CG data by 

converting the positional coordinates of lipids (shown as red dots) into concentration fields (color mapped 

from blue to yellow) using KDE. The resulting concentrations are represented as 13×13 grids for all 14 

types of lipid species (8 inner leaflet and 6 outer leaflet lipids). 

 

As in the case of macro model, only the CG simulations with a single RAS are chosen. Each 

simulation consists of ~500 to ~1200 time steps, spanning 1000 to 2400 ns. For each dataset, 

10% of the CG simulations are randomly selected as test data, 20% as validation data, and the 

remaining 70% are used as training data. 

 

The supervised ML model for CG simulations is trained for the three-state RAS configurations. 

A convolutional neural network model is trained as a supervised image classification problem. 

The model consists of two convolutional layers each with 3×3 kernels and 20 features, followed 

by a 100D dense layer, a 20D dense layer, and terminating with a 2- or 3-way softmax. Each of 

the fully-connected layers is followed by a 50%-dropout layer. 

 

All models are trained for 20 epochs using categorical cross-entropy loss and rmsprop optimizer. 

A data parallel approach was adopted to train the model since the total size of the dataset exceeds 

the memory capacity of a modest computational resource. In particular, the training data is 

distributed across several computational nodes (ranging between 8 and 16, depending on the 

number of lipid channels chosen), with each node training a copy of the same model. Such an 

approach is realized by defining the same model, initialized with similar weights, on all nodes. 

At the end of each training epoch, a reduction operation is performed to average over the 

gradients across all nodes (different data), and the averaged gradients are used to update the 

weights of all the models on all nodes. This data parallel approach was employed as 

implemented in the Horovod framework with the models constructed using the Keras 

framework (77) included with TensorFlow v1.12, and the training was performed on 4 NVIDIA 

Volta 100 GPUs per node. 

 

1.3.5. RAS Effector Binding  

To evaluate the orientational dependence of RAS-RAF binding inhibition, we combine CG 

simulation snapshots and a RAS-RAF crystal structure to identify residues in RAF's RAS 

binding domain (RBD) that would overlap with membrane lipids in a RAS-RAF complex and 

thereby impede RAF binding. Specifically, we orient a CG version (transformed into a Martini 
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representation using martinize.py v2.6 as described for RAS in Section 1.2.3) of the co-

crystallized complex of H-RAS with the RBD of C-RAF (PDB: 4G0N) (78) to minimize the sum 

of squared displacement between G-domain backbone beads of residues T2-N26, Y40-L56, and 

G75-K165 in crystallized H-RAS and CG-simulated KRAS4b (K165 in KRAS is Q165 in 

HRAS). We then count the number of backbone beads in the RAF RBD that are closer than 1.8 

nm to the global bilayer center along its normal, Nclash. To allow for the possible existence of 

limited membrane accommodation, we define a CG configuration of RAS to be membrane 

occluded for RAF binding when Nclash>5. 

 

1.3.6. Lipid Space and Time Correlations 

For the macro model, the correlations were calculated by discretizing a 1000 × 1000 nm2 plane 

into a 1200 × 1200 grid. For the micro model (CG simulations) the 30×30 nm2 area was 

discretized into a 14 × 14 grid. Correlation was measured as 𝐶(𝑥) =  
〈𝛿𝜌(0)𝛿𝜌(𝑥)〉

𝜎0𝜎𝑥
, where 𝑥 is 

time (𝑡) for autocorrelation and is radial distance (𝑟) for spatial correlation measurements. 𝛿𝜌(𝑥) 

is the difference between the local density of the lipid, 𝜌(𝑥), and its global average �̅�. 𝜎0 and 𝜎𝑥 

are the standard deviation of density fluctuations at 0 and at 𝑥. To measure autocorrelation, the 

covariance was averaged over all the grid points. To measure spatial correlation, the covariance 

was averaged over multiple independent samples of the configurations. For the CG simulations, 

the samples were chosen at 100 ns to 1 μs with 50 ns interval using the average lipid density 

within the interval for each of the different independent simulations. For the macro model, the 

samples were chosen by picking 2000 consecutive time points starting at 3.826 μs and ending at 

7.826 μs. 

 

1.3.7. Preferential Binding Coefficients 

Preferential binding coefficients of lipids to RAS, dLipid, are computed for each inner-leaflet lipid 

type from the 2,037 CG simulations that meet the following criteria: (i) the patch has two RAS 

proteins, (ii) the Cartesian xy (global membrane plane) component of the initial intermolecular 

backbone-backbone bead distance is >4.5 nm (see Section 2.9), and (iii) at least one frame in the 

simulation exhibits RAS-RAS contact (dmin<0.6 nm). Values of dLipid are computed according to 

𝛿Lipid = 〈𝐶Lipid − 𝐶other  ×  (𝑁Lipid 𝑁other⁄ )〉, 

where NLipid and Nother are the number of lipids of the lipid species of interest and the number of 

other lipid molecules in the CG patch, respectively, CLipid and Cother are the number of lipids of 

the lipid species of interest and the number of other lipids within 1 nm of RAS (closest approach 

of all lipid-protein bead combinations, including farnesyl beads with RAS), respectively, and 

angular brackets denote averaging over independent snapshots. Only lipids from the inner leaflet 

are considered in the evaluation of dLipid. Leaflet selection is accomplished by using only those 

molecules whose PO4 bead (lipids) or ROH bead (cholesterol) is on the same side of the 

bilayer’s center of mass along its global normal as RAS, evaluated per-frame. Values of dLipid are 

computed separately for each value of NLipid. Two RAS molecules are defined to be a dimer in 

frames where the minimum intermolecular distance between protein beads, dmin, is less than 0.6 

nm, and are defined as monomers otherwise. dLipid values for all lipid species to RAS monomers 

and RAS dimers are shown in Section 2.8.5. 

 

To quantify the influence of lipid concentration on RAS dimerization, we fit separate linear 

functions of the form dLipid = m ´ NLipid + b to the preferential binding coefficient profiles of 
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monomers and dimers. To reduce noise, this fitting excludes data with NLipid values 

corresponding to the lowest and highest 10% of the sampling. Subsequently, the impact of each 

lipid type on the free energy of RAS dimerization is computed as DDG = –kB ´ T ´ (mdimer – 

mmonomer), for Boltzmann constant kB and absolute temperature T = 310 K. To estimate the 

uncertainty of the fitted function, simulations are divided into three interleaved groups, fitted 

separately, and the uncertainty of m is defined by the standard error of its three fitted values. 

 

 

1.4.  Experimental Methods  
 

1.4.1. Cell Culture, Transfection and Labeling of HaloTag-Ras 

HeLa cells (ATCC) were cultured in phenol red-free Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% FBS. HeLa cells were seeded at a density of 2×105 cells per 

well in six well culture plates. Transfection was performed 24 hrs. after seeding with HaloTag 

fusion construct of KRAS4b using Fugene (Promega) reagent and 1.5 µg DNA per well. Next 

day, cells were then transferred on to ultraclean 24 mm glass coverslips (#1.5, plasma-cleaned) 

in 6-well culture plates and allowed to grow for another 24 hrs. On the day of imaging, cells 

were labeled with 25 pM fluorescent JF646 HaloTag ligand for 20-25 mins within incubator, 

followed by multiple washes with phosphate buffer saline to remove unbound ligands. JF646 

HaloTag ligand, which is highly photostable and covalently binds to the HaloTag-RAS 

molecules, was obtained from Dr. Luke Lavis at (HHMI, Janelia Farm, Ashburn, VA) (79). 

 

1.4.2. Single Molecule Microscopy of Live Cells 

Cultured and labeled HeLa cells were imaged  on a Nikon N-STORM microscope (Nikon, 

Japan) equipped with an APO ×100 TIRF (Total Internal Reflection Fluorescence) objective 

(1.49 NA).  The cells were maintained at 37°C and 5% CO2 in a Tokai hit stage incubator (Tokai 

Hit Co., Ltd, Japan). Halo-KRAS4b proteins were labeled with chloroalkane JF646 dyes (which 

covalently links to Halo proteins) and the membrane associated Halo-KRAS4b molecules were 

illuminated under TIRF mode using the 647 nm laser line. Nikon software (NIS- Elements AR 

4.4) was used to change the laser angle to achieve TIRF illumination. A thermoelectric-cooled 

EMCCD camera with 16 µm pixel size was used to capture and record fluorescent signals (iXon 

Ultra DU-897, Andor Technologies, USA). A region of interest covering an area of 16×16 µm2 

was chosen in the lamellipodia of the cell because it is flat to avoid artefacts due to deformities in 

the cell membrane. Continuous illumination of the cells at a 10 ms exposure rate for up to 1000 

frames was used to collect single molecule tracks. Membrane bound molecules appear as 

transient, diffraction-limited fluorescence spots. 

 

1.4.3. Single Molecule Tracking Data Processing 

Time lapse movies of single molecules moving in the membrane were analyzed by an ImageJ-

based single molecule tracking plugin, TrackMate, to create tracks (80). A point spread function 

(PSF) of 0.5 µm was used to identify single molecules; and furthermore, sub-diffraction limited 

resolution localization was achieved by using a 2D Laplacian of Gaussian (LoG) fit function for 

estimating the position of each PSF in each frame. Single molecules between frames were linked 

into tracks by thresholding criteria and cut off values, and the single molecule spot detection and 

tracking parameters were kept consistent across all experiments. These tracks were organized 
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and exported for InferenceMAP software (81) using a semi-automated workflow developed in 

Matlab (Mathwork, Natick, MA), on a multi-core Mac Pro. 

 

1.4.4. Spatial Mapping of KRAS4b 

Spatial maps of diffusivity (Fig. 1a) were obtained using the InferenceMAP software (81) based 

on Bayesian inference, considering a physical model of diffusion in a potential field. The 

analysed areas were partitioned into small regions of variable size by Voronoi tessellation (81) 

and presented as heat map that corresponds to the diffusion co-efficient (indicated in the 

colorbar, Fig. 1a). 

  

1.4.5. Cloning, Expression, and Purification of Wild-type KRAS 

Gateway Entry clones for E. coli produced KRAS4b (1-169) was generated by standard cloning 

methods and incorporate an upstream tobacco etch virus (TEV) protease cleavage site followed 

by the KRAS. Sequence validated Entry clones were sub-cloned into pDest-566, a Gateway 

Destination vector containing a His6 and maltose-binding protein (MBP) tag to produce the final 

E. coli expression clones (82). The BL21 STAR (rne131) E. coli strain containing the DE3 

lysogen and rare tRNAs (pRare plasmid CmR) was transformed with the expression plasmid 

(His6-MBP-TEV-KRAS, AmpR). The expression and purification of wild-type KRAS was 

carried out using the procedure described previously (59). Briefly, the expressed protein of the 

form His6-MBP-TEV-KRAS was purified from clarified lysates by IMAC, treated with His6-

TEV protease to release the target protein, and the target protein separated from other 

components of the TEV protease reaction by the second round of IMAC. Positive fractions were 

pooled, the pools concentrated to an appropriate volume for injection onto a 26/60 Superdex S-

75 (GE Healthcare) column equilibrated and run in 20 mM HEPES, pH 7.3, 150 mM NaCl, 2 

mM MgCl2 and 1 mM TCEP. The peak fractions containing pure protein were pooled, flash-

frozen in liquid nitrogen and stored at -80 ⁰C. 

 

1.4.6. Nucleotide Exchange, Crystallization, and Structure Determination of GMPPNP-

bound Wild-type KRAS  

To crystallize active KRAS (1-169) bound to non-hydrolysable GTP analog, GMPPNP, we 

carried out nucleotide exchange to replace GDP with GMPPNP using the protocol described 

previously (59). Crystallization screenings were carried out using the sitting-drop vapor diffusion 

method using sparse matrix screens. The initial hits obtained from screening were further 

optimized. The best diffracting crystals of wild-type KRAS bound to GMPPNP and Mg were 

obtained in crystallization condition consisting of 100 mM Tris pH 8.5, 32% PEG 4000, 800 mM 

LiCl and 100 mM MgCl2. Crystals were harvested for data collection and cryoprotected with a 

25% (v/v) solution of ethylene glycol in the crystallization condition, before being flash-cooled 

in liquid nitrogen. The diffraction data set was collected on 21-ID-F beamline at the Advanced 

Photon Source (APS), Argonne National Laboratory. Crystallographic datasets were integrated 

and scaled using XDS (83). The crystal parameters and the data collection statistics are 

summarized in Supplementary Appendix A. 

 

1.4.7. Protein Production of Prenylated KRAS 

Cloning, expression, and purification of fully processed wild type prenylated KRAS (GG-

Hs.KRAS4b (2-185-FMe)) and  mutated prenylated KRAS (GG-Hs.KRAS4b(2-185-FMe) 
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S106C/C118S) protein was described before (84). The mutations C118S was chosen to block the 

native cysteine in the protein and S106C was created to provide an artificial site accessible for 

site-specific fluorescent labeling via maleimide chemistry. The mutations were introduced via 

site-directed mutagenesis (QuikChange -Agilent). Final protein purity was verified by SDS-

PAGE and ESI-MS analysis indicated that 78% of the purified KRAS4b S106C/C118S protein 

was farnesylated-methylated, while the remaining 22% was farnesylated only. No unlipidated 

species were observed by ESI-MS. Prior to fluorescence experiments, KRAS4b S106C/C118S 

was labeled with Alexa Fluor 647 C2 maleimide dye ( ThermoFisher Scientific) for fluorescence 

lifetime correlation spectroscopy experiments and Janelia Fluor 646, Maleimide (Tocris, MN) 

for TIRF single particle tracking experiments. 

 

1.4.8. Liposome Preparation 

The lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-

arachidonoyl-sn-glycero-3-phosphocholine (PAPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE), 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DIPE), N-

stearoyl-D-erythro-sphingosylphosphorylcholine (DPSM), 1-palmitoyl-2-arachidonoyl-sn-

glycero-3-phosphatidylserine (PAPS), L-α-phosphatidylinositol-4,5-bisphosphate (Brain 

PI(4,5)P2) and Cholesterol were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL) and 

used without further purification. The desired volume of each lipid was aliquoted from the stock 

solution using the molar ratios described in Table S4. 

 

1.4.9. Supported Lipid Bilayer Preparation 

The supported lipid bilayers (SLB) were prepared on a glass coverslip using the vesicle fusion 

technique (85). Borosilicate glass coverslips (#1.5, 40 mm German Degas 263 purchased from 

Bioptechs Inc., Butler, PA) were subjected to a rigorous cleaning procedure prior to use. Briefly, 

the coverslips were first sonicated in 200 proof ethanol for 30 minutes followed by base etching 

in 1% Hellmanex III solution (Sigma Aldrich, USA) for at least 3 hours. The coverslips were 

thoroughly cleansed with copious amount of ultrapure water and again sonicated in 200% 

ethanol for another 30 minutes before placing them in a plasma cleaner overnight. The plasma 

cleaned coverslips were used immediately. 2 μL of liposome sample was spread onto a clean 

glass coverslip and assembled in a FCS2 flow cell chamber (Bioptechs Inc., Butler, PA) and 

incubated at room temperature for at least half an hour. The extra uncollapsed vesicles were 

washed off by flowing at least 10 mL of 20 mM Hepes, 200 mM NaCl buffer at pH 7.4. For 

samples containing RAS, about 700 μL of 1 μM unlabeled full length farnesylated and 

methylated KRAS4b combined with 50 nM of JF646 labeled KRAS4b S106C/C118S was 

flowed through the flow cell, incubated for at least an hour at room temperature and then washed 

off with Hepes buffer. 

 

1.4.10. Surface Plasmon Resonance Spectroscopy Experiments 

Surface plasmon resonance (SPR) binding experiments were performed on a Biacore S200 

Instrument from (GE Healthcare). The temperature was 25 °C for all experiments. The binding 

of KRAS4b to liposomes of different composition were carried out as follows. The Series 5 

sensor chip L1 (GE Healthcare) surface was activated with three injections of 20 mM CHAPS at 

a flow rate of 30 L/min. 5 mM of the HRC, ARC and LRC liposomes were captured on flow 

cells 2, 3 and 4 respectively at a flow rate of 5 L/min. Flow cell 1 was used for referencing 
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purposes. The capture response unit (RU) values were 4000 RU for HRC, 3500 RU for ARC and 

8000 RU for the LRC liposomes. After capture, a series of buffer injections were performed in 

the running buffer 20 mM Hepes, pH 7.2, 150 mM NaCl and 1 mM MgCl2 to establish a stable 

baseline. KRAS4b was diluted in running buffer from 60 – 0.05 M and injected onto the 

captured liposomes from the lowest to the highest concentration at a flow rate of 30 L/min. 

Association response data were collected for KRAS4b to the liposomes for 120 s. Dissociation 

response data were collected for 900 s. The Series 5 sensor chip L1 was regenerated using 3 

injections of 20 mM CHAPS at 30 L/min. The data was double referenced by subtracting 

binding to the reference flow cell and buffer response using the Biaevaluation software. 

 

1.4.11. Atomic Force Microscopy Experiments 

Atomic force microscopy (AFM) experiments were carried out on an Asylum Cypher VRS 

Video Rate AFM (Oxford Instruments Asylum Research, Santa Barbara, CA). 80 μL of liposome 

samples were deposited on a freshly cleaved mica surface (grade V1, Ted Pella, Inc., CA) and 

incubated at room temperature for at least an hour. During incubation, the liposomes rupture and 

collapse onto the mica surface forming a single layer of planar supported lipid bilayer. Any 

uncollapsed liposomes were washed off by rinsing the sample with approximately 2 mL of 20 

mM Hepes pH 7.4, 200 mM NaCl buffer. Special care was taken to make certain that the 

samples were always maintained under aqueous conditions throughout preparation and data 

collection. The SLB was imaged using a Biolever mini silicon nitride tip (BL-AC40TS) (Oxford 

Instruments Asylum Research) with a spring constant of 0.09 N/m under tapping mode in 

aqueous environment with tip-sample force of <100 pN. The images were analyzed for 

topography information using Gwyddion, an open source software. (86) 

 

1.4.12. Fluorescence Lifetime Correlation Spectroscopy Experiments 

Fluorescence lifetime correlation spectroscopy (FLCS) experiments were performed on an 

Olympus Fluoview FV1000 (IX81, 60x, 1.42 N.A oil immersion) inverted confocal microscope 

equipped with Picoquant LSM upgrade kit and Picoharp 300 TCSPC module. The samples were 

illuminated with a picosecond pulsed diode laser (LDH-D-C-640, LDH-D-TA-560 and LDH-D-

C-485) with a repetition rate of 40 MHz controlled by a multichannel picosecond laser driver 

PDL 828-L "SEPIA II" and the fluorescence signal was detected with a PMA Hybrid detector. 

Data acquisition was performed with a Picoharp 300 TCSPC module in Time-Tagged Time-

Resolved (TTTR) mode. The data was analysed using Picoquant’s SymPhoTime 64 software. 

First, the fluorescence lifetime filters for each diffusing species were defined based on a multi-

exponential decay curve fit followed by the autocorrelation of the filtered fluorescence 

intensities. The FLCS curves were fitted to a 1-component Triplet 2D diffusion model defined in 

SymPhoTime 64 (Picoquant, Germany) with triplet species set to zero. The size of the confocal 

volume was calibrated by measuring diffusion time of Rhodamine 6G dye purchased from Sigma 

Aldrich with known diffusion coefficient of 550 μm2/s. 

  

1.4.13. Single Molecule Tracking Experiments on Supported Lipid Bilayers 

As in cells above, single molecule tracking (SMT) experiments were performed on the Nikon N-

STORM Ti-81 inverted microscope equipped with APO ×100 1.49 N.A. oil immersion TIRF 

objective (Nikon, Japan) and Andor iX EMCCD camera. The samples were first photobleached 

using the highest power setting of the appropriate laser line and immediately followed by 
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acquisition of series of time lapse images up to 5000 frames in total under continuous 

illumination with 10 ms exposure time and zero time delay between two subsequent frames. The 

lipid diffusion was tracked before and after addition of KRAS4b by illuminating single 

molecules of ATTO550 DOPE under TIRF mode using 561 nm laser and KRAS4b diffusion was 

tracked by exciting JF646 dye under TIRF mode using 647 nm laser line. For each experiment, 

minimum of 15 TIRF movies were acquired. To reduce photosensitization-based cross-linking of 

RAS proteins (87), the imaging buffer for all SPT and FCS experiments included 5 mM -

mercaptoethanol. 

 

1.4.14. Preprocessing Single Molecule Tracking Data 

Igor pro software (WaveMetrics, Inc. Portland, USA) was used to read the single molecule 

image stack frame by frame. The embedded Localizer (88) software localized single molecules 

in each frame and linked them through all the frames to create single tracks from the time-lapse 

movies. Single molecules in each frame appear as diffraction limited patches (Point Spread 

Function, PSF) and super-resolution accuracy of localization was achieved with a 2D Gaussian 

fit to the PSF of each molecule. The detected single molecule trajectories were organized and 

exported for HMM analysis on a high-performance batch cluster (ABCC, FNLCR), followed by 

other complement analyses such as mean square displacement (MSD) plots, and single step-

length distribution analysis to extract the possible information of molecular diffusion. 

 

1.4.15. Single Molecule Tracking Analyzed by HMM Method with vbSPT Software 

Single molecule tracks after extraction from each imaged area of 20×20 µm2 on the membrane 

were organized into a single matlab data file to be input into the variational Bayes SPT 

(vbSPT) (89) software for HMM analysis. The analytical vbSPT software identifies discrete 

diffusive states of molecules from the single molecule trajectories and the transition rates 

between diffusive states during diffusion in the membrane. vbSPT analysis was initialized with 

three states. 

 

1.4.16. Mean Square Displacement Analysis 

The Mean Square Displacement (MSD) analysis was performed with the Matlab based 

TrackArt (90) software. Organized single molecule trajectories of the same type of molecules 

from multiple samples were input into the TrackArt to yield MSD curves with standard 

deviations and parameter errors, assuming two-dimensional diffusion of the particle. It serves as 

a qualitative tool to compare confinement of diffusion between different conditions, which 

provides a means of evaluating the degree of anomaly in diffusion. 

  

1.4.17. Single Step-length Distribution 

From all single molecule tracks recorded from a cell, the single jump step-length distribution was 

extracted, which contains information about the diffusion states of molecules. Here the 

distribution was used to judge the over/under inclusion of all tracks for analysis. Very short and 

long step-length must approach zero in probability to indicate full inclusion of tracks. At 10 ms 

time resolution, the maximum travel distances between 3 and 5 pixels (0.16 µm/pixel) (91) were 

set for linking molecules in consecutive frames, depending on the membrane composition and 

diffusion molecule measured.  
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2. Supplementary Notes and Discussion  
 

2.1.   Simulation Summary 
Our simulation campaign, conducted using MuMMI, generated 119,686 independent CG MD 

simulations that totaled ~206 ms of simulated time. Note that CG Martini simulations have a 

higher effective time-scale compared to atomistic simulations, so a standard conversion factor of 

4 has been proposed (10), which, in our case, would translate to ~0.8 s of sampling. All reported 

times in this manuscript are unscaled, except as indicated in comparison with diffusion rates. 

Each selected 30×30 nm2 patch was simulated for 1.724±0.764 s (mean ± sd) with a minimum 

of 1 s. Fig. S11B shows a histogram of the lengths of simulations. These CG simulations were 

spawned from a single macro model simulation that explored ~150 s of RAS-lipid dynamics on 

a 1×1 m2 membrane that contained 300 KRAS molecules. Each simulation was started using 

the ML-driven criteria of patch interest, irrespective of the originating macro model timestamp, 

and resulted in the distribution seen in Fig. S11A. The macro model simulation generated 7,481 

snapshots with 2,061,900 patches, of which approximately 5.8% were chosen by ML to create 

corresponding CG MD simulations. Generation of the complete dataset required efficient use of 

~5.6 million GPU hours and ~56 million CPU core hours for macro model, CG MD set up, and 

CG MD simulations. The resulting dataset contains patches comprising 1 to 4+ RAS proteins 

with the majority consisting of a single RAS as seen in Fig. S11C. 

 

 
Fig. S11:  Simulation summary. Summary distributions for the 119,686 CG MD simulations. (A) 

Histogram of CG simulations binned in accordance to their starting macro timestamp, (B) histogram of 

CG simulations binned by their duration, and (C) histogram of CG simulations binned by the number of 

RAS in the patch. 

 

Of the 119,686 CG simulations, all of which were completely automated, only two were found to 

have erroneous constructions, resulting in two intertwined RAS proteins. Due to the farnesyl-

centric nature of the macro model, when two RAS in close (farnesyl) proximity are converted to 

the micro scale, steric hindrances between RAS cause G-domains to favor initial orientations 

directed away from one another (see Section 2.9). Therefore, RAS that were constructed in close 

proximity need to be excluded for some analyses. 

 

The simulation campaign was run in two segments. Segments 1 and 2 contained ~29K (29,191) 

and ~90K (90,495) CG simulations, respectively. The two segments used different macro to 

micro conversion procedures for lipid placement, resulting in different lipid concentrations for 
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low frequency lipid types. These differences and their implications are discussed in Section 

2.3.2. Additionally, on average, simulations in Segment 1 are 2.2-fold longer than simulations in 

Segment 2. The two segments were combined for most analyses and, when indicated, CG 

simulations were weighted based on the original macro model patch from which they were 

constructed (see Section 2.3.2). As Segment 2 was a continuation of Segment 1, approximately 

10K (10,407) patches were selected during the Segment 2 run that had already been selected 

during the Segment 1 run; thus, those two corresponding CG simulations share the weight of the 

single macro model patch. 

 

For all of the ~120K CG simulations, frames were saved every 2 ns, resulting in >100M saved 

frames. Due to file transfer and/or disk file corruption, 113 simulations were found to contain 

corrupt frames; these were pruned and excluded from analysis. Overall, corrupted frames affect 

less than 0.1% of all CG simulations and <0.001% of all frames. For the online analysis, 

Segment 1 data was analyzed every 2 ns, whereas Segment 2 data was analyzed every 0.5 ns, 

together resulting in ~300M online-analyzed frames. 

 

In the following sections, we discuss the sampling observed in the macro model and several 

observed characteristics of RAS behavior observed from the CG MD simulations such as 

orientation, effector binding, and lipid dependence. 

 

 

2.2.   Sampling at Macro Scale 
The macro model (see Section 1.1.3) is designed to explore the interactions between the lipid PM 

and RAS proteins over long time- and length-scales. This section illustrates how the macro 

model successfully enables the sampling of the space of lipid densities, RAS states, and the 

interplay between them – both directly from the resulting macro simulation and using ML-based 

sampling of the lipid configurations generated by the macro simulation. 

 

2.2.1. Lipid Diversity in the Macro Model  

The macro model enables the realization of spatial diversity in lipids in a PM both in the vicinity 

of and away from RAS, as well as understand the correlations between different lipid species in 

the PM. The results presented in this section highlight this diversity, which can be exploited to 

both adaptively sample lipid configurations of scientific interest using ML (see Section 2.2.3) 

and experimentally validate the resulting data (see Section 2.3). 

 

In particular, Fig. S12 visualizes the 1×1 m2 PM simulated by the macro model, and illustrates 

the spatial variability in the concentration of the different types of lipids in both inner and outer 

membranes. Fig. S12A shows a top-down view of the full PM colored by the concentration of 

cholestrol, and highlights the formation of lipid domains. The figure also provides a broader 

context in the presence of all the lipids present in the inner leaflet (Fig. S12B) and both leaflets 

(Fig. S12C) of the PM for different levels of zoom. 
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Fig. S12:  Macro model lipids diversity. (A) The 1×1 m2 PM simulated by the macro model colored for 

cholesterol density, with 300 RAS molecules (blue dots). (B) Illustration of the layers of the different 

lipid densities over a 300×300 nm2. (C) Example of lipid density fluctuations over a 100×100 nm2 region 

for the inner and outer leaflets, with the overall inner and outer densities also shown. The color saturation 

of each lipid represents the density at that position of the membrane. 

 

Focusing on the lipids in the vicinity of RAS, Fig. S13 shows the mean proportion of the 

different types of lipids in the inner and outer bilayers. To illustrate the influence of the presence 

of RAS, the figure considers 18×18 nm2 regions around RAS only when there exists no other 

RAS within the considered neighborhood, and compares them against randomly selected regions 

of the same size but without any RAS. The comparison indicates a strong correlation between the 

the presence of RAS and PIP2 enhancement in the inner membrane. Other correlations are also 

observed, e.g., enhancement of DPSM and depletion of PAPC in the outer membrane.  
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Fig. S13:  Macro model lipid distributions. Distributions of the proportions of the mean lipid 

concentrations on the inner and outer leaflets of the PM. The distributions are computed using 18×18 nm2 

regions around RAS (colored, shaded regions) and randomly selected regions of same size without any 

RAS (dashed lines). The figure shows characteristic differences for lipids that are more strongly 

correlated with RAS, especially PIP2 with its mean lipid concentration enhanced in the vicinity of RAS. 

 

2.2.2. RAS Aggregation 

Within the macro model simulation, we next study the aggregation of RAS that can be explored 

by CG simulations. Therefore, we compute the enhancement of RAS with respect to uniformly 

random spatial distribution of (i.e., noninteracting) RAS molecules within patches. 

 

Each patch is centered around a RAS; however, each patch can contain several RAS molecules. 

We compute the histogram of patches with different numbers of RAS (1 through 5) both for the 

macro model simulation as well as for randomly distributed RAS molecules. Fig. 2b shows the 

ratio of these two histograms, i.e., the frequency of n-RAS patches in the macro model 

simulation divided by the frequency of n-RAS patches in a uniformly random RAS distribution. 

The figure shows that multi-RAS patches are much more prevalent in the macro model 

simulation than for non-interacting molecules and that the effective RAS-RAS interactions lead 

them to aggregate. 

 

Next, the correlation between RAS aggregation and individual states of RAS (the macro model 

uses two states, α and β) is explored using topological anlaysis. To this end, a RAS distance field 

is computed, which describes the distance to the nearest RAS for each grid point in the macro 

model simulation box. The distance field is used here because it decomposes the simulation box 

into regions associated with a given RAS as well as readily highlights the neighborhoods 

affected by multiple RAS. Next, TALASS (introduced in Section 1.3.2) is used to determine 

clusters in the distance field with respect to the state of the corresponding RAS. For clustering, 

only the RAS within 3 nm distance of each other are considered. The distribution of the resulting 

clustering is shown in Fig. S14. There are two trends that are evident from the figure: (1) there 

are more clusters with one or more RAS in state  across different extents of RAS aggregation, 

with the difference being about one to two orders of magnitude between the clusters dominated 
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by RAS in state α and those dominated by RAS in state ; and (2) the number of clusters 

decrease with an increase in RAS aggregation, e.g., there is about an order of magnitude 

decrease in the number of clusters as we go from monomers to dimers and from dimers to 

trimers. 

 

 
Fig. S14:  RAS aggregation vs association. Histogram of clusters per unit area on RAS distance field for 

RAS monomers, dimers, and trimers with different combinations of RAS states. Given the probabilities of 

RAS existing state α and state  (p and q, respectively), the expected state distribution is labeled and 

marked as black lines. 

 

2.2.3. ML-based Sampling of Macro Configurations 

As stated earlier, the goal of the MuMMI framework is to sample macro lipid configurations as 

uniformly as possible—a task performed using ML-based, dynamic-importance sampling (2) 

(DynIm – see Sections 1.1.5 and 1.2.7). In this campaign, MuMMI used DynIm to select a total 

of 119,686 important patches from a set of 1,918,500 candidate patches. To demonstrate the 

significance of ML-based sampling, Fig. S15 compares the density distribution of ML-selected 

patches and randomly-selected patches against that of the set of all candidate patches. The figure 

shows five pairs of 2D marginal distribution in the 15D latent space. As expected, the random 

selection reproduces the original distribution and, if used to spawn CG simulations, would invest 

computational resources in simulating similar configurations while missing out on critical 

information in infrequently-occuring configurations. The ML-selection, on the other hand, is 

designed to reduce the selection of similar configurations and favor the selection of rare 

configurations. The figure shows that the density distributions for ML sampling are “flatter” (i.e., 

suppressed modes) as well as “wider” (i.e., capturing infrequent configurations), allowing for a 

more-uniform sampling. Finally, the DynIm framework allows reproducing the original density 

distribution by appropriately weighting the ML-selection, as highlighted in the figure. 
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Fig. S15:  Demonstration of the wider coverage of DynIm sampling. Comparison of ML-based dynamic-

importance sampling (C) with a random sampling (B) of patches from a given “true” distribution of all 

patches (A). The figures show five pairs of marginal distributions of density in the latent space with zeros 

of the corresponding latent dimensions marked. The random sampling closely replicates the input 

distribution, whereas the ML-based sampling produces a flatter and wider distribution, indicating a wider 

coverage of the phase space. Both sampling approaches select the same number of patches (~5.8% of the 

total), and the corresponding figures are color-mapped to the same range. The figure also demonstrates 

that the true distribution (A) can be reconstructed (D) using the ML-based sampling and ML-based 

simulation weights. Additional comparisons are provided by Bhatia et al. (2). 

 

Next, Fig. S16 shows the distribution of weights associated with each CG simulation (patch 

selected through ML). The histogram shows that many patches have low weights, indicating the 

coverage of infrequent configurations. The figure also shows a significant number of patches 

(hundreds of thousands) with relatively high weights (above a few tens). It is such frequently-

occurring patches whose similar lipid configurations are suppressed by ML. 
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Fig. S16:  Histogram of patch weights. Histogram of weights associated with CG simulations (patches 

selected by ML). (2). 

 

2.2.4. On-the-fly Feedback to Macro Model Parameters 

A key characteristic of the MuMMI framework is its use of in situ analysis of CG simulations to 

update the parameters of the macro model. In the current simulation campaign, the framework 

aggregates the RAS-lipid RDFs from the CG simulations and transforms them to RAS-lipid 

potentials. These potentials are fed to the macro model periodically, thus resulting in an updated 

macro model that more-closely resembles the behavior captured from CG simulations. Fig. S17 

illustrates the improvement in the RAS-lipid RDFs as they approach convergence through on-

the-fly feedback. 

 

 
Fig. S17:  Feedback and convergence. Each main panel shows the lipid-RAS 𝛽 state RDF’s for a 

particular lipid, for 3 different instances in the simulation: Shortly after the beginning, after several feed-

back interactions, and toward the end of the simulation. For all lipids except PIP2, the RDF’s converge 

relatively quickly, and the green (intermediate time) lines are almost on top of the blue (late time) lines. 

The inset shows in log-scale the relative error (in L2 norm) in the current compared to the final RDF’s. 
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We see that over the course of the simulation, all lipid-RAS RDF’s (and hence potentials) converge to 

<1%, and in most cases to all digits recorded in our output files. 

 

 

2.3.   The RAS-Plasma Membrane Mimic 
The RAS minimal PM mimic (ARC) is an 8 component asymmetric mammalian PM mimic 

designed to capture lipid dynamics relevant for RAS biology, see Section 1.2.1. The macro 

model simulated the ARC mixture with 300 RAS molecules at a large (1×1 m2) length- and 

time-scale (>150 s), sampling a vast distribution of possible lipid configurations of which 

representative patches were selected for further exploration using CG MD simulations (see 

Section 2.2). Here we explore the overall applicability of the ARC for forming PM-like 

membranes and binding RAS (Section 2.3.1) and how the overall lipid dynamics in the different 

lipid compositions of the smaller CG simulations compare to the full macro model simulation 

(Section 2.3.3). 

 

2.3.1. Experimental Characterization of the Inner RAS-Plasma Membrane Mimic 

We created the symmetric inner version of the ARC lipid mixture, see Section 1.4.5, and verified 

the lipid composition using HPLC technique as described in our earlier publication (92). The 

black spectra in Fig. S18 shows representative spectra collected for liposomes composed of the 8 

lipids symmetric inner ARC. We assigned the different peaks in the HPLC spectra to the specific 

lipid species based on spectra collected from standard stock samples of each lipid types indicated 

by different colors. The spectra show that all eight different lipid types are incorporated in the 

system with relative intensities in overall agreement with expected concentrations, see Table S4. 

 

 
Fig. S18:  HPLC chromatograms. The black line shows the spectrum of the symmetrical inner ARC 8 

lipid mixture, as described in Table S4. Colored lines represent reference spectra collected from standard 

stock samples of each lipid type. 

 

For an initial biophysical characterization of the 8 lipid bilayer and its interaction with RAS, we 

first investigated the lateral organization of the ARC 8 lipid mixture by imaging with atomic 

force microscopy (AFM) under the tapping mode. The topography image shown in Fig. S19A 

displays that the 8 lipid mixture segregates into liquid ordered and liquid disordered domains 

Fig S22 -- New
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with a height difference of approximately 1 nm between them as seen in the corresponding 

height profile in Fig. S19B. In order to verify that the phase separation exists because of the 

interaction between sphingomyelin and cholesterol included in the complex 8 lipid mixture and 

is not an artifact of our experimental setup, we performed AFM experiment on lipid bilayer 

composed of 7 lipid mixture without cholesterol and no phase separation was observed (data not 

shown). Next, we systematically increased the temperature from 25 °C up to 65 °C and observed 

significant differences in the domain features (Fig. S19C). Quantitative analysis of the domain 

heights (Fig. S19D) reveals a melting pattern in the ordered domain as a function of temperature. 

This indicates that our 8 lipid mixture is entropically driven and biologically relevant. 

 
Fig. S19:  AFM of the 8 lipid ARC mixture. (A) AFM image of the symmetrical inner ARC 8 lipid 

mixture prepared on mica surface acquired using tapping mode. (B) Height profile corresponding to the 

blue line marked on the top image. (C) AFM images of ARC obtained at 25 °C (top) and 65 °C (bottom). 

(D) Normalized histogram of the height distribution corresponding to the two AFM images on top (blue, 

25 °C; red, 65 °C). 

 

2.3.2. Macro and Micro Scale Lipid Consistency 

The simulation campaign was run in two segments that used different macro to micro conversion 

procedures for lipid placement. The first segment consisted of ~29K (29,191) CG simulations 

and used rounding to convert continuous lipid concentrations to discrete numbers of lipids in 

each sub-grid (64 lipids). This rounding led to undersampling of lipids with small absolute 

values and ranges in the macro model (e.g., the small PIP2 concentration distant from RAS was 

further reduced). The second segment consisted of ~90K (90,495) CG simulations and 

probabilistically adjusted lipid placement in each sub-grid based on lipid distribution. A coding 

error in Segment 2 implementation resulted in all non-integer remainders being inaccurately 

assigned. This procedure, while resulting in improved macro model/CG agreement in mol% for 

many lipid types, disproportionately underrepresented rare lipids and led to a further reduction in 

the average number of PIP2 lipids (Fig. S20). 

 

Fig. S23

4

A C 25 °C

65 °CB

D



   

 

   

 

40 

Conversion from continuous to discrete models necessitates a discretization which can lead to 

discrepancies between the models. When converting from the macro model to CG patches, the 

discretization was compounded with sub-grid rounding (in Segment 1), and a coding error (in 

Segment 2) resulted in lower sampling of low frequency lipids in each sub-grid. Fig. S20 

compares the average lipid compositions in all CG patches selected in Segments 1 and 2 to their 

respective macro model patch compositions. The lipid compositional distributions are captured 

reasonably well for all inner leaflet lipids with the exception of low frequency lipids (POPE in 

Segment 1 and PIP2 in both segments), and for all outer leaflet lipids except POPE. The largest 

difference was the reduction of PIP2 concentration in the bulk lipid phase (distant from RAS 

where PIP2 concentration is lower). Averaged across all ML-selected patches, the inner leaflet 

concentration of PIP2 decreased from 2.4 mol% in the macro model to 1.7 and 0.8 mol% in 

Segments 1 and 2, respectively. Due to the broad tails of the PIP2 distribution and large number 

of simulations, both segments contain significant numbers of relatively high (above 2.2%) PIP2 

concentration. Additionally, in comparison to experimentally determined concentrations for 

PIP2, the 0.8 mol% average inner leaflet PIP2 concentration in Segment 2 is similar to the 1.0 

mol% phosphatidylinositol identified in the erythrocyte PM inner leaflet by mass 

spectrometry (93) and is, therefore, biologically relevant. 
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Fig. S20:  Lipid concentrations in macro model and CG patches. Panels show probability distributions of 

the molar concentration of each outer (A) and inner (B) leaflet lipid species in macro model patches 

selected for CG simulation (broken lines), and CG patches (solid lines). Segments 1 and 2 are colored in 

blue and red, respectively. Dashed grey vertical line shows the global lipid concentation in the macro 

model (ARC).  

 

Separate analysis of the two segments show similar observables in both ensembles. Two 

instances where small differences are found are shown in Fig. S21. The RAS G-domain adopts 

the same three orientational states with only subtle changes in favored orientations between 

Segments 1 and 2 (Fig. S21A). The fact that RAS orientation is robust to changes in average 

PIP2 concentration between 0.8 and 1.7 mol% is consistent with our conclusion that >2% PIP2 is 

required to substantially perturb the orientation of the RAS G-domain in a manner that relieves 

membrane-based occlusion of RAF binding (Fig. 6d and Fig. S21B). 
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Fig. S21:  Comparsion of Segments 1 and 2. Selected RAS observables in CG simulations from Segments 

1 and 2. (A) G-domain disposition in simulations with one RAS. Analogous to Fig. 5c, but without patch 

weighting and only including data from the first 1 s/simulation. (B) RAF-occlusion vs. PIP2 content. 

Analogous to Fig. 6d, but only including data from the first 1 s/simulation. 

 

For most analyses, Segments 1 and 2 are combined and when indicated the CG simulations are 

weighted based on the weight of the original macro model patch from which they were 

constructed. Due to the non-ideal converstion of low frequency lipids, the macro weights might 

be biased compaired to their CG conterparts. To evaluate the possible implications of this bias, 

all weighted analyses were also evaluated in an unweighted manner and, for this campaign, the 

weighted vs. unweighted results were similar and we therefore conclude that this bias does not 

affect any of our conclusions. 

 

2.3.3. Macro and Micro Scale Lipid-Dynamics of the RAS-Plasma Membrane Mimic 

The ARC mixture exhibits a large range of lipid fluctuations of various time- and length-scales 

both in the macro and micro simulations. Phase separation of the ARC mixture is not observed at 

either scale, but regions of lipid enrichment/depletion can be seen spanning simulation boxes, 

indicating that phase separation might be observed in longer and/or larger simulations. The 

macro simulation sampled a large range of local lipid compositions, resulting in broad 

compositional heterogeneity across the 120K unique CG MD simulations (Section 2.2). For each 

selected macro patch (30×30 nm2 region), a CG simulation is created (Section 1.1.4) based on 

the local macro model lipid composition resolved at a 5×5 sub-grid resolution (each sub-grid 

~6×6 nm2). This mapping preserves the local lipid composition and overall/larger-scale spatial 

distribution of the selected macro patch. 
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Fig. S22 shows a selected region of the macro simulation, where MuMMI has selected two 

patches to be of interest; the spatial enrichment/depletion of cholesterol is shown for the macro 

patches and CG simulations. In both the macro and micro models the lipid dynamics are overall 

similar to those described for the complex mammalian PM, and its eight lipid mimic (44, 46) and 

described briefly in Section 1.2.1, with colocalization of more saturated lipids and cholesterol 

and exclusion of polyunsaturated lipids. All selected patches and, therefore, all CG simulations 

contain at least one RAS molecule which affects the lipid properties in its proximity (Fig. 6a and 

Section 2.6). 

 

 
Fig. S22:  Comparison of lipid densities in the macro model and CG simulation. A snapshot of the macro 

model inner leaflet (A), colored to show relative cholesterol density, with RAS positions indicated as 

black dots. The two highlighted patches (B) represent regions of both high and low average cholesterol 

content. The equivalent CG simulations (C) present the same distribution of cholesterol, both in terms of 

magnitudes and spatial arrangement. 

 

The lipid properties are explored by calculating the lipid enrichment/depletion of each lipid type 

for all the lipid types (in both leaflets). Fig. S23A shows the lipid-lipid affinities in the macro 

model, demonstrating the various lipid-lipid affinities and nonhomogeneous lipid mixing. Fig. 

S23B compares the macro model lipid-lipid affinities to the micro models lipid-lipid neighbor 

counts in the ARC lipid mixture (44) and demonstrates the similarity between the two models. 

To explore the consistency between different patches with varying lipid compositions, 100 

simulations are randomly selected, and the same lipid neighbor analysis is performed. Each of 

the 100 simulations has at least one RAS, 0.2-1 μs used for the analysis, and individually 

normalized to the lipid concentration in that patch. The average behavior of all 100 simulations is 

remarkably similar, within error, to the lipid neighbor preferences of the average ARC mixture, 

except for a higher PIP2-PIP2 interaction which is due to the RAS-PIP colocalization. 
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Fig. S23:  Average neighbor analysis. Results for the macro model (A) and ARC from CG simulations 

(B) are shown. Comparison between the two reveals extremely comparable behavior. In general, the more 

ordered lipids are enriched around other ordered lipids, but depleted around more disordered lipids. The 

largest difference between the two is the PIP2-PIP2 interaction. The macro model underpredicts the 

number of PIP2-PIP2 neighbors within the small 1.5 nm radius by about 0.15 PIP2 neighbors, which is 

due in part to the scaling introduced in the PIP2-PIP2 RDF when parametrizing the macro model, Section 

1.2.6, and in part to the limited resolution at which the macro model is run. The low average 

concentration of PIP2 amplifies this to a large relative error, which is why there is a very considerable 

difference in color of the macro PIP2-PIP2 relative neighbor count compared to the Martini result. 

 

For analysis of the lipid-lipid dynamics in both models, the lipid space and time correlations are 

explored. Fig. S24 shows the time and space autocorrelation for cholesterol (CHOL) and DIPE in 

the macro model and the average space/time autocorrelation over the same 100 random 

simulations as above; the correlations were calculated as described in Section 1.3.6. For 

cholesterol, the autocorrelation functions are nonexponential at short times, with exponential 

tails at long times, as the inset shows. The spatial correlation function show similar behavior 

with nonexponential decay at short distances and exponential decay at longer distances. The 

nonexponential decays are not algebraic decays, as we have verified by plotting the correlation 

functions in log-log plots (not shown). Although the correlation functions show qualitatively 

similar behavior, there is significant quantitative differences. For example, the autocorrelation 

function for the micro model decays to zero much before 1 μs, but for the macro model, the 

autocorrelation function does not decay to zero even after 2 μs, indicative of the longer range 

correlations in the larger macro model. We observe similar behavior for DIPE as well. For DIPE, 

the macro model autocorrelation function for the upper leaflet (dashed line) is significantly 

different from the macro model autocorrelation function for the lower leaflet (solid line). 

Macro model CG simulationsA B
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Fig. S24:  Lipid space and time correlations in the macro and micro models. Comparison of 

autocorrelation (A) and spatial correlations (B) calculated from the macro model and the micro model 

(CG simulations). Inset in each panel shows the variation of the correlation in log-linear plots. (C) Plots 

of autocorrelation functions for all lipids (same-same) using macromodel. All lipids show decay patterns 

similar to CHOL and DIPE (shown in A), except PIP2, which decays much faster than the other lipids. 

(D) Log-linear plots of spatial correlation functions for all lipids (same-same) using the macro model. The 

decay pattern is clustered in three groups with no particular preference for inner or outer lipids. 

 

 

2.4.  RAS State Analysis 
As discussed in Section 1.2.5, our training system consisting of RAS in the 8 lipid ARC can be 

described adequately by two metastable states. We repeat the same procedure on results 

generated from our novel ML-based importance sampling approach, with over two orders of 

magnitude more simulations and, instead of a fixed average ARC, a large ensemble of relevant 

lipid compositions sampled by the macro model, see Section 2.2. The HMM analysis was 

performed on the tilting and rotation angles of RAS in 88,392 patches containing a single RAS 
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protein. The tilting rotation space was transformed into 2000 microstates using the k-means 

clustering method, see Section 1.2.5. Fig. S25A shows the population map, and Fig. S26 shows 

the implied time-scales plot; as can be seen, there is a separation of time-scales between the first 

(solid blue line) and the second relaxation time-scale (solid red line). Subsequently, we obtain a 

maximum likelihood HMM using two states and a lag time of 100 ns. The two macrostates can 

be seen in Fig. S25B. However, adding a third state (in HMM) definition splits the region 

previously defined in Fig. S25B into two sub states, each one having a significant population 

(291 % and 401 %), as seen in Fig. S25C. Importantly, this result clearly highlights the benefit 

of our ML-based sampling in revealing hidden protein configurations that are not sampled 

properly in the training data. 

 

 
Fig. S25:  RAS tilt/rotation states. (A) Population map in tilt-rotation subspace. (B) Two metastable states 

obtained from HMM. The microstates are colored according to the macrostates they belong to. The 

populations of the states are 𝛽: 65%, 𝛼: 35%. (C) Three metastable states obtained from HMM. The 

microstates are colored according to the macrostates they belong to. The populations of the states are: 𝛽: 

29%, 𝛽′: 40%, 𝛼: 31%. 

 

 
Fig. S26:  Implied time scales. Relaxation times calculated as a function of lag time are shown in 

different colors. Any relaxation process below the black line (y=x) cannot be reliably estimated as the 
time-scales of these processes have already decayed.  
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2.5.  RAS Orientation and Effector Binding 
Patch-weighted sampling of G-domain orientations in CG MD simulations with one RAS per 

patch favor 45-90 tilting with rotation angles between 50 and 110 (Fig. 5c). This represents 

the β and β’ states (Fig. 5b), which bring  strands 1-3 and switch I toward the membrane so as 

to occlude the G-domain’s RAF binding interface (Figs. 5f, 5g). This occlusion is especially 

apparent at the larger tilting angles that characterize the β’ state in comparison to the β state 

(Figs. 5f, 5g). The balance between β and β’ states appears to be strongly influenced by the 

extent of HVR-membrane association (Figs. 5i, 5j). This correlation suggests that kinetic 

separation of β and β’ states may arise from opposing tendencies for extensive tilting toward 

switch I and transient fluctuation of the G-domain proximal end of the HVR away from the 

bilayer surface. Conversely, RAS’ RAF binding interface remains accessible when the G-domain 

is oriented such that α helix 5 is perpendicular to the global bilayer normal (Fig. 5d) or adopts 

other α state orientations that tilt α helices 3-5 toward the membrane (Fig. 5e). 

 

Although membrane-based occlusion of RAS’ effector binding interface is largely predicted by 

the G-domain orientation in these CG simulations (Fig. 5c), the G-domain’s displacement from 

the membrane, dz
G, is dynamic (Fig. S27A) and influences its effector binding competence (Fig. 

S27B).  

 

Lipid dependence of membrane-based occlusion is shown in Fig. S27C. Notably, this occlusion 

decreases as PIP2 concentration increases beyond 2% (Fig. 6d and Fig. S27C). Other 

relationships are complex (Fig. S27C) and difficult to interpret because lipid concentrations are 

sampled collectively (Fig. S15).  

 

Although the large number of simulations afforded by MuMMI dramatically reduces statistical 

sampling errors that are common shortcomings of MD simulation-based studies, the populations 

at which G-domain orientational states are sampled continue to drift with time throughout the 

CG simulation ensemble (Fig. S28). 
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Fig. S27:  G-domain disposition and competence for RAF binding in CG simulations with one RAS. (A) 

Probability histogram of the center of mass distance between the RAS G-domain backbone beads and the 

bilayer along its global normal, dz
G, overall and separately for configurations in , , and ’ orientational 

states. Probabilities in state-specific histograms are multiplied by the proportion of that state in the overall 

ensemble. (B) Number of C-RAF RBD backbone beads modeled closer than 1.8 nm to the bilayer center 

along its global normal, Nclash, as a function of dz
G near the G-domain orientations depicted in Figs. 5d-5g. 

Orientations are included for ±0.5° tilt and ±1° rotation, except near (tilt,rot) = (0°,0°), which includes 0° 

to 1° tilt and all rotation values. (C) Percentage of frames consistent with membrane-based occlusion of 

RAF binding (Nclash>5) as a function of the molar percent of each lipid type in the CG simulation patch. 

(D) Number of simulations in each histogram bin for part C. Patch weighting is applied in part A, but not 

in parts C and D. Error bars in part C are from bootstrapping. 
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Fig. S28:  Sampling of one RAS states. Probabilities at which the three orientational states of RAS are 

sampled from time t to time t+0.1 s across all 1-RAS CG simulations as a function of t. 

 

The above analysis suggest that membrane-based occlusion of the binding site is common, even 

for a relatively small binding partner such as the C-RAF RBD (78). Full-length RAF likely 

exerts additional steric hinderances to binding. We anticipate similar results for other structurally 

similar RAS-binding motifs such as the RBDs of Byr2 (94), RalGDS (95), and NORE1A (96), 

and the RAS associating domains of PLCε (97) and Grb14 (98). Occlusion is also expected to be 

prominent for large RAS-binding proteins such as PI3Kγ (99), p120GAP (100), and the GAP 

SOS1 (101). In contrast, the HVR-binding protein PDE (102) is expected to be completely 

incompetent to bind the configurations of RAS sampled in these CG simulations, where the 

farnesyl group is consistently embedded in the membrane (103, 104). 

 

 

2.6.   Lipid dependence of RAS states 
RAS is known to interact with lipids in the membrane through electrostatic and hydrophobic 

interactions (105). These interactions are observed in our simulations, somewhat in the phase 

field model and in particular in the corse-grained MD models. Since the different states have 

differing orientation and proximity to the membrane of the G-domain, it is reasonable to presume 

that the total number of lipids in contact with an isolated RAS protein will show a strong 

association with the protein’s orientational state. Beyond this type of relatively simple 

relationship with the total number of contacting lipids, we make use of bilayer’s compositional 

complexity to evaluate the coupling of RAS orientational state to the local lipid composition in 

terms of the relative frequencies at which specific lipid arrangements occur. 

 

2.6.1. Morphology of Lipid Composition Near RAS 

RAS interacts with membrane lipids. Fig. S29 shows how the relative concentration of lipids 

vary as a function of distance to center of the G-domain and residue 185. The fact that these 

curves are not constant are indicative of lipid-RAS interactions. Furthermore, the concentration 

at very long distances is near the average concentration of each lipid in the membrane. Observe 
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that concentration of PIP2, which has the lowest concentration in membrane, has concentrations 

near RAS that exceed that of other lipids (Fig. S29C and D). 

 

Visually, we note some state dependence of the radial lipid concentration function (Fig. S30). As 

previously noted, the concentration of PIP2 is enriched near the G-domain in state  and ’ than 

in . Our explanation for this is that PIP2 preferentially gets close to the G-domain (which in 

state  and ’ lies at the membrane surface) thanks to its strong negative charge. There are fewer 

options for PIP2 to get in proximity of the G-domain in the  state, as the G-domain is further 

away from the membrane. We also observe that cholesterol and POPC are enriched in the outer 

leaflet near the G-domain, but only in states  and . We conjecture that with the G-domain 

being farther from the membrane, fewer charged lipids will be near the farnesyl, leaving room 

for small lipids (such as Cholesterol) to sneak in. Fig. S31 provides evidence supporting that 

conjecture. It shows spatial dependence for lipid concentrations once the membrane is rotate 

around a particular residue to align the axis of the G-domain to the x-axis. We interpret that plot 

as saying that the distributions of lipids around RAS are also influenced by the orientation of G-

domain. 

 

 
Fig. S29:  1D radial lipid distributions around RAS in CG simulations with one RAS. Radial densities of 

lipid headgroup beads (PO4 for lipids and ROH for cholesterol) in the global bilayer plane are shown (A, 

B) collectively, and by lipid type in the (C, D) inner and (E, F) outer leaflets. The group at r = 0 is (A, C, 
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E) the center of mass of G-domain backbone residues, or (B, D, F) the backbone bead of residue C185. 

Data is patch weighted. Error bars obtained from three sets of interleaved CG simulations are too small to 

see. Data from the second segment of CG simulations only. 

 

 
Fig. S30:  Lipids around RAS G-domain in different RAS states. G-domain orientation-state-specific 1D 

radial lipid distributions around RAS in CG simulations with one RAS. Radial densities of lipid 

headgroup beads (PO4 for lipids and ROH for cholesterol) in the global bilayer plane are shown when the 

RAS G-domain is in the (left) , (middle) , or (right) ’ orientational state. Data shown for (top two 

rows) outer and (bottom two rows) inner membrane leaflets. Within each of the two vertical sections of 

this plot, the group at r = 0 is (top row) the center of mass of G-domain backbone residues, or (bottom 

row) the backbone bead of residue C185. Data is patch weighted. Error bars obtained from three sets of 

interleaved CG simulations are too small to see.  
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Fig. S31:  Oriented 2D distributions of protein and lipids in CG simulations with one RAS. Densities 

shown separately for HVR beads, the C185 backbone bead, and lipid headgroup beads (PO4 for lipids and 

ROH for cholesterol). Densities computed after placing the G-domain center of mass at the origin and 

rotating all coordinates to place the (left) C185 backbone bead, or (right) Thr35 backbone bead on the 

positive x-axis. Color scales differ among groups for which densities are plotted, and are determined as 

follows. The (white) midpoint is the average value over radial distances 6 < r <10 nm, where 

r = sqrt(x2+y2); the initial low is the minimum density for r < 5 nm; the initial high is the maximum 

density for all values of x and y; the (blue) low and (red) high are then set such that they are equidistant 

from the midpoint according to the largest absolute value from that midpoint. During this process, data 

from different alignments are considered together. Data from the second segment of CG simulations only 

and not patch weighted. 
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2.6.2. Estimating RAS State from Lipid Density with Supervised Classification Models 

In the previous section, we have shown a co-dependence of membrane lipid composition and 

RAS state. We next investigate correlations between RAS and neighboring lipids using a 

supervised ML model, which is trained to detect whether one can accurately label the RAS state 

by observing its surrounding lipid densities. As described in Section 1.3.4, this analysis is 

conducted for both CG simulations (three-state RAS model) and macro model (two-state RAS 

model). Furthermore, to capture the correlation between lipids and the state of a (single) RAS, 

we focus only on the regions/simulations with a single RAS. 

 

Prediction for CG simulations. Convolutional neural network models (see Section 1.3.4) are 

trained with each lipid type individually and also with combinations of different lipids. When 

using multiple lipids, the input is treated as a multi-channel image with one channel devoted to 

each lipid type. Fig. S32 shows the accuracy of predicting the RAS state from the lipid density 

on training and test data, respectively. The plots show the average and standard deviation of the 

resulting accuracy of models trained on a random training set selection from the entire dataset. 

The training and test datasets are equally balanced between the three RAS states, so the values 

higher than ~33% accuracy indicate that the model is doing better than a random chance. We 

observe that some lipid types are better predictors of RAS state than others. In particular, models 

trained on PIP2 deliver the best accuracy among single-lipid models, followed by inner leaflet 

DIPE, POPC, and PAPS. The models trained on outer lipids largely do not perform better than 

random chance. The best model is obtained when combining all eight lipids of the inner 

membrane. 

 

 
Fig. S32:  Training and testing accuracy for the three-state prediction from CG data. Mean and standard 

deviation of training and testing accuracies are shown when predicting RAS state from lipid densities for 

different lipid types individually as well using all eight inner lipids combined. The results show that outer 

lipids perform just about as good as a random chance (dashed line), whereas considering all lipids on the 

inner leaflet is able to predict RAS states with ~80% accuracy. 

 

Fig. S33 shows the average density for each lipid for all frames in the test data that the model 

correctly predicts to be in each state. These images, therefore, represent spatial patterns of lipid 

densities that the model learns to be indicative of the RAS being in the corresponding state. 

 

outer inner



   

 

   

 

54 

 
 

Fig. S33:  Average ML prediction of lipid fingerprints for the three RAS states in CG data. Average 

densities for inner lipids from frames correctly predicted by the model to be in one of the three states. The 

three rows show the lipid densities averaged over 182,000, over 113,000, and over 32,000 frames 

correctly predicted to be in states α, β’, and , respectively. Color represents (blue) low to (yellow) high 

lipid density. Note that these images differ from those in Fig. 6a and Fig. S31 in part because trajectory 

frames for ML-based state prediction are processed to place the farnesyl at the origin and rotate the G-

domain center of mass onto the positive x-axis, whereas the representation used for Fig. 6a and Fig. S31 

is the inverse. 

 

Prediction for Macro Model. A similar analysis with models trained to predict RAS state from 

lipid densities is conducted for the macro model. In the macro model, a Markov model governs 

when the RAS transitions from one state to the other. The lipids then react to the RAS state 

according to forces dictated by the particular RDF assigned to the RAS state for each lipid, as 

described in Section 1.1.3. For each frame of the macro model simulation, the RAS state is 

known, and the lipid densities are computed for a 36×36 data grid spanning a 30×30 nm2 area 

centered on the RAS. A convolutional neural network model similar to the model described for 

the CG data is trained for state classification. Further details about the model and the dataset are 

provided in Section 1.3.4. 

 

As with the models trained on CG data, models trained on the macro model data successfully 

identify spatial patterns in the lipid densities to accurately predict the RAS state. Fig. S34 shows 

a plot of the average predictions of the models trained on each of the individual inner lipids in 

time windows centered around a RAS state transition. In particular, the model trained on PIP2 

densities proves to be the most accurate, followed by PAPS, DIPE, CHOL, and POPE. Another 

observation is that the models trained on different lipids demonstrate a varying degree of time 

lag in adapting to predict the new RAS state after a transition. For instance, PIP2 and DIPE adapt 

more quickly than PAPS or POPE, which improve their average prediction more gradually after 

more timesteps. Presumably, the different lipids diffuse through the membrane in the macro 

model at different rates according to the different forces implied by the RDFs used in the model. 

The patterns in lipid density that represent each RAS state as learned by the ML model require 

different amounts of time to settle for the different lipids. 
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Fig. S34:  Average ML prediction of RAS states for the macro model data. Average of model prediction 

of RAS state for models trained on individual lipids from macro model data in a time window around 

RAS transitions. Each plot shows the results for a model trained only with the concentrations of one of 

the eight inner lipids. 

 

To illustrate the types of patterns that the different lipid densities form under different RAS 

states, Fig. S35 shows the densities of several inner lipids for a sequence of time steps around a 

transition from state  to state  in the macro model. While the RAS is in state , the PIP2 and 

DIPE densities intensify around the RAS as those lipids are pulled in more closely to the RAS, 

while PAPS and CHOL tend to be pushed away from the RAS creating voids in the densities of 

those lipids. These spatial density patterns develop from the different RDFs associated with the 

RAS states in the macro model. 
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Fig. S35:  Examples of ML prediction of RAS state transition for the macro model data. Lipid densities 

for CHOL, DIPE, PAPS, and PIP2 taken from a select macro model simulation that spans 20 timesteps 

(40 ns) around a point where RAS transitions from β to α. Each row shows the relative simulation time 

and the known RAS state. Each image is labeled with its estimated probability of the RAS being in β as 

predicted by an ML model that is trained only on densities of that respective lipid. 

 

In summary, there is a correlation between RAS state, as defined by its tilt and rotation angles 

relative to the membrane surface, and the lipid densities within the inner leaflet of the membrane 

that are near the RAS. The strongest correlation occurs when considering the densities for all 

eight inner lipids together. Individually, the density patterns of some lipids show a stronger 

correlation to RAS state than other lipids. These patterns are detectable by a ML model in both 

the CG simulations and the macro model simulations. 
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2.6.3. Predicting Future RAS State Changes from Past Changes in Lipid Density 

Predicting RAS state changes based on past lipid composition is of significant interest because 

state changes may implicate changes in down stream effects. This section presents analysis that 

may provide insights into how lipids could mediate RAS state changes. Fig. S36 provides 

evidence that lipid composition changes after a transition. This section presents further evidence 

and analysis showing how changes in lipid composition predict RAS state change. 

 

This analysis only considers CG simulations that contain a single RAS protein in the patch. For 

every observed state transition in a given trajectory, a randomly selected “nontransition” is 

selected from the same trajectory. For example, if a given trajectory shows a transition from state 

 to , then a random  to  transition from that trajectory is selected, if such a transition exists 

in the trajectory. For each selected transition and nontransition, the lipids in a backward-looking 

window (lag time) of length going from 10 to 250 ns are considered. These are used to compute 

the average total number of lipids and the average composition in each window, which are used 

as features to predict the probability of change. 

 

For each possible transition (say from state α to ), a logistic regression is performed, using 

average total and the square-root of the average fraction of lipids as the explanatory variable. The 

use of the square root helps to “self-normalize” the compositional frequency vector, as that 

vector has norm one. It also removes the co-linearity with the constant. To help interpret the 

results, features to be included into the model were selected using the Bayesian Information 

Criterion (BIC). The BIC criterion is known to be conservative, and only includes variables that 

would be judged as highly significant by other analysis approaches. However, we do not include 

a formal p-value for the fitted parameters, as their nominal significance as reported by standard 

statistical software are distorted by the model selection procedure we used. Thus, the presented 

results should be considered in the framework of hypothesis generation instead of significant 

findings. Finally, the analysis was done separately for lipid composition near the G-domain. 

RAS’ local lipidic environment was defined by the numbers of each type of lipid within 1.2 nm 

of any protein BB bead. Lipids were represented by the positions of their C1A, D1A, T1A, or R1 

bead, as was done for CG RDF construction to parameterize the macro model (Section 1.3.1). 

 

In all cases, the total number of lipids was a significant predictor. As a result, we will only 

describe how lipid composition helps to predict RAS state change. Fig. S36 shows how lipid 

composition near the G-domain impacts prediction of state changes as a function of state of 

origin, end state, and the size of the window. The size of the window seems to matter to some 

extent. It is somewhat surprising that the average composition, even for larger windows, remains 

significant, as it was initially conjectured that local short-term variations would mediate state 

changes. While Fig. 6c summarizes this plot by reporting the most important factor for each 

change, Fig. S36 shows that multiple membrane lipids are helpful to predict state change.  
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Fig. S36:  Lipids predict RAS state change. Figure shows the statistically significant coefficients of lipid 

composition near the G-domain prior to the change to predict state change using a logistic regression. 

Each logistic regression estimates the logarithm of the odds ratio of the probability of moving from a 

stating state to a final state. Large positive coefficients (blue) indicate that increasing the proportion of 

that lipid increases the probability of making the change. Conversely, large negative coefficients (red) 

indicate that an increase in that lipid decreases the probability of a change. Average lipid composition 

were calculated over windows of length 1 to 25 prior to the change (10 to 250 ns). 

 

It is interesting to note that whereas PIP2 is noted to be the most important predictor for 

predicting the state of RAS, changes in its state sometimes involve DIPE and Cholesterol as 

well. 

 

2.7.  RAS Dynamics 
Next, we focus on the dynamics of both RAS and lipids in our PM mimics, corresponding to the 

CG micro simulations. In this section all diffusion values are corrected taking into account the 

about four times faster diffusion of CG Martini (10). First, we determine whether or not our 

simulation time-scales are long enough to de-correlate the initial anomalous diffusion (106). Fig. 

S37A clearly shows that in general, lipids show a linear mean square displacement (MSD) within 

the range of 0-1 µs. In fact, by taken the derivative of the MSD with respect to time, we are able 

to successfully provide reliable lipid dynamics within this time-scale (Fig. S37B). Interestingly, 

same lipid types show a slightly different lateral diffusion coefficient (D), among the different 

CG membrane patches and highly correlated with the change in total cholesterol concentration 

(Fig. S37C). We compute such correlation index for all the different lipid types, markedly 

agreeing regardless of the RAS content on the membrane (Fig. S37). However, such correlation 

is somehow affected in the case of PIP2. In fact, these lipids do not follow the same trend, and 

seems to be unaffected by the cholesterol content in the membrane, or at least hardly detectable. 

Nevertheless, we conclude that the micro-simulations (CG simulations) are effectively 

reproducing the change in membrane viscosity, as a result of cholesterol increase (107, 108), 
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clearly suggesting that the local lipid environment dynamically affects lipids. Again, and 

provided by our results, both RAS and PIP2 are somehow unaffected by the change in membrane 

viscosity, which proves intriguing. 

 

 
Fig. S37:  Direct correlation of lipid lateral diffusion and cholesterol concentration. All lipids but PIP2 

are negatively impacted by the total concentration of cholesterol in the membrane in terms of their lateral 

displacement. Similarly to PIP2, RAS proteins lateral displacement are not directly influenced, suggesting 

a de-correlated effect of cholesterol-modulating membrane viscosity. 

 

Next, we investigate whether the lipids are also affected by the concentration of RAS molecules 

as extracted from the micro model simulations (Fig. S38). From the total membrane patches 

analyzed (~70K) all the lipids exhibit on average the same D (6 µm2 s-1 under PBC conditions), 

regardless of RAS concentration in the simulation box. Even for higher concentrations (4 RAS in 

a box) the lipids resemble the features of lower RAS content. The conclusion of this graph can 

mislead towards a wrong interpretation of the membrane dynamics. Thus, to more thoroughly 

understand the behavior of the lipids in the membrane, we split the lateral diffusion coefficients 

by the different lipid types, as provided in Fig. S38B. In general, and as already mentioned, the 

similar dynamics between the lipids suggests a homogeneous behavior of them in every different 

patch. We should point that in case of DPSM, clearly, we can detect two subspecies, one of fast 

diffusion (inner leaflet) and one of slower dynamics (outer leaflet), which cannot be described by 

the same D (Fig. S38). Classifying D as a function of RAS aggregation state does not change the 

previous conclusion (Fig. S38C). However, a particular feature immediately rises as an effect of 

RAS concentration. Clearly, PIP2 is correlated with the lateral dynamics of RAS aggregates (Fig. 

S38C and D), in which we can at least distinguish four different subspecies, with PIP2 in systems 

with four RAS being the slowest. Although expected, our conclusive data points towards a direct 

modulatory effect of RAS on the dynamics of PIP2, which is correlated with the strong 

association of this lipid for the protein. 
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Fig. S38:  PIP2 behavior is affected by RAS concentration. (A) Mean lateral diffusion coefficient (D) of 

all the lipids as a function of RAS concentration. (B) Mean lateral diffusion value as a function of lipid 

type. (C) D per lipid and split by RAS concentration, showing PIP2 as the only lipid affected. (D) Mean 

value of lateral diffusion for RAS protein. Bars denote standard deviation from the mean and all values 

are corrected taking into account the about four times faster diffusion of CG Martini. 

 

Comparison between the simulated distances and the ones measured experimentally is not 

straightforward. Primarily, effects coming from the truncation via PBC plus changes in shear 

viscosity given by cholesterol are difficult to take into account. However, we can provide an 

estimate of lateral diffusion at infinite size (D∞), using a PBC correction function as previously 

published by Venable et al. (109). We should stress that outcomes can drastically change due to 

two important variables; both the membrane viscosity (ηm) and hydrodynamic radius (Rh) can 

potentially affect the interpretation of the results. 

 

Given the difficulty in tracking the change in membrane viscosity due to cholesterol content, we 

set a fix value in the formulation, which is able to recapitulate the average PBC dynamics of 

lipids. We find that in particular for our system, membrane viscosity needs to be increased 3 

fold, thus agreeing with the higher viscosity property of our membranes when compared with 

pure DPPC bilayers. By doing this, our average lateral lipid diffusion constant agrees very well 

with the hydrodynamics Saffman-Delbrück model Table S3. After the Periodic boundary 

corrections, most of the lipids (except PIP2) in our microsimulations will diffuse at ~9 m2 s-1, a 

value that is very close to experimental measurements in membrane models. 

 

 

C
D

 μ
m

2
 s

-1

D
 μ

m
2
 s

-1

N=69181

N=65464

N=3383

N=262

N=72

A
D

 μ
m

2
 s

-1

N=65464
N=3383

N=262 N=72

D

D
 μ

m
2
 s

-1

N=65464

N=3383

N=262

N=72

Aggregate type Lipid type

Lipid type Aggregate type

B

PIP2CHOL POPC PAPC POPE DIPE DPSM PAPS

PIP2CHOL POPC PAPC POPE DIPE DPSM PAPS



   

 

   

 

61 

Table S3: Average lateral diffusion. 

Molecule Rh(nm)
b D(PBC)(µm2 s-1) 

rawa 

D(PBC)(cm2 s-

110e-7) rawa 

D(PBC)/D(∞) 

(cm2 s-1 10e-7) 

rawa 

predicted 

fromb 

D(PBC)/D(∞) 

(cm2 s-1 10e-7) 

rawa  

adjusted Rhc 

D(∞)(µm2 s-1) 

Martini 

correctiond 

from adjusted 

Rhc 

RAS 1-mer 1.26 6.8 0.68 2.49/3.94 1.39/2.83 7 

RAS 2-mer 1.8 4.8 0.48 1.8/3.33 1/2.44 6 

RAS 3-mer 2.42 2.7 0.27 1.49/2.94 0.7/2.12 5.25 

RAS 4-mer 3.04 2.1 0.21 1.21/2.65 0.5/1.9 4.75 

Lipids 0.53 24 2.4 2.4/3.84 - 9.5 
 
aNot accounting for faster diffusion at the CG resolution 
bAs predicted from the Hydropro (110) program 
cRh is adjusted based on Rh(experimental)/Rh(computed) difference 
dCorrected to account for the four times faster diffusion at the Martini CG resolution  (10) 

 

 

However, correcting the lateral diffusion for RAS is more difficult. As given in the formulation, 

the Hydrodynamics radius (Rh) can change the properties of lateral diffusion. We use the 

Hydropro (110) program in order to provide an estimate of such a parameter, as listed in Table 

S3 for all the different RAS aggregates. Yet, this value is unable to recapitulate the PBC 

dynamics, according to the theorem. In fact, we find that Rh is underestimated when compared to 

experimentally measured values (111), revealing the limitations of computing this property. The 

use of the experimental Rh still overestimates D obtained from our simulations, implying that 

other factors (not considered here) can vary the results. Nevertheless, we provide a list of D after 

PBC corrections, using an extrapolation of experimental ηm for the different RAS aggregates. 

Surprisingly, we find these values also in good agreement with experimental 

measurements (112). 

 

Importantly, MSD coefficients for the whole series of lipids are ~30% smaller than other 

published values for PC lipids (109, 113). However, different integrators, as well as coupling 

factors, can indeed affect the lateral mobility of the lipids. In fact, ddcMD, using the Langevin 

thermostat and a friction coefficient of 1 ps-1, compared to GROMACS, using velocity rescaling 

thermostat (114) and a coupling constant of 1 ps, give different diffusion values. Four identical 1 

s simulations of the ARC lipid mixture in ddcMD and GROMACS, using the parameters 

above, resulted in an average (±se) lipid diffusion of 26±2 µm2 s-1 from ddcMD and 42±2 µm2 

s-1 from GROMACS, explaining the difference in diffusion. Note, using a higher coupling 

constant for the Langevin thermostat in ddcMD will move towards the weak-coupling limit and a 

value of 5 ps, within error, results in the same diffusion as measured with GROMACS. 

 

We also investigated whether cholesterol-dependent membrane viscosity can affect transition 

rates between the different RAS states, in particular for the monomeric cases. These transition 

rates are computed from using the maximum likelihood HMM. Fig. S39 shows the distribution 

of cholesterols in the trajectories with a single RAS protein. In order to define the boundaries of 

our analysis for low and high cholesterol content, we characterize two different sets of 

trajectories: i) number of cholesterols <830 and ii) number of cholesterols >1010. These values 
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were chosen such that the two sets have around ~5000 trajectories and enough to obtain reliable 

outcomes form the HMM state analysis. Fig. S40 and  
 

Fig. S41 show the population map, states and the transition rates for low cholesterol and high 

cholesterol respectively. For reference, we also show the rate kinetics obtained from HMM 

analysis on all the RAS (Fig. S42). It can be seen that the rate kinetics is almost identical in all 

the different cases implying that cholesterol content has no direct influence on the rates between 

the different states. The transition between states  and α is faster relative to the transition 

between states β’ and α. Furthermore, the transition from state  to β’ is faster relative to the 

transition β’ to . This implies that the trajectory likes to remain in state β, which is also evident 

from the equilibrium populations.  

 

 
Fig. S39:  Distribution of number of cholesterols in simulations with one RAS. 

 

 
Fig. S40:  Low cholesterol RAS states. (A) Population map in tilt-rotation subspace. (B) Three metastable 

states obtained from HMM. The microstates are colored according to the macrostates they belong to. (C) 

Rate kinetics obtained from HMM analysis. The RAS state names are β = 0, β’ = 1, and α = 2. 
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Fig. S41:  High cholesterol RAS states. (A) Population map in tilt-rotation subspace. (B) Three 

metastable states obtained from HMM. The microstates are colored according to the macrostates they 

belong to. (C) Rate kinetics obtained from HMM analysis. The RAS state names are β = 0, β’ = 1, and α = 

2. 

 

 
Fig. S42:  Rate kinetics obtained from HMM analysis of all RAS monomer trajectories. The population 

map and the three metastable states are shown in Fig. S25. The RAS state names are β = 0, β’ = 1, and α = 

2. 
 

Next, to provide an experimental verification that we are reliably capturing the dynamic behavior 

of RAS and lipids in our CG simulations, we measured the lateral diffusion of RAS and lipids on 

a reconstituted model membrane using fluorescence lifetime correlation spectroscopy (FLCS). 

We prepared supported lipid bilayer composed of the symmetric 8 lipid ARC mixture labeled 

with trace amount of fluorescent lipid and fully processed, farnesylated and methylated, 

KRAS4b S106C/C118S covalently labeled with Alexa647 dye. We probed the translational 

mobility of the different lipid classes: Cholesterol, POPC and PAPC, DIPE and POPE, DPSM, 
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PAPS, and PIP2 in the bilayer with Topluor Cholesterol, TopFluor TMR PC, TopFluor TMR PE, 

TopFluor Sphingomyelin, TopFluor PS, and Topluor PIP2 respectively. Fig. 3b shows D 

measured for the different lipid types. In general, the lipid diffusion follows a trend like the one 

observed in simulations as shown in Fig. S38B. The diffusion coefficient for all lipid types 

remains relatively the same, on average ~7 μm2/s, except for PIP2. PIP2 moves significantly 

slower, a distinct feature evaluated from simulations directly correlating PIP2 dynamics to that of 

RAS aggregates. Likewise, RAS diffusion also remains homogeneous in all our experiments, ~4 

μm2/s, shown in Fig. 3b. It is important to note that FLCS is an average ensemble measurement 

technique and unlike in simulations, it cannot isolate diffusion based on RAS aggregation state 

such as monomer, dimer and so on, therefore, the measured D is a weighted average of the 

mobility of all states in a system (91). However, under our experimental conditions, i.e., a 

micromolar concentration of RAS, the probability of RAS aggregation is high. Thus, the 

quantitative values determined by our experiments for RAS and lipid diffusion conclusively 

support the CG simulations and prove a strong correlation between PIP2 and RAS. 

 

 

2.8.  RAS Lipid-Dependent Aggregation 
The results discussed in Section 2.6 demonstrate that in both the micro and the macro model, one 

can detect a strong correlation between the lipid configurations and the state of the RAS protein. 

A related question is how the arrangement of lipids is connected to RAS aggregation. This is 

especially interesting as aggregation can be observed more easily in experiments. 

 

2.8.1. Lipid-Dependent RAS Clustering in the Macro Model 

One of the overarching goals of the project is to identify new hypotheses that can be 

experimentally verified. An initial target for such experiments is the lipid-dependent clustering 

behavior of RAS as predicted by the macro model. In particular, when one computes the average 

lipid densities of the inner leaflet underneath each RAS within a small (5 nm radius) 

neighborhood, clusters of multiple RAS have a systematically different lipid environment than 

single RAS molecules. For example, Fig. S43 shows the marginal distributions of average lipid 

densities underneath RAS computed from neighborhoods of the macro model simulation for 

isolated RAS compared to clusters with three or more RAS. 
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Fig. S43:  Distributions of inner leaflet lipid densities in neighborhoods underneath RAS molecules. 

Distributions for isolated RAS are shown in blue and for clusters with 3 or more RAS shown in red. The 

ARC values for each lipid are shown as a dashed vertical line. 

 

 
Fig. S44:  Distribution of RAS counts with changes in local lipid concentration. Distribution of the 

number of RAS neighborhoods corresponding to the mean inner leaflet lipid concentration within 5 nm of 

the proteins as the RAS count varies from 0 to 3 or more. The curves for 0 RAS are shown in blue and for 

3 or more RAS are shown in red with the intermediate 1 RAS and 2 RAS curves shown in light blue and 

light red, respectively. Also shown are the mean values marked by the vertical dashed lines. The increase 

in RAS count corresponds to an increase in mean PIP2 and mean DIPE concentrations with PIP2 showing 

a more pronounced increase. But, the mean CHOL, POPC and DPSM concentrations show a decrease for 

increasing RAS count with the effect being more pronounced for POPC followed by DPSM and CHOL. 
For PAPC, POPE, and PAPS, the increase in RAS count shows a minimal effect on their mean 

concentrations compared to the effect for the other inner lipids. 

 

2.8.2. Finding Lipid Compositions that Modulate RAS Aggregation 

The initial analysis of data in Section 2.8.1 shows that RAS clusters have a different lipid 

environment than RAS monomers or regions without RAS. Further examination is required to 

fully ascertain lipid compositions that will moderate RAS aggregation. Given the eight-

component nature of the lipid composition, they represent a complex high-dimensional 

distribution that is not easily interpretable. Thus, we use a two-step process based on Function 

Preserving Projections (FPP) (76) to determine appropriate compositions. First, each 

neighborhood beneath a RAS (within 5 nm of RAS), i.e., each set of lipid concentrations, is 

labeled with the corresponding number of RAS. Furthermore, a set of equivalent neighborhoods 

without RAS are selected from the macro model at random to form a no-RAS baseline. 

Subsequently, one can phrase the lipid-dependent clustering as a regression function from eight-

Average lipid concentration
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dimensional space representing the densities of the eight inner lipid types, to the number of RAS. 

FPP is designed to find optimal linear projections, such that a given function appears as a simple, 

low-order signal in the projected space. Applying this approach to all neighborhoods produces 

the two-dimensional embedding of the patches shown in Fig. S45, which indicates a strong 

relationship between the number of RAS and the lipid composition. 

 

 
Fig. S45:  FPP two-dimensional embedding of patches. Optimal linear projection as computed by FPP of 

the eight-dimensional space of lipid compositions. The data is plotted using the primary embedding 

dimension (PED) and the secondary embedding dimension (SED). The complete set of neighborhoods is 

shown on the left, followed by data separated by RAS count. The red dashed lines represent the chosen 

thresholds, which are used to define the ‘high RAS colocalization’ (HRC) and ‘low RAS colocalization’ 

(LRC) lipid compositions. 

 

In particular, the vertical direction – termed the ‘primary embedding dimension’ (PED) – in the 

resulting plot correlates strongly with the number of RAS in a neighborhood. Consequently, one 

can sub-select test configurations by selecting horizontal cuts in the embedding space and 

selecting all neighborhoods above the higher line as low RAS colocalization (LRC) and all 

patches below the lower line as high RAS colocalization (HRC). Note that, since FPP computes 

a linear projection, these lines represent hyperplanes in the original eight-dimensional input 

space.  

 

The corresponding selections (either above the higher line, or below the lower line) show 

stronger differences in compositions yet remain multi-modal. In the second step we place 

additional constraints on the sub-selection based on individual marginals to reduce the degree of 

multi-modal behavior as much as possible without sacrificing sample populations (Fig. S46). The 

average molar percentages for these lipids are then normalized to sum to 100%. Thus, the final 

lipid distributions are shown Fig. 2d and Table S4. 
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Fig. S46:  PED threshold cuts. Initial PED threshold cuts produces two sets of lipid distributions (blue 

lines); HRC (A) and LRC (B). Several of these individual lipid distributions are multi-modal in nature. A 

single secondary cut (dashed black line) is made in one of these lipid distributions to reduce the multi-

modal nature of the data as much as possible (red lines). 

 

 
Table S4: Compositions of defined inner leaflet lipid mixtures (Lipid mol %  sd) 

Lipid LRC  ARC HRC 

CHOL 33.0  2.8 28.0 23.6  2.3 

POPC 22.3  6.1 13.9 11.0  3.3 

PAPC 3.1  1.9 7.5 4.7  1.5 

POPE 6.0  0.7 5.4 4.5  0.5 

DIPE 15.8  3.2 16.1 21.0  3.1 

DPSM 7.2  3.4 10.8 7.5  2.0 

PAPS 11.7  2.0 16.1 12.2  2.6 

PIP2 0.8  0.3 2.2 15.5  0.9 

 

 

2.8.3. Construction of the High/Low RAS Colocalization (HRC/LRC) Lipid Compositions  

To test the correlation between the lipid compositions, HRC and LRC, identified in Section 2.8.2 

with the level of RAS aggregation, we made various biophysical measurements of RAS on 

liposomes composed of HRC and LRC as defined in Table S4. We created symmetrical inner 

leaflet version of the HRC/LRC RAS-PM 8 lipid mixtures and tested them using HPLC 

technique (92), Fig. S18 for ARC and Fig. S47 for LRC and HRC lipid compositions. We 

assigned the different peaks in the HPLC spectra to the specific lipid species based on spectra 

collected from standard stock samples of each lipid types (see Section 2.3.1). Clearly, the spectra 

show that all 8 different lipid types are incorporated in both lipid systems, and in addition, the 

relative intensity differences for each lipid types between LRC and HRC compositions match the 

corresponding theoretical differences in the lipid content. This confirms the desired 

compositional variations in LRC and HRC liposomes used in the experiments henceforth 

(Sections 1.4.10 and 1.4.13). 

 

A

B



   

 

   

 

68 

 
Fig. S47:  HPLC spectra of LRC and HRC. HPLC chromatogram of the 8 lipid type inner leaflet mixtures 

LRC (blue) and HRC (red) as described in Table S4. HPLC chromatogram for ARC is shown in Fig. S18. 

 

2.8.4. Single Molecule Tracking Studies of RAS on HRC/LRC Supported Lipid Bilayer 

We tested the lipid dependent clustering of RAS on reconstituted membranes by measuring the 

mobility of RAS using single molecule tracking (SMT) studies facilitated by numerous statistical 

analysis tools including hidden Markov modeling (HMM) and single step-length distribution 

analysis. Recently, using live cell SMT studies and HMM analysis on a very rich set of 

trajectories, Goswami et al. (115) and Lee et al. (116) reported three distinct diffusion states for 

RAS on the plasma membrane of live HeLa and U2OS cells; fast, intermediate, and immobile 

states with unique inter-state transition paths. Here, we created reconstituted supported lipid 

bilayer with 8 lipids LRC and HRC compositions that favored RAS monomers and RAS 

multimers respectively, and tracked the diffusion of JF646 labeled RAS and Atto550 DOPE on 

the bilayer using TIRF microscopy. Both lipids and RAS were mobile and recovered after 

photobleaching confirming a mobile lipid bilayer. We also counted the number of bright particles 

in each frame to test if RAS reaches equilibrium on the membrane after washing. Fig. S48 shows 

the particle count obtained from the localization processing of the stacked images for up to 1000 

frames collected during a representative movie for LRC, ARC and HRC. The number of particles 

per frame remains same on average with minor variations. The slight change in molecule counts 

is due to RAS molecules diffusing in and out of the confocal plane. 

 

 
Fig. S48:  RAS particle counts per frame. The number of molecules counted for each frame (1-1000 

frames) in the single particle tracking movies obtained for KRAS on HRC, LRC and ARC. 
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Fig. S49A, B and C represent the mean square displacement (MSD) plots calculated from several 

thousands of trajectories measured for lipid and RAS respectively and step-length distribution for 

RAS on HRC (red) and LRC (blue) bilayer. The shape of the MSD plot characterizes the 

dynamic behavior of the particle (117). A straight line is indicative of free diffusion whereas a 

bent line represents confinement. Similarly, step-length distribution shows the histogram of the 

step sizes that single particles take in subsequent frames (91). If particles undergo free diffusion, 

they take larger steps whereas if particles follow confined diffusion, they take shorter steps. In 

our studies, the relatively straight MSD plots calculated for lipids indicate free diffusion of lipids 

on both HRC and LRC. This confirms that our working experimental lipid bilayer is a flat and 

simple reconstituted lipid bilayer lacking the complexity of real plasma membrane such as 

transmembrane proteins and actin cytoskeleton. On the other hand, the bent MSD plots for RAS 

on both HRC and LRC indicate confined diffusion of RAS with greater degree of confinement 

on HRC. Likewise, the step-length distribution of RAS on HRC features shorter step jumps 

compared to RAS on LRC eluding greater confinement, complimentary to the MSD plots. We 

hypothesize that the source of confinement comes from RAS organization into clusters on 

complex 8 lipid bilayer and not from lipid organization. 

 

 
Fig. S49:  Single Molecule Tracking of RAS on HRC/LRC. (A) Mean-square displacement (MSD) plots 

calculated from tracks obtained for Atto550 DOPE on LRC (blue) and HRC (red). (B) Mean square 

displacement plots calculated from tracks obtained for JF646 labeled KRAS4b on LRC (blue) and HRC 

(red). (C) Step-length distribution analysis of tracks collected for JF646 labeled KRAS4b on LRC (blue) 

and HRC (red). 

 

Since the translational diffusion of RAS and lipids on two-dimensional lipid-bilayer is a 

stochastic process, both the MSD plot and step size distribution provide an ensemble-average 

value of the mobility of the particles on the membrane. In order to explore the underlying 

multiple diffusion states within the trajectory ensemble and their corresponding diffusion 

coefficients, inter-state transition probability, and dwell time, we performed HMM analysis for 

RAS tracking data. The results are summarized in Fig. S50. The HMM analysis predicted 3-state 

diffusion model—a fast state, an intermediate state, and a slow state for both LRC (Fig. S50A) 

and HRC (Fig. S50B). Although the 3-state diffusion model resembles the live cell data, the 

nature of the individual diffusion state is quite different. In LRC, the intermediate state has the 

highest occupancy whereas in HRC, the slow state is the most dominant state, as shown in Fig. 

S50D and Fig. S50E . In both lipid systems, the fast sate is very short lived followed by the 

intermediate and then the slow state. RAS undergoes rapid transition from the fast state to the 

intermediate state while the transition probability from the intermediate to fast state decreases by 
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4-fold and barely exist from the intermediate to the slow state, and from the slow to the fast state 

and vice versa (Fig. S50F). The rapid transitory nature of the fast state led us to attribute the fast 

state comes from the free diffusion of RAS on the lipid bilayer whereas based on the longer 

dwell time and smaller diffusion coefficient, we propose that the intermediate state and the slow 

state arise from RAS molecules that reside on the membrane and organize into nanoclusters. 
 

 

 
Fig. S50:  HMM analysis of RAS diffusion states on LRC and HRC. (A) A representative 3-state 

diffusion model predicted by HMM analysis for RAS on LRC. (B) A representative 3-state diffusion 

model predicted by HMM analysis for RAS on HRC. (C) The average diffusion coefficients calculated 

for the three diffusive states of RAS on LRC (blue) and HRC (red). (D) The fractional occupancy of three 

diffusion states of percent state occupancy calculated for RAS on LRC (blue) and HRC (red). (E) The 

dwell time that RAS spends at each diffusive state on LRC (blue) and HRC (red). (F) The probability that 

RAS transitions between the three states for RAS on LRC (blue) and HRC (red). 

 
We also observed differences in the diffusion coefficient of all three states between HRC and 

LRC (Fig. S50C). The diffusion coefficients of the intermediate and slow states reduced by more 

than 60% on HRC compared to LRC. The slowed and more confined diffusion suggests 

increased molecular crowding of RAS on HRC, partly driven by the more negatively charged 

HRC. Also, the state occupancy of the slow state increased substantially. This could be either 

from increased number of immobilized RAS on glass surface due to unspecific interaction with 

glass surface or from the formation of relatively large nanodomains or clusters of RAS mediated 

by the intermediate state. Although it is not a direct evidence of increased RAS multimerization 

on HRC, it does possess an attractive molecular assembly process driving towards RAS 

multimerization. 

 

To test if RAS multimerization does occur on HRC, we carried out RAS density dependence 

experiments. We incorporated RAS at increasing concentrations of 10, 50, 70, 100, 200 and 1000 

nM onto HRC and performed SPT studies. We used HMM analysis to determine the changes in 

the fractional occupancy of the three states. The results are shown in Fig. S51 along with result 
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for 1000 nM RAS on LRC. At all concentrations of KRAS, the state occupancies of the slow and 

the intermediate state are greater than the state occupancy of the fast state on HRC compared to 

LRC. Most importantly, in HRC, as RAS concentration increased, the state occupancies of slow 

state increased as well. This change was most significant between 10 nM and 50 nM RAS 

concentrations and only marginal at concentration higher than 50 nM. Hence, we can assume that 

RAS multimerization process reaches equilibrium at 50 nM. 

 

 
Fig. S51:  Fractional occupancy of the three states from HMM analysis. The state occupancies of the slow 

(F1), intermediate (F2) and fast (F3) diffusion state calculated from the vbSPT HMM analysis of the 

trajectories collected for KRAS FME at various concentration on HRC. 

 

2.8.5. Preferential Binding Coefficients of RAS Monomers vs. Dimers 

Computations of the preferential binding coefficient, Lipid, are defined in Section 1.3.7. Profiles 

of PIP2 are shown in Fig. 4d, and Lipid profiles for other inner-leaflet lipids are shown in Fig. 

S52. 
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Fig. S52:  Preferential binding coefficients of inner-leaflet lipids to RAS. For each lipid species, the top 

panel shows Lipid as a function of NLipid, along with linear fits, fitted slopes (m), and G values, as 

outlined in Section 1.3.7. Bottom panels show histograms of the number of frames used for each value of 

NLipid. Vertical dashed grey lines in all figures enclose the range on which linear fits were conducted. 

 

 

2.9. RAS-RAS Interactions 
In principle, CG simulations with more than one RAS per patch are capable of identifying 

preferred interfaces and lipid dependence of protein-protein interactions. However, the 

generation of CG systems from the macro model presents at least two challenges in cases where 

two RAS molecules are initially constructed in contact or close proximity. The first challenge 

relates to difficulties in sampling protein-protein association and dissociation events due to the 

long time-scales required (118), coupled with the fact that Martini proteins with elastic networks 

are somewhat too sticky (35). In the microsecond time-scale Martini simulations reported here, 

sampled configurations frequently remain similar to the initial pose when two RAS proteins are 

built in contact ( 

Fig. S53). 
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Fig. S53:  Patches initiated with two RAS in contact have relatively static protein-protein interfaces. (A) 

Probability distribution of initial minimum inter-protein bead distance, d(t0), in simulations with two 

RAS. Inset shows a longer range of d(t0) and includes cumulative probability from 0 to d(t0), Probability. 

(B) Probability distribution of the average RMSD of G-domain backbone beads in RAS molecule j 

between configurations at time 0 and time t, averaged over values of t in the first s, after least-squares 

fitting on the G-domain backbone beads of RAS molecule i. Data only includes simulations for which 

d(t0) < 0.6 nm (i.e., simulations with initial RAS-RAS contact). (C-H) Representative configurations of 

two RAS in simulations with d(t0) < 0.6 nm. Initial arrangement of both RAS proteins shown in yellow. 

Configurations of the (blue) fitted RAS molecule i and (red) other RAS molecule j for snapshots with 

indicated RMSD values. 

 

The second challenge relates to the lack of orientational information in the macro model. In these 

MuMMI simulations, the macro model RAS bead was parameterized to represent the farnesyl 

group. During the CG build procedure, candidate orientations of nearby RAS proteins are more 

likely to be rejected due to molecular overlap when the G-domain of one RAS is directed toward 

the other RAS. Hence, two RAS initially built close together have a built-in bias that favors 

HVR-to-HVR association over G-domain-to-G-domain association (Fig. S54A and B). Because 

the CG build procedure iterated random attempts to replace the second RAS molecule in event of 

unresolved clashes, most (but not all) of this bias is exerted on the second RAS, which tends to 

point its HVR toward the G-domain of the first RAS molecule when the two RAS are built in or 

close to contact (Fig. S54B). If, in contrast, the macro model point represented the G-domain, 

then we expect that the bias would be inverted such that it favored G-G contacts. One approach 

to removing this bias is to define a cutoff distance between the farnesy groups of two RAS 

proteins that is large enough to make RAS-RAS contact or spatial overlap theoretically 

impossible (even with an extended HVR) and exclude all simulations in which the initial 

farnesyl-farnesyl distance was below this cutoff. However, doing so is undesirable because it 
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excludes > 95% of the CG simulations that underwent RAS-RAS contact. Therefore, we use an 

empirical approach to eliminate the apparent bias. Specifically, RAS orientation appears 

unbiased in initial system construction when we exclude all simulations in which the Cartesian 

xy (global membrane plane) component of the initial intermolecular backbone-backbone bead 

distance is <= 4.5 nm (Fig. S54A and B). Fitting the probability distribution of this initial 

minimum distance to an expected linear function with a biased Gaussian component also 

indicates that the 4.5 nm cutoff removes most of the bias (Fig. S54C). Finally, the orientations of 

the two RAS molecules appear unbiased and without relation to initial separation when this 

exclusion criterion is applied (Fig. S54D). From a total of 25,489 simulations with two RAS, of 

which 9,611 exhibited RAS-RAS contact, this unbiased set retains 15,828 2-RAS simulations, of 

which 2,037 undergo RAS-RAS contact. We used this set of 15,828 CG simulations with 2 RAS 

molecules to evaluate changes in RAS arrangement and local lipid composition as a function of 

RAS separation.  

 
Fig. S54:  Selection of CG simulations with two RAS for analysis. (A and B) Arrangements of the RAS 

molecule whose CG model was constructed (A) first and (B) second as a function of initial minimum 

intermolecular BB bead distance in the global bilayer plane (XY BB mindist). Angle is the directed angle 

from the GCOM(1) → GCOM(2) vector to the GCOM(N) → C185(N) BB bead vector, where the subscript 

COM indicates center of mass. (C) Probability distribution of XY BB mindist from all segment 2 

simulations with 2 RAS. A Gaussian + linear function is fit for mindist <= 9 nm. (D) Angle RAS 1 vs. 

angle RAS 2 for all Segment 2 2-RAS initial configurations with XY BB mindist >4.5 nm. Points are 

colored by XY BB mindist. 
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4. Supplementary Appendix A 
 

Crystallographic data collection and refinement statistics. Statistics for the highest-resolution 

shell are shown in parentheses. 
 

 

 

 

 

 

Data collection parameters GMPPNP bound KRAS4b (1-169) 

Wavelength (Å) 0.97872 

Resolution range (Å) 50.0 - 2.50 (2.56 - 2.50) 

Space group C 1 2 1 

Unit cell (Å, º) 
a = 69.21 b = 82.33, c = 88.14 90 

 = 112.92  

Unique reflections 15477 (1571) 

Multiplicity 2.6 

Completeness (%) 97.3 (97.3) 

Mean I/sigma(I) 15.59 (2.02) 

Wilson B-factor 46.28 

R-merge (%) 5.3 (56.5) 

Refinement parameters 

Resolution range (Å) 37.91 - 2.50 (2.69 - 2.50) 

Reflections used in refinement 15475 (2965) 

Reflections used for R-free 749 (138) 

R-work 0.181 (0.269) 

R-free 0.26.8 (0.345) 

RMSD bonds (Å) 0.008 

RMSD angles (deg) 1.071 

Ramachandran favoured (%) 96.08 

Ramachandran allowed (%) 2.40 

Ramachandran outliers (%) 1.52 

Average B-factor (Å3) 64.79 

macromolecules 65.40 

ligands 46.64 

solvent 49.10 
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