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Supporting Information Text

1. Details on the lattice design space and dataset generation

Fig. S1 shows the seven considered elementary topologies in the proposed lattice design space. Each row of matrix X corresponds
to the 3D positional coordinates of a truss junction (or node) in the UC, while matrix C defines the connectivities between
truss junctions (being 1-indexed, each row defines a connection between the nodes with the given two indices).

The full set of parameters describing the design space of our truss lattices is summarized in Table S1. A dataset of 3
million lattices with their corresponding homogenized stiffness response was generated by drawing with a (discrete) uniform
distribution within each of the provided ranges; e.g., the relative density is randomly sampled as ρ ∼ U(0.002, 0.1). For the
rotations, the angle-axis representation was used, where an angle θ ∼ U(−π, π) and a random unit vector (as the axis of
rotation) on the three-dimensional unit sphere S2 = {k ∈ R3 : ‖k‖ = 1} was drawn.
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Fig. S1. The seven considered elementary truss UC topologies along with their nodal positions X and connectivities C.
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2. Details on computational homogenization and stiffness visualization

To extract the homogenized stiffness tensor components Cijkl from a UC in our design space, we used the finite element
method. We modeled each strut in the UC as a linear elastic Timoshenko beam element with circular cross-section. Any beam
intersections, arising for certain combinations of elementary cells and tessellations, were resolved by introducing a new vertex at
each intersection point and subsequently splitting the affected struts into adjoining sub-struts. We imposed periodic boundary
conditions onto the boundary nodes of the UC (i.e., periodic displacement and anti-periodic force boundary conditions applied
to all nodes on the outer UC boundary, while boundary rotations were set to be periodic). The effective stiffness tensor
components Cijkl were extracted from the resulting assembled UC stiffness matrix, following (1).

To visualize the elastic surfaces, we plot the effective Young’s modulus along a direction d ∈ S2 (S2 = {k ∈ R3 : ‖k‖ = 1}
denoting the unit sphere in 3D) as

E(d) =

(
3∑

i,j,k,l=1

C−1
ijkldidjdkdl

)−1

. [1]

3. Machine learning framework

A. Data preparation. The continuous (geometrical) features, consisting of the relative density ρ and the six stretch tensor
eigenvalues U1, U2, U3 and V1, V2, V3, were rescaled with a min-max normalization to the range [0, 1], i.e.,

ρ← ρ− 0.002
0.1− 0.002 , Ui ←

Ui − 0.5
2.0− 0.5 , Vi ←

Vi − 0.5
2.0− 0.5 , i = 1, 2, 3. [2]

The categorical (topological) features, consisting of the first six parameters in Table S1, were one-hot encoded to prevent an
ordinal interpretation of the different topologies, while the rotations RI , RII (which form a part of the geometrical features)
were left unmodified, as they directly enter the manually computed tensor rotations. The stiffness labels were consistently
scaled with a min-max normalization to the range [−1, 1], i.e.,

Ci ←
2 [Ci −min(Ci)]

max(Ci)−min(Ci)
− 1, [3]

where Ci stands for each of the 21 independent stiffness constants, and each Ci was treated independently to enforce equal
contributions to the loss of the 9 (for F1) or 21 (for F2 and G1, G2) given stiffness parameters during training. Each stiffness
parameter is then scaled to its original value via

Ci ← 0.5 (Ci + 1) [max(Ci)−min(Ci)] + min(Ci), [4]

before applying rotations at the intermediate stages within the forward model to correctly evaluate the rotation.

Table S1. Overview of the lattice design space described by both discrete and continuous design parameters summarized in vector Θ.
Rotations RI and RII can each be represented by three parameters such as, e.g., via the angle-axis representation, which was used here to
generate the dataset. Note that each elementary topology is used as a single tessellation (ti = 1) or a 2× 2× 2 tesselation (ti = 2), which is
binary-encoded.

Design parameters Θ Range
First elementary topology S1 {1, 2, 3, 4, 5, 6, 7}
Tesselation of first topology t1 {1, 2}

Second elementary topology S2 {1, 2, 3, 4, 5, 6, 7}
Tesselation of second topology t2 {1, 2}

Third elementary topology S3 {1, 2, 3, 4, 5, 6, 7}
Tesselation of third topology t3 {1, 2}

Relative density ρ [0.002, 0.1]
Eigenvalues of the first stretch tensor U1, U2, U3 [0.5, 2.0]

Eigenvalues of the second stretch tensor V1, V2, V3 [0.5, 2.0]
Rotations RI , RII SO(3)
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B. Details of the inverse model and tensor rotations. The inverse model has different activation functions applied to its outputs
in the final layer, depending on the type of design parameter the output is corresponding to. For the one-hot encoded discrete
predictions (relating to the topology of the proposed lattice), the Gumbel-softmax trick (corresponding to Eqs. (5) and (6) of
the main article) is applied. For the geometrical predictions relating to ρ, U1, U2, U3 and V1, V2, V3, the sigmoid activation
function

sig(Θ) = 1
1 + exp (−Θ) [5]

is applied to ensure that predicted values are within the same (min-max-normalized) range of values provided within our
training data. To obtain the two rotation matrices RI and RII , we leverage that any rotation matrix R ∈ SO(3) can be
constructed in a Gram-Schmidt-like process via

R =

[
b1 b2 b3

]
with bi =

[{
N(a1) if i = 1
N(a2 − (b1 · a2)b1) if i = 2
b1 × b2 if i = 3

}]T
, [6]

where N(·) represents a normalization function, and a1, a2 ∈ R3 correspond to the so-called 6D representation (2). These six
parameters are directly assembled by the output of our inverse model (i.e., no activation function is applied) and, since we
sample two rotation matrices, this results in a total of 12 additional output dimensions characterizing the rotations. Most
importantly, it can be shown that this rotation parameterization is a continuous representation of the space of SO(3) rotations
(unlike Euler angles or quaternions), which facilitates the training of NNs (2). Although we did not conduct a rigorous
comparison of the NN performance for different rotation representations, results indicated a small improvement in the accuracy
of the inverse prediction using the above 6D parameterization compared to other representations. All stiffness tensor rotations
were computed by using Voigt notation, i.e., considering C in Voigt notation and applying the transformation

Ĉ = K C KT , [7]

where

K =
[

K1 2K2

K3 K4

]
, [8]

with submatrices

K1 =

[
R2

11 R2
12 R2

13
R2

21 R2
22 R2

23
R2

31 R2
32 R2

33

]
, K2 =

[
R12R13 R13R11 R11R12
R22R23 R23R21 R21R22
R32R33 R33R31 R31R32

]
, K3 =

[
R21R31 R22R32 R23R33
R31R11 R32R12 R33R13
R11R21 R12R22 R13R23

]
,

K4 =

[
R22R33 +R23R32 R21R33 +R23R31 R22R31 +R21R32
R12R33 +R13R32 R13R31 +R11R33 R11R32 +R12R31
R12R23 +R13R22 R13R21 +R11R23 R11R22 +R12R21

]
, [9]

where Rij refer to the components of the second-order rotation tensor. This formulation bypasses transformations between the
Voigt stiffness matrix and the fourth-order stiffness tensor and was first described by Bond (3). Predicted geometrical design
features Θpred

i were rescaled to the corresponding physical ranges (see Table S1), e.g., for the relative density via

ρpred ← ρpred (0.1− 0.002) + 0.002, [10]

during post-processing and FEM reconstruction.

C. Protocols for NN training. Details of the architectures and other training parameters for both NNs of the forward model (F1
and F2) and the inverse model (G1 and G2 share the same hyperparameters) are provided in Table S2. We used 1% of the
generated dataset for the optimization of the presented hyperparameters.

Hidden layers perform a linear transformation followed by a leaky rectified linear unit (leaky ReLU)

f(x) =
{

0.01x for x < 0
x for x ≥ 0 [11]

as an activation function. The PyTorch package (4) was used throughout our implementation, which also allows for automatic
differentiation and thus straightforward evaluation of the required gradients of the tensor rotations (Eq. (7)) during training
via its automatic differentiation engine, autograd. Note that the learning rate was dynamically reduced during training of
the inverse model, using PyTorch’s ReduceLROnPlateau scheduler with a patience of 20 and reduction factor of 0.5. Network
trainings were performed on a single Nvidia Quadro RTX 6000 with 24 GB GDDR6 memory.

Fig. S2 show the loss of all considered NNs at every training epoch (the two NNs of the forward model, and the inverse
model whose NNs were trained jointly). Train and test loss behave similarly, indicating no significant overfitting.
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Table S2. Input and output dimensions and hyperparameters for the optimized forward and inverse models. The feature scaling for the second
NN of the forward model, F2, is only applied to the stretch eigenvalues V1, V2, V3; the rotated stiffness given as an input is left unchanged.
Feature and label scalings are only applied to continuous design parameters (excluding rotations). 1Learning rate decay was applied using
PyTorch’s ReduceLROnPlateauscheduler with a patience of 20 and reduction factor of 0.5.

Forward model (F1) Forward model (F2) Inverse model (G1,G2)
Input dimension 31 24 21

Hidden layer dimensions 512, 512 1024, 1024, 1024 2560, 2560, 1280, 1280, 640, 640
Ouput dimension 9 21 46

Activation functions Leaky ReLU Leaky ReLU Leaky ReLU
Feature scaling min-max (see Eq. (2)) none, min-max (see Eq. (2)) min-max (see Eq. (3))
Label scaling min-max (see Eq. (3)) min-max (see Eq. (3)) min-max (see Eq. (3))

Optimization algorithm Adam (5) Adam (5) Adam (5)
Learning rate 0.001 0.001 0.001 (decaying1)

Batch size 8192 8192 8192
Number of epochs 100 150 250

Dropout none none none
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Fig. S2. Loss plots for a) the first NN of the forward model (F1), b) the second NN of the forward model (F2), and c) the inverse model (G). Both NNs of the forward model are
evaluated with FEM, while the reconstruction accuracy of the inverse model is evaluated with the trained forward model.
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D. Evaluation of accuracy. In the main article, the C1111 reconstruction accuracy of both the forward and inverse model was
shown (Figure 2). The full reconstruction accuracy of all stiffness components (including R2-values) for the forward and inverse
models is summarized in Figures S3 and Fig. S4, respectively. All metrics of accuracy are evaluated on a separate test dataset
(previously unseen during training) comprised of 30,000 lattices and their corresponding stiffness components.

Fig. S3. Comparison of the stiffness of the drawn lattices evaluated via FE homogenization with the predicted stiffness from the forward model over the test set (C1111 is
excluded here since it is indicated in the main article). The corresponding R2-deviations are indicated. Different colors indicate the different coupling terms of the elasticity
tensor (i.e., pure extension/compression: blue, normal/normal: violet, normal/shear: magenta, pure shear: green, shear/shear: pink).
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Fig. S4. Comparison of the target stiffness with the reconstructed (via forward model) stiffness of the lattice proposed by the inverse model over the test set (C1111 is excluded
here since it is indicated in the main article). The corresponding R2-deviations are indicated. Note that due to the stochastic nature of our inverse model, R2-deviations can
vary for different drawings; however, these differences are negligible for the given test set. Different colors indicate the different coupling terms of the elasticity tensor (i.e., pure
extension/compression: blue, normal/normal: violet, normal/shear: magenta, pure shear: green, shear/shear: pink).
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E. Variational sampling. To showcase the generative nature of our inverse variational model, Figure S5 presents the obtained
inverse predictions for four randomly selected lattices in the test set (labeled A, B, C, and D). Except for lattice B, we obtain
different topologies for a different second seed. Note that we can, however, trade off some reconstruction accuracy for a larger
topology variation by increasing τ in our softmax layer (see Eq. (5) of the main article), as this increasingly flattens the
posterior probability distribution of the predicted topologies. While setting τ too large will drastically deteriorate the results,
we noticed that a moderate raise does increase the variance without a notable loss in accuracy. The design parameters for each
of the cases A, B, C, and D are given, respectively, in Tables S3, S4, S5, and S6.

(same prediction as with seed 1)

Inverse prediction (seed 1) Inverse prediction (seed 2)Test set

Lattice C

Lattice D

Lattice B

Lattice A

Fig. S5. Selection of design queries of the test set and predicted lattice candidates, including their (normalized) Young’s Modulus E(n) for all directions n ∈ S2 in the
Cartesian basis {e1, e2, e3} for different random seeds.
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Table S3. Overview of the inverse-designed lattice parameters Θpred, given the stiffness of lattice A from the test set. Rotations RI and
RII are given in angle-axis representation, where θ indicates the rotation angle about the normalized rotation axis (e1, e2, e3) with e3 =√

1− e21 − e22.

Design parameters Θ
Lattice A
(test set)

Inverse prediction
(seed 1)

Inverse prediction
(seed 2)

First elementary topology 4 1 2
Tesselation of first topology 1 1 1

Second elementary topology 7 3 3
Tesselation of second topology 2 2 2

Third elementary topology 7 5 5
Tesselation of third topology 2 2 2

Relative density ρ 3.82% 3.86% 3.95%
Stretches U1, U2, U3 {1.41, 0.92, 1.72} {1.77, 0.58, 1.38} {1.73, 0.59, 1.43}
Stretches V1, V2, V3 {0.541.82, 1.50} {0.73, 1.95, 0.67} {0.75, 1.95, 0.70}

Rotation RI {θ, e1, e2} {2.58, 0.91,−0.41} {2.60, 0.02, 0.66} {2.60, 0.04, 0.66}
Rotation RII {θ, e1, e2} {−2.66,−0.83,−0.56} {2.30,−0.37, 0.82} {2.33,−0.36, 0.82}

Table S4. Overview of the inverse-designed lattice parameters Θpred, given the stiffness of lattice B from the test set. Rotations RI and
RII are given in angle-axis representation, where θ indicates the rotation angle about the normalized rotation axis (e1, e2, e3) with e3 =√

1− e21 − e22.

Design parameters Θ
Lattice B
(test set)

Inverse prediction
(seed 1 & 2)

First elementary topology 1 1
Tesselation of first topology 1 1

Second elementary topology 3 3
Tesselation of second topology 1 2

Third elementary topology 3 4
Tesselation of third topology 2 2

Relative density ρ 6.74% 6.50%
Stretch U1, U2, U3 {0.93, 1.91, 1.78} {1.55, 1.65, 0.76}
Stretch V1, V2, V3 {1.77, 1.99, 1.46} {1.45, 1.58, 1.09}

Rotation RI {θ, e1, e2} {−1.66,−0.9, 0.42} {1.27,−0.39, 0.57}
Rotation RII {θ, e1, e2} {0.07,−0.74,−0.04} {−2.75,−0.28, 0.95}

Table S5. Overview of the inverse-designed lattice parameters Θpred, given the stiffness of lattice C from the test set. Rotations RI and
RII are given in angle-axis representation, where θ indicates the rotation angle about the normalized rotation axis (e1, e2, e3) with e3 =√

1− e21 − e22.

Design parameters Θ
Lattice C
(test set)

Inverse prediction
(seed 1)

Inverse prediction
(seed 2)

First elementary topology 1 1 2
Tesselation of first topology 2 2 1

Second elementary topology 4 2 2
Tesselation of second topology 2 2 2

Third elementary topology 6 6 6
Tesselation of third topology 2 2 1

Relative density ρ 2.76% 2.71% 2.38%
Stretch U1, U2, U3 {1.37, 0.96, 1.36} {1.41, 1.10, 1.08} {1.25, 1.33, 0.97}
Stretch V1, V2, V3 {1.91, 1.92, 0.85} {1.27, 1.65, 0.62} {1.32, 1.62, 0.64}

Rotation RI {θ, e1, e2} {−1.81, 0.81, 0.45} {2.24,−0.23, 0.85} {2.35,−0.26, 0.90}
Rotation RII {θ, e1, e2} {0.82, 0.84,−0.23} {2.85,−0.23, 0.85} {2.67,−0.41, 0.85}
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Table S6. Overview of the inverse-designed lattice parameters Θpred, given the stiffness of lattice D from the test set. Rotations RI and
RII are given in angle-axis representation, where θ indicates the rotation angle about the normalized rotation axis (e1, e2, e3) with e3 =√

1− e21 − e22.

Design parameters Θ
Lattice D
(test set)

Inverse prediction
(seed 1)

Inverse prediction
(seed 2)

First elementary topology 3 1 5
Tesselation of first topology 2 1 1

Second elementary topology 6 3 5
Tesselation of second topology 1 1 2

Third elementary topology 7 5 6
Tesselation of third topology 1 2 1

Relative density ρ 9.46% 9.34% 9.17%
Stretch U1, U2, U3 {0.86, 1.33, 0.54} {1.29, 1.72, 0.99} {1.33, 1.74, 0.98}
Stretch V1, V2, V3 {1.06, 1.96, 1.60} {1.46, 1.65, 0.86} {1.48, 1.68, 0.84}

Rotation RI {θ, e1, e2} {2.19, 0.98, 0.08} {1.97,−0.42, 0.83} {2.03,−0.52, 0.72}
Rotation RII {θ, e1, e2} {1.96, 0.54,−0.84} {−2.87,−0.42, 0.80} {−3.01,−0.54, 0.73}

F. Effect of the dataset size. Large datasets (such as the chosen one containing 3 million lattices and their corresponding
stiffnesses) may be expensive to generate in other scenarios, which is why we assessed the performance of our framework
on a smaller dataset as well. We re-trained the networks using only 10% of the lattice-stiffness pairs of the original dataset
and provide the resulting loss plots in Figure S6. For the forward model, the decrease in the corresponding coefficient of
determination R2 is between 0.004 (for the more dominant terms such as C1111) and 0.031 (for the less dominant terms such as
C1312), as shown in detail in Table S7. The inverse model shows a similar behavior, the decrease in R2 ranges from around
0.01 (for C1111) to 0.054 (for C1212). As expected, the models perform slightly worse than those trained on the significantly
larger dataset. However, the R2 values indicate that the accuracy has not deteriorated drastically. We therefore conclude
that the framework still performs comparably well, if only a fraction of the data is provided (which is of importance when
data generation is a limiting factor). Note that, as a benefit of our physics-informed approach, data augmentation by adding
random rotations of the provided lattices can easily extend the dataset for inverse training without requiring additional FEM
simulations (but this was not performed in this work).
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Fig. S6. Loss plots for a) the first NN of the forward model (F1), b) the second NN of the forward model (F2), and c) the inverse model (G) by providing the original dataset
consisting of 3,000,000 and a reduced dataset consisting of 300,000 lattices and their respective stiffnesses, denoted by train/test and train (red.)/test (red.), respectively.
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Table S7. Overview of the R2-deviations of the forward and inverse model for the full and reduced datasets (containing 3,000,000 and 300,000
lattice-stiffness pairs, respectively). The forward models are evaluated with FEM, while the reconstruction accuracies of the inverse models
are evaluated with the forward model (trained on the corresponding dataset).

Elastic const. Fwd. model (full) Fwd. model (red.) Inv. model (full) Inv. model (red.)
C1111 0.998 0.994 0.986 0.976
C1122 0.991 0.976 0.980 0.940
C1133 0.991 0.976 0.980 0.933
C1123 0.981 0.954 0.954 0.909
C1113 0.992 0.984 0.952 0.917
C1112 0.992 0.982 0.955 0.914
C2222 0.998 0.994 0.984 0.973
C2233 0.991 0.977 0.980 0.938
C2223 0.992 0.984 0.953 0.923
C2213 0.981 0.952 0.955 0.915
C2212 0.992 0.984 0.952 0.912
C3333 0.998 0.994 0.983 0.970
C3323 0.992 0.982 0.950 0.901
C3313 0.992 0.983 0.947 0.913
C3312 0.981 0.952 0.954 0.912
C2323 0.991 0.977 0.977 0.928
C2313 0.982 0.954 0.953 0.913
C2312 0.981 0.952 0.954 0.908
C1313 0.991 0.974 0.977 0.930
C1312 0.982 0.951 0.953 0.912
C1212 0.991 0.975 0.976 0.922

G. Performance of the inverse model compared to the best match in the training data. As the dataset we used to train the
networks contains 3 million lattice-stiffness pairs, it may seem like such a large dataset should directly contain (close to)
optimal designs for a given stiffness. However, the curse of dimensionality renders these 3 million samples negligible to the
total number of possible combinations. Consider a very coarse sampling of the design space, e.g., taking only 10 different
numerical choices for each of the 13 continuous (geometric) design parameters. Given the 262 chosen truss topologies, this
gives 262 × 1013 possible combinations. Generating such large datasets and comparing them to a given target stiffness is
computationally expensive – prohibitively expensive for applications requiring repeated inverse predictions (such as, e.g.,
for two-scale topology optimization). To be specific, finding the closest match in our given database for a given stiffness
using the Pandas library for Python (6) took on average ca. 35s (performed on an Intel Xeon Silver 4114 2.2GHz processor),
whereas our inverse model predicts a design within ca. 2ms (30,000 stiffnesses are evaluated in about 60s on the same machine).
This four-orders-of-magnitude difference in efficiency is a clear advantage over the purely data-driven lookup tables approach.
Besides, even if a dataset of 3 million entries could be sufficient – how would one choose the 3 million samples from the (at
least) 262× 1013 possible combinations to cover a sufficient stiffness space? Our approach, which interpolates (in the latent
space) between the chosen 3 million samples, indeed provides a sufficiently rich stiffness space. Notably, we have shown in
Section 3.F that the use of a reduced dataset for training (e.g., only 10% of the original dataset of 3 million lattice-stiffness
pairs) still achieves good accuracy in inverse design prediction.

In addition, let us demonstrate that our framework generates better designs as compared to the closest match from the
training dataset. To give a specific example, we identified the closest match in our database for the hex_Z04._R145 sample
from the crystallographic periodic network database (7) (presented in Figure S7a). This architecture is not contained in our
design space (it is not even close to the chosen elementary topologies). We identified the best match from our training set by
minimizing the squared error for all 21 elastic components, and in Figure S7 we compare it to the reported prediction of our
inverse model. For this example, the inverse-model prediction is much closer to the given target stiffness (normalized mean
squared error of 0.003) than the best match from the training dataset (normalized mean squared error of 0.036).
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Best matchTarget 
(Lumpe and Stankovic, 2021, hex_Z04.0_R145)

Inverse predictiona)

b)

Target
Best match
Inverse prediction

NMSE = 0.003NMSE = 0.036

Fig. S7. Comparison of the best match to a given target stiffness in the pre-computed training dataset with the inversely designed lattice. (a) Overview of the
topology and elastic surface of the target sample taken from (7), their closest match in terms of minimum mean squared error of the 21 independent elastic parameters, and the
inversely designed lattice. (b) The superior performance of the inverse design framework is illustrated by projections of the elastic surfaces of the target stiffness, best match in
the training dataset, and the inverse prediction onto the e1-e2-, e1-e3-, and e2-e3-planes.

H. Computational efficiency of the inverse model. To estimate the efficiency of our approach, we have added a detailed overview
of the computational runtimes required for the training and use of our framework in Table S8. After training is done once a
priori/offline, subsequent evaluations of the inverse model take a few milliseconds (2ms on average for 30,000 inverse predictions)
because no subsequent solution of a complex boundary value problem or an iterative evolution simulation is required—as,
e.g., in classical topological optimization and evolutionary algorithms. If one seeks only a single optimal design, then those
approaches may indeed be competitive in terms of computational costs. But if one repeatedly needs to evaluate many optimal
designs—e.g., when performing multiscale topology optimization (8)—then this makes a dramatic difference. Note that we
can easily even reduce the training time if we consider less training data without sacrificing much accuracy (see Table S7) or
consider earlier stopping for the inverse model training (since the loss decreases only marginally after around epoch 100, as
shown in Figure S6).

Table S8. Runtime, software, and hardware resources used for different tasks (including in parentheses the runtimes for a reduced dataset
consisting of 300,000 lattice-stiffness pairs, see also Section 3.F). 2Reported runtimes are rough estimates only. 3Tasks were performed on a
2.2 GHz Intel Xeon E5-2650 processor with 256 GB of DDR3 memory at 2.5 GHz. 4Tasks were performed on a single Nvidia Quadro RTX 6000
with 24 GB GDDR6 memory using CUDA 11. 5Runtimes for predictions via the NNs are reported for one sample (averaged over a batch size
of 1% of the full training data). Note that the averaged runtime partly depends on the size of the evaluated dataset due to the computational
overhead.

Task Software Hardware Runtime2

Generating dataset of lattices In-house C++ FEM code CPU (10 cores)3 15.5 hours (90 minutes)
and corresponding stiffnesses
Training F1 PyTorch in Python GPU4 4 hours (25 minutes)
Training F2 PyTorch in Python GPU4 8 hours (50 minutes)
Training G1,G2 PyTorch in Python GPU4 13 hours (80 minutes)
Lattice prediction using G25 PyTorch in Python GPU4 2 milliseconds

12 of 17 Jan-Hendrik Bastek, Siddhant Kumar, Bastian Telgen, Raphaël N. Glaesener and Dennis M. Kochmann



4. Evaluation of the inverse model on crystallographic truss networks and bone samples

The 21 anisotropic stiffness components of the homogenized responses of the truss lattices computed by Lumpe and Stankovic
(7) and of the bone samples characterized by Colabella et al. (9), including their inverse-designed counterparts, are presented
in Tables S9 and S11, respectively (using Voigt notation for the stiffness components in 3D). As mentioned in the main article,
we can leverage the variational nature of our framework to propose a large variety of lattice candidates and subsequently select
the ones with the lowest NMSE, which can be evaluated (at negligible computational cost) by the forward model. For this
study, we set τ = 100 in the Gumbel-softmax layer to enforce a large exploration of proposed lattices and selected the best
predictions from 10,000 generated samples, which only required around one minute of overall runtime.

The inverse model predicts a lattice unit cell based on a normalized stiffness input, i.e., C = Cb/Eb for a lattice with the
actual homogenized stiffness response Cb manufactured with an isotropic base material having Young’s modulus Eb. Therefore,
we normalize the target stiffness by Eb. As reported in the main article, we consider Ti-6Al-4V with Eb = 114GPa (10) for the
application in bone implants due to its excellent biocompatibility and corrosion resistance (11), and we hence normalize the
reported bone stiffness values accordingly before passing them into the inverse model. Note that, in principle, any Eb can be
considered, as long as the given target stiffness can be obtained by lattices within the given limits of relative density ρ.

As the stiffnesses provided by Lumpe and Stankovic (7) were already normalized by the base material’s Young’s modulus,
no further pre-processing was required. Nevertheless, we applied a factor of 20 to the provided stiffness of hex_Z04.0_R145,
as the original stiffness is not obtainable within the density range of our design space (as it would require relative densities
below our chosen lower bound of ρ = 0.002, which can easily be assessed as the corresponding inverse predictions approach the
bounds of our design space). Alternatively, one could also retrain the model with an even lower bound on the relative density
and subsequently omit the scaling.

To give further quantitative metrics for the performance of our framework, we have applied it to the anisotropic stiffnesses
of the complete catalog of crystallographic period networks reported in (7), consisting of 17,262 vastly different truss topologies
(with notable shares of highly symmetric (i.e., cubic) to less symmetric (i.e., monoclinic) structures). As before, we have
uniformly scaled the stiffnesses by a factor of 10, since some of the provided structures are highly compliant and would otherwise
require relative densities below the lower limit of our design space. The results are shown in the histogram in Figure S8. The
vast majority of predictions shows an NMSE comparable to the predictions shown in Figure 3 of the main article, highlighting
that they do give an accurate representation of the performance of our inverse model on arbitrary stiffnesses.

Table S9. Elastic constants (using Voigt notation) of crystallography-inspired periodic truss networks and the corresponding elastic con-
stants of the lattices obtained by our inverse design framework, visualized in Figure 3a of the main article. The design parameters of the
inverse predictions are listed in Table S10.
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Table S10. Overview of the inverse design parameters Θpred for those lattices mimicking the crystallography-inspired periodic truss networks,
whose elastic constants are presented in Table S9. Rotations RI and RII are given in angle-axis representation, where θ indicates the
rotation angle about the normalized rotation axis (e1, e2, e3) with e3 =

√
1− e21 − e22.

Design parameters Θ
trig_Z15.5_E1136

Prediction A
trig_Z15.5_E1136

Prediction B
hex_Z04.0_R145

Prediction A
hex_Z04.0_R145

Prediction B

First elementary topology 1 2 2 1
Tesselation of first topology 1 2 1 1

Second elementary topology 2 5 6 4
Tesselation of second topology 2 2 1 1

Third elementary topology 5 6 6 6
Tesselation of third topology 1 1 2 2

Relative density ρ 1.00% 1.04% 1.63% 1.62%
Stretch U1, U2, U3 {1.07, 1.07, 0.94} {1.08, 1.04, 0.99} {1.09, 1.15, 1.05} {1.15, 1.14, 0.99}
Stretch V1, V2, V3 {1.24, 1.33, 0.95} {1.23, 1.33, 0.97} {1.29, 1.39, 0.85} {1.33, 1.38, 0.84}

Rotation RI {θ, e1, e2} {1.94,−0.94, 0.31} {2.02,−0.87, 0.40} {1.95,−0.46, 0.73} {2.47,−0.60, 0.67}
Rotation RII {θ, e1, e2} {2.88, 0.54,−0.84} {−2.98,−0.52, 0.85} {2.92,−0.36, 0.90} {2.93,−0.57, 0.79}

Table S11. Elastic constants (using Voigt notation) of trabecular bone in bovine femurs and the corresponding elastic constants of the lattices
obtained by our inverse design framework, visualized in Figure 3a of the main article. The design parameters of the inverse predictions are
listed in Table S12.
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Table S12. Overview of the inverse designed lattices Θpred for those lattices mimicking the bovine femoral specimens, whose elastic con-
stants are presented in Table S11. Rotations RI and RII are given in angle-axis representation, where θ indicates the rotation angle about
the normalized rotation axis (e1, e2, e3) with e3 =

√
1− e21 − e22.

Design parameters Θ
Trab. bone #3
Prediction A

Trab. bone #3
Prediction B

Trab. bone #4
Prediction A

Trab. bone #4
Prediction B

First elementary topology 1 1 2 2
Tesselation of first topology 2 2 2 2

Second elementary topology 2 2 3 3
Tesselation of second topology 2 1 1 2

Third elementary topology 4 5 5 5
Tesselation of third topology 1 1 2 1

Relative density ρ 3.50% 3.43% 1.54% 1.55%
Stretch U1, U2, U3 {1.37, 1.14, 1.09} {1.51, 1.06, 0.98} {1.20, 1.04, 1.04} {1.17, 1.05, 1.05}
Stretch V1, V2, V3 {1.15, 1.49, 0.97} {1.24, 1.42, 1.16} {1.24, 1.42, 0.81} {1.25, 1.45, 0.81}

Rotation RI {θ, e1, e2} {1.57,−0.31, 0.72} {2.07,−0.29, 0.68} {1.91,−0.24, 0.59} {1.70,−0.26, 0.63}
Rotation RII {θ, e1, e2} {−2.45,−0.44, 0.70} {2.90,−0.31, 0.90} {−2.27,−0.63, 0.52} {−2.10,−0.65, 0.53}
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Fig. S8. Histogram of the NMSEs of the inversely generated designs based on the homogenized stiffnesses of the crystallographic period networks (consisting of 17,262
different topologies) provided in (7). Different percentiles are color-coded to better interpret the evaluated NMSEs.

5. Generation of functionally graded lattices

For the integration of different truss UCs in a functionally graded lattice with spatially varying truss topology and geometry,
we must, on the one hand, transition between different UC topologies (which here were chosen to all be based on a cubic UC).
On the other hand, we must transition between differently shaped UCs arising from the application of affine transformations
and rotations. In practice, we choose a total of k control points at locations {x1, . . . ,xk}, at which we define a local truss UC
(along with its topology and geometry), so that we seek to smoothly transition between those.

All lattices are by definition periodic, and the domain ΩUC of each UC is spanned by three translation vectors forming the
basis A = {a1,a2,a3} in 3D, which defines the tessellation of the UC into the truss lattice. Let us denote by K = {k1,k2,k3}
the triad of vectors forming the basis of the corresponding reciprocal lattice.

Any periodic (simple Bravais) lattice is represented equally by the so-called impulse train and its Fourier representation:

τ(x) =
3∏
i=1

∞∑
n=−∞

δ

(
ki · x
||ki||

− n||ki||
)

=
3∏
i=1

1
1 +M

[
1 +

M∑
m=1

cos(2πmki · x)

]
, [12]

where δ denotes the Dirac delta function, and M > 0 is an integer.
In a spatially variant lattice, the above Bravais basis vectors vary from point to point, i.e., we assume a spatially varying

basis A(x) = {a1(x),a2(x),a3(x)} and consequently a spatially varying reciprocal basis K(x) = {k1(x),k2(x),k3(x)}. Note
that we tacitly assume a separation of scales between the microscale (i.e., the scale of the truss UC dimensions) and the
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macroscale (i.e., the scale of the overall body to be filled with the spatially graded truss), which allows us to assign a unique
basis A (and hence K) to each point x in the macroscale body. Of course, in reality such a separation of scales may not be
realizable, yet the resulting framework serves as an effective approximation whenever the lattice bases vary sufficiently smoothly
across the macroscale body.

To realize a spatially variant truss lattice, we aim to construct a (non-periodic) truss with smoothly varying topology
such as to approximate A(x) locally. To this end, we relax the above description of the Fourier-transformed impulse train by
introducing three projection functions φi(x), one for each of the three ki-vectors in K. Further, we note that the translational
symmetry is contained within the first spatial harmonic, which is why we simplify the Fourier decomposition by truncating
after its first spatial harmonic (M = 1), resulting in the approximation

τ ′(x) = 1
8

3∏
i=1

[
1 + cos(2πµφi

(
x)
)]

with φi(x) = arg inf
∫

Ω
||∇φi(x)− ki||2 dΩ. [13]

φi(x) is hence a smoothly varying field that is locally tangential to ki, such that the set {φ1(x), φ2(x), φ3(x)} presents an
approximate, smooth, spatially varying basis field over Ω.

Now, consider a desired basis vector field A(x) (which, e.g., locally matches the translation vectors {a1,a2,a3} of the truss
UCs obtained from the inverse model applied to different properties at different control points xi on a body Ω). In practice, we
define a radial basis function N(x,xi) for each control point xi, centered at control point xi, as

N(x,xi) = e−ζ‖x−xi‖2∑k

j=1 e
−ζ‖x−xj‖2 . [14]

ζ > 0 controls the thickness of the transition layer between different topologies. If Ak is the local basis of the UC translation
vectors at control point k, then we interpolate to obtain

A(x) =
k∑
i=1

AiN(x,xi). [15]

For example, in Figure 3b in the main article, we introduced two control points on the x1-axis at x1 = (xmin, 0, 0)T and
x2 = (xmax, 0, 0)T , and we chose ζ = 0.5.

Given A(x), we numerically solve the least-squares problem in Eq. (13) for the projection functions φi(x), using the finite
element method. Subsequently, we construct the relaxed lattice function τ ′(x) and choose all N local minima of τ ′(x) in the
domain Ω as the set of the UC centroid positions, BΩ

UC = {x1, . . . ,xN}. Finally, we assemble the global lattice by placing a UC
at each xν ∈ BΩ

UC with basis A(xν). Note that the corner nodes of the resulting adjacent UCs do not perfectly overlap. We
therefore apply a smoothing step, which replaces all almost overlapping nodes by a single new node at the arithmetic mean
position of the original nodes, and we adjust the beam connectivities accordingly.

While the above strategy takes care of spatially varying translation vectors, we must also transition between the different
UC topologies at the k control points. To this end, we superimpose all k UC topologies and weight the diameter ds(x) (where
s = 1, ...,m) of each of the m individual struts in the superimposed UC by a linear superposition of the constituent diameters
by re-using radial basis functions Eq. (14), such that

ds(x) =
k∑
i=1

dsi N(x,xi). [16]

Here, dsi corresponds to the respective strut diameter in the UC at control point xi (where dsi = di if the strut is included in the
topology with diameter di and dsi = 0 if it is not). In Figure 3b in the main article, the two control points at x1 = (xmin, 0, 0)T
and x2 = (xmax, 0, 0)T reduce Eq. (16) to

ds(x1) = [1− λ(x1)] ds1 + λ(x1)ds2 with λ(x1) = e−ζ[x1−(xmax−xmin)]2

e−ζx
2
1 + e−ζ[x1−(xmax−xmin)]2

, [17]

and we again chose ζ = 0.5.
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