
Dear editors,

Thank you for the helpful reviews and the opportunity to revise and resubmit our manuscript
“Spatially distributed infection increases viral load in a computational model of SARS-CoV-2
lung infection.” We have addressed all of the reviewers’ comments, and we believe that the
paper is strengthened as a result. Below we summarize the major changes we made to the
manuscript, followed by a point by point response to each reviewer comment. Attached is a
version of the manuscript with changes highlighted in blue and a clean copy of the revised text.

Best regards,

Melanie E. Moses

Professor of Computer Science, University of New Mexico

(On behalf of all co-authors)

Summary of Major Revisions

● We replicated (10 to 30 times) each run in Figures 3, 4 and 5 with a different random
seed each time and uniform random placement of the FOI in response to comments
from all reviewers.

● In Figure 4 we added a panel to show the effect of varying the viral clearance term (in
addition to T cell production and delay) since the clearance parameter is varied (slightly)
to match patient data as requested by Reviewer 1.

● We added a new Figure (Fig. 8) to show a sensitivity analysis of the effect of
one-at-a-time variation of 12 parameters on peak viral load and % of cells infected as
requested by Reviewer 3.

● We reorganized the discussion to summarize main findings, compare to other spatial
models and list limitations and future work.

● In Materials and Methods we added a section to explain how manual fits were achieved;
we also added a description of the ODE model we used to compare to patient data; and
we clarified how several parameters were derived as requested by Reviewer 2.

● We added several references and made minor clarifications in the text.

Specific responses to each reviewer comment

Reviewer #1



Overall thoughts:
In the article titled “Spatially distributed infection increases viral load in a computational model
of SARS-CoV-2 lung infection”, the authors present an ABM model – SIMCoV – that replicates
viral and immune cell dynamics following SARS-CoV-2 infection on either a 2D or 3D
representation of the lung. This model can recapitulate patient specific data as well as other
known phenomenon associated with SARS-CoV-2 infection. The authors provide a compelling
argument: that variability in viral loads may be due to FOI and T cell magnitude/timing.
Additionally, the authors provide comments and comparison between modeling techniques, an
extension of the work that may be particularly applicable to other fields/simulation in lung
pathology. The manuscript is well-written and clearly conveys the results. I recommend
acceptance with minor revision, with comments listed below.

We thank the reviewer for this assessment and respond to recommended revisions below.

Major comments:
1. At the time of review, https://github.com/AdaptiveComputationLab/simcov is a broken
link. Please ensure there is a useable link.
We have corrected this and made the link public.

2. The Results section titled: ‘Peak viral load is proportional to the number of initial FOI’
provides an intriguing result comparing the number of FOI to the number of virions w/in
the simulation. While the peak differences (Fig 3 c &amp; d) appear significant, there is a lack
of statistical comparisons
We have modified the figure to show a uniform random placement of FOI so that each run varies
depending on where each FOI is placed. We now show the minor variation and the standard
deviations for each simulation. The (very small) differences between runs are now more clear with
statistical comparisons included.

and Fig 3b suggests that all simulations sterilize infection between day 20 and 22. Please
provide some greater context to this finding - e.g., is a difference of two days meaningful in the
context of infection outcomes?
This happens to be a combination of parameters that leads to viral clearance in all cases. That
difference of two days is not something we think is meaningful. Figure 3 is meant to highlight the
linear relationship between the number of FOI and the peak viral load. We focus on how the T cell
response affects the timing and ability to control infection in Figure 4, so clearance of infection is
analyzed in that figure.

Additionally, perhaps there are regions of parameter space where a large FOI and a delayed
T-cell response result in a total inability to control infection, whereas a small FOI even w/
delayed T-cell response can result in controlled infection. Later, the authors indirectly present
this argument by comparing to patient data, but a more explicit exploration of this parameter
space (small/Large FOI + large/small T cell generation) could strengthen the argument that FOI
and T cells together explain variability from patient to patient.



This is a good question which we now highlight in the analysis of Patient A. That model fit shows
how a very large number of FOI (220) leads to lack of control by even a large T cell response (  200K
T cells/min produced beginning on day 8) and default clearance parameters.

Minor comments:
1. Page 4 (first paragraph) – several modeling assumptions were not backed with
references. As this is the results section, simply adding a reference will do. Example:
“After seven days (ref why 7 days is appropriate -ref 40 perhaps?),  we create an abstract pool
representing T cells that are activated in lymph nodes and then circulate in the vasculature.
When T cells reach the lung and encounter a concentration of inflammatory signal above a
threshold (whats the threshold, and why is it a reasonable choice), they …”

The Materials and Methods section contains references and explanations for how each parameter is
derived in detail. We removed the reference to 7 days from this introductory paragraph because
that is a default parameter that is varied in several experiments. The parameter table has the
appropriate references. The last sentence of this paragraph points to that more detailed explanation
in Materials and Methods.

2. In Materials and Methods, please explain the decision for T-cell movement to be
random within the tissue instead of chemokine-dependent (using inflammatory signals
as a proxy).
In our model T cells extravasate based on the presence of  inflammatory signal above a
threshold, but once extravasated, they move randomly. (This is a difference from the
Levin et al model in which T cells followed a chemokine gradient in the tissue.) We agree
that T cell movement patterns are interesting and we have investigated T cell movement
patterns in prior work. However, it is not clear how important chemokine dependent
movement is for extravasated T cells in the lung. Ariotti et al described movement
mediated by CXCR3 as a subtle but important effect, and in our work (Mrass et al 2017) we
saw little change in T cell movement in the lung when chemokine receptor signaling was
blocked. We included in Discussion that a more detailed analysis of T cell movement is
left for future work. We intend to pursue this in a forthcoming version of SIMCoV with a
more mature model of lung structure.

3. Figure Captions should provide more information. For example, Figure 3b FOI_1_1 and
FOI_1_16 should be explained in the caption.
We have clarified this in the caption in Figure 3.

4. I appreciated the thorough explanations within the Parameter Derivation section. One
brief comment about k and l. Intrinsically, these production and decay parameters
represent these processes for many unique cytokines that have been grouped together
as ‘inflammatory signals’. This explains why there are not explicit measurements of
these parameters in the literature, and this should be mentioned within this section. As
a sanity check, one could compare these estimated values against known inflammatory
cytokines (such as TNF).



The reviewer is correct that the parameter is difficult to estimate for that reason. We added this
explanation and refer to the production rates from the Levin et al model and Mitchell et al
experimental paper that estimates production for IP-10 and RANTES for influenza. We note in the
discussion the uncertainty in the inflammatory parameters, but that the last row of Table 8 also
shows that the model is quite insensitive to these parameters.

5. In the discussion, please comment on the modeling decision to exclude other T cell
phenotypes such as CD4+ T cells or regulatory T cells which are both thought to
potentially play a role in COVID-19 outcomes (https://www.nature.com/articles/s41577-
020-0402-6#Sec4).
We now explain more clearly that we focus specifically on CTLs that directly kill virus-infected
cells.

6. In table 2, include an upper/lower bound for the parameters that were varied in order
to capture the patient data in Fig 5.

We have addressed this point in the new paragraphs explaining the manual fitting procedure in the
subsection “Fitting to Patient Data” in the Methods and we highlight the bounds of the fitting in the
main text.

Reviewer #2: In this study, the authors present a large-scale agent-based model to simulate and
investigate infection and immune dynamics in lung epithelial tissue during SARS-CoV-2
infection. The Spatial Immune Model of Coronavirus (SIMCoV) considers the dynamics of lung
epithelial cells, SARS-CoV-2 viral load, inflammation signals and CD8+ T cells within a
spatio-temporal context. Analyzing their modeling environment they find that heterogeneity in
patient outcomes could be explained by the number of initial fields of infection within lung tissue,
as well as the timing of the T cell response.

The article is generally well written and structured. However, some aspects regarding the
analyses and methodology are only insufficiently explained and would need some further
explanations. This especially relates to the parameterization of the agent-based model, which is
a key aspect for such highly complex models and its comparison to patient data. In addition, the
analysis seems a bit limited in terms of making use of the stochasticity that an ABM, especially
one considering the spatial distribution of cells, can provide.

We thank the reviewer for these helpful comments and suggestions and have improved our analysis
of model stochasticity and further explained model parameterization as we explain below.

# Major points:

(1.) SIMCoV represents an extended agent-based modeling environment to simulate and study
viral infection within tissue in a spatially defined context. It is claimed that considering infection
dynamics in a spatially-resolved context helps to explain the variation observed in individual
patient outcome to SARS-CoV-2 infection, with the number of initially infected sites being an



important factor determining disease progression. To which extent could this not also be
covered by different initial viral loads within an ODE-model, as well as different timing of the T
cell responses?

We now emphasize more clearly in Figure 3 that the initial viral load per se has little impact on
peak viral load (compare FOI_16_1 to FOI_1_1). However, that same figure shows that if the viral
load is spread among multiple sites, the peak increases linearly with the number of FOI. We do not
know how an ODE that makes an assumption of well-mixed interactions could capture this
inherently spatial effect. SIMCoV is able to distinguish between the amount of initial inhaled virus
(which does not directly impact the peak viral load), and also how that initial amount of virus is
distributed in space (which substantially impacts the peak viral load). SIMCoV suggests that the
initial inhaled virus could lead to different outcomes, depending on the spatial distribution of that
load in different FOI. We note in the Discussion that several ODE modeling papers have
incorporated T cell response as a generic increase in the clearance term, and PDEs have considered
diffusion and advection,  but the variation in FOI is an inherently spatial effect.

While it is investigated how the distribution of the same number of infected cells within different
numbers of initial fields of infection influence the dynamics, I could not follow the claim that this
analysis might provide a better explanation of variation in patient outcome than the analysis
provided by the ODE model. Both seem to explain the data comparably well, judged from the
RMSE (see also point 3).

The reviewer is correct. We did not intend to claim that the SIMCoV fits are closer to the data than
the ODE fits; they are indeed similar. Our claim is that we are able to fit the data by modifying only
a few key parameters that represent biologically plausible mechanisms that affect peak viral load
and ability to clear infection. For example, we hypothesized that more FOI would lead to a higher
peak viral load, and we were able to show that both in Figure 3 and in fits to the data in Figure 5.
We changed only the number of FOI, the T cell generation rate and timing and the clearance term
(over a small range) to fit the data.  This is explained in the new Materials and Methods “Fitting
Patient Data” section.

(2.) Agent-based models usually provide stochastic outputs given repeated simulations with the
same parameter set. However, in each of the figures (e.g. Figure 3,4,5,7) only a single line for
the model simulations of a particular scenario is shown. It is not clear or specified within the
figure legends if this is the mean over several simulation runs or a single representation. In any
case, it would be very important to know how much variation in the dynamics can occur from
one given model parameterization. Especially the distribution of the initial fields of infection will
potentially have a substantial impact on the observed dynamics in such a spatial modeling
environment. In this regard, the authors should investigate how non-equidistant distribution of
FOI (see Fig. 3a) would affect the model outcome and variation. The authors need to report the
variation in model outcomes to corroborate their claims, i.e. that the initial number of FOI partly
determines disease outcome.

We follow the reviewer's excellent suggestion in the new Figure 3 to analyze how FOI placed at
uniform random affect the peak viral load. We replicate the model 30 times with 30 different
random placements. This introduces a small amount of variation (visible on the log scale only at the



end of the runs with small viral loads where variation is more visible). The linear relationship
between number of FOI and peak viral load remains. We also now also show multiple runs of the
model in Figs 4 and 5.

(3.) Figure 5: How was SIMCoV adapted to the patient data? On page 6, bottom, the phrasing
leaves the impression that SIMCoV was actually “fitted” to the data. What kind of fitting
procedure was used for this task? From the Materials and Methods section, I get more the
impression that several parameters were varied and manually adapted according to values and
parameter ranges from the literature. But it is not clear which parameters were fixed and which
ones were varied/fitted/adapted. If only the initial FOI was varied to explain the patient data in
Figure 5 (p.6/7) it is also not clear if FOI were always equidistantly (as shown in Figure 3a) or
randomly placed within the grid. If several parameters were varied, are the parameters
identifiable or are they correlated given the complexity of the model? If the simulations were
manually adapted, the authors might want to consider automatic parameter inference methods,
such as approximate Bayesian computation (ABC-methods), as they have been used before for
agent-based models to analyze multi-cellular systems and infection dynamics (e.g. Jagiella et
al. Cell Systems 2017, Imle et al. Nat Com. 2019). Parameterizations of such modeling
environments is one of the key aspects for obtaining reliable predictions and simulations.

We removed the confusing wording that implied that the parameters were fit automatically. The
manual fitting is explained in the new Materials and Methods “Fitting Patient Data” section. We
now show random placements of FOI in Figure 3 rather than uniform placements (although that
does not change the outcome much.) Our approach to fitting was not the same as the statistical
fitting approaches that are often used to fit parameters in ODE models. We instead varied only
parameters that seemed likely to vary among patients. Our goal was to demonstrate the plausibility
of the biological mechanisms, namely that the number of FOI could explain the viral peak and the
timing and magnitude of T cell response could explain the shape of the decline.

(4.) Some details on how the ABM was implemented are missing. While the different processes
are explained and introduced, it is not fully specified how these processes are actually
parameterized, i.e. how probabilities of events were calculated and simulated. While it is very
applaudable that the authors make their simulation environment publicly available, appropriate
details on how the parameters were used within the code seem to be missing, if I did not miss
this within the text.

We have included a 4-page model description in the Materials and Methods section. We are not sure
what particular probabilities are missing. We note that in most cases, parameters are constant
values rather than probability distributions. The model description does specify that time periods
are drawn from a Poisson distribution and infectivity is modelled as a rate (a fixed probability) with
all parameters shown in Figure 1 and detailed in Table 2 and points a through r below the table.

(5.) The ODE-model used to explain the individual patient data is not introduced, nor the
methods how this was fitted to the data (e.g. mixed-effect model?, individual fits?). Even though
this might be published previously, I think the details have to be repeated within the manuscript
to compare the different modeling approaches and evaluate the outcomes. In addition,
confidence intervals should be given for the estimates within Table 1.



We have added an explanation of how the ODE was fit in the previous work in Materials and
Methods. Because the estimates in Table 1 are fit by hand, we do not have CI. The parameters in
Table 1 should be interpreted as plausible values that fit the data, not the values that provide an
optimal fit. Our goal with the SIMCoV model is not to provide an optimal set of parameters, but to
suggest biologically meaningful hypotheses about what mechanisms might produce outcomes in the
viral load trajectories -- specifically that the number of FOI can linearly influence peak viral load
and that the timing and magnitude of T cell response can determine the duration of infection and
probability of clearance in the first month of infection.

# Minor points:

- page 2, bottom: If epithelial cells are modeled as a 2D grid, it is not clear why they have to be
represented as a volume. Does this play a role for e.g. diffusion?

If  SIMCoV were only used to model a 2D sheet of cells, it would not be essential to represent cell
volume with a z dimension.  However, we also use SIMCoV to model dynamics in a 3D grid and
branching topology (Figures 6 and 7) where the 3rd dimension is necessary. We plan to further
investigate the role of diffusion in different topologies in future work.

- Figure 7: How comparable are the different scenarios when studied in 2D and 3D? Were the
same number of cells/ target cell densities used, as well as the same number of T cells able to
infiltrate the tissue?

Yes, these things were all held constant (Default parameters). We added a sentence to make that
more clear.

- Figure 3d: I am not sure how much informative the peak number of T cells would be on viral
control in order to compare the different settings. The peak might occur at different time points
and the overall level of the T cell responses might be similar. Wouldn’t the cumulative T cell
concentration up to a certain time point, and potentially a ratio between T cells and Viral load be
more informative for a comparison between the different scenarios, i.e, clearly indicating that the
spatial distribution of the number of locations and not the magnitude of initial infection
determines disease progression?

In these runs the peak and cumulative number of T cells are highly correlated. With much
higher viral dispersion, we might expect to drain the supply of T cells; however we need
larger simulations to see that effect. We agree that the ratio of peak virus to T cells
(visible in the corresponding pattern in panels c and d) are an interesting consequence of
the T cells being drawn into the lung by the space occupied by virus, and therefore
releasing inflammatory signal.

- There have been other studies that introduced multi-cellular modeling environments for
studying viral infections within epithelial tissues (Sego et al. PLos Comp Biol. 2020). The
authors might want to discuss how their approach relates to those. In addition, the authors
should discuss why their model is especially a modeling environment for coronaviruses, and not
viral infections per se. Only in the last part when studying lung structure, the modeling
environment seems to become lung specific.



We have now added a section to the discussion comparing SIMCoV to Sego et al 2020
and other models. We also added that  the SIMCoV modelling platform can be extended
to model other organs and other viruses.

Reviewer #3: In this paper, Moses et. al. propose a nicely designed mathematical model that
includes spatial aspects of infection to recapitulate the SARS-CoV-2 viral load variability among
infected individuals. The model is an agent-based one that simulates infection dynamics and
CD8 responses in the space of millions of epithelial cells. This approach is relevant as it may
explain how more heterogenous virus dynamics could be produced as a function of the spatial
parameters, something that ordinarily differential equations are limited to do in this context.
Below are my comments:

We thank the reviewer for this complimentary summary.

1. Regarding the peak viral load as a function of the initial FOI, I was wondering if the
proportionality is also affected by spatial distribution of the virions. In other words, if the initial
FOI and initial virions on them are randomly distributed in the grid—and not just equally
dispersed—would the peak viral load still be proportional? What if all the initial FOI is in a
specific place in the grid? In a target cell-limited model, or even those that include effector cells,
the peak viral load wouldn’t change as a function of the initial viral load. In that sense, it would
be helpful to have a more elaborated mechanistic explanation of why this is not the case in the
spatial model. Examples of this would be to have spatial simulations of infected cells and CD8
cells per each case illustrating the possible mechanisms. Is the proportionality only due to more
infection sites or due to something else like the dispersion of CD8 cells that decrease the
chances to attack the infection?

Figure 3 now analyzes a uniform random placement of cells and we have added text to highlight
that when more virus is added to the same location, there is almost no effect on peak. It is only when
more virus is added to new FOI that the peak increases. The variation shown with different
placements of FOI occurs because if the locations are nearby, they merge into each other, reducing
the number of newly infectable cells. This is particularly evident for larger numbers of FOI (16)
with more potential for overlap in Figure 3.

2. Although authors present the effect of two parameters related to the CD8 response with
respect to the virus dynamics, it would be also helpful to do a sensitivity analysis on how that
compares to the effect of other parameters in Table 2. Which parameters are driving each phase
of the virus dynamics? If there are multiple parameters that drive one aspect of the dynamics,
which one is more significant? This is relevant in the sense that it would highlight in which
aspects the spatial aspects (diffusion rates, initial distribution of variables in the grid, etc) are
more significant in the virus dynamics than the non-spatial ones.

We have added Figure 8 to show how variation in 12 parameters affects peak viral load and the
number of infected cells. The spatial parameters are not necessarily more significant than
non-spatial parameters, but they are significant, particularly the number of FOI.



3. After having a set of estimated parameters from the model fits, it would be more convincing,
in terms of viral load variability, if the model could be simulated multiple times to show that it
does allow for more heterogeneity in terms of peak levels, time to peak, time to shoulder phase
and time to control.

In response to this and other reviewer questions, we now show how variation in the placement of
FOI and multiple runs generate variation in Figures 3, 4 and 5. Figure 8 and the discussion now
also address this point.

4. It seems to me the paper is lacking a section (in the Materials and Methods) describing the
fitting procedure in detail.

We have added a 2 paragraph explanation of the manual fitting procedure in the subsection
“Fitting to Patient Data” in the Methods.

5. Would the model be able to reproduce multiple viral peaks as in figure 5G?

We didn’t attempt to fit this aspect of that anomalous patient. In future work we are modeling more
complex spatial spread of virus through the airways, in which case we might be able to account for
this.

6. The github page did not work when I tried to open it.

We have fixed this error. It is now publicly available.

Have the authors made all data and (if applicable) computational code underlying the
findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data and code underlying the findings
described in their manuscript fully available without restriction, with rare exception (please refer
to the Data Availability Statement in the manuscript PDF file). The data and code should be
provided as part of the manuscript or its supporting information, or deposited to a public
repository. For example, in addition to summary statistics, the data points behind means,
medians and variance measures should be available. If there are restrictions on publicly sharing
data or code —e.g. participant privacy or use of data from a third party—those must be
specified.

Reviewer #1: No: The link to the code repository was broken. "page not found".

We have fixed this error. It is now publicly available.

Reviewer #2: Yes

Reviewer #3: Yes

https://journals.plos.org/ploscompbiol/s/materials-and-software-sharing


PLOS authors have the option to publish the peer review history of their article (what does this
mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made
public.

Do you want your identity to be public for this peer review? For information about this
choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No
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Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and
Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE
helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a
user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on
how to use the tool. If you encounter any issues or have any questions when using PACE,
please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make
available all data used to draw the conclusions outlined in your manuscript. Data must be
deposited in an appropriate repository, included within the body of the manuscript, or uploaded
as supporting information. This includes all numerical values that were used to generate graphs,
histograms etc.. For an example in PLOS Biology see here:
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

All instructions and configuration files to reproduce each figure are included in the
github repo.
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Reproducibility:

To enhance the reproducibility of your results, we recommend that you deposit your laboratory
protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it
can be cited independently in the future. Additionally, PLOS ONE offers an option to publish
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https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campai
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