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A Details of network model: network architecture and governing equa-
tions

In this section and the next, we describe the V1 network model we view as “ground truth”.
Except for minor simplifications, we follow [1]; interested readers are directed to [1] and
references therein for more details.

“External" input to layer 4Cα neurons. We model a small piece of layer 4Cα of the Macaque
primary visual cortex (V1), focusing on the background regime, i.e., spontaneous network
activity. Layer 4Cα neurons deliver excitatory and inhibitory signals to each other. In addition,
each Layer 4Cα neuron receives excitatory input from three categories of external (meaning
external to 4Cα) sources, which we label LGN, Layer 6, and ambient. “LGN” refers to input
from the lateral geniculate nucleus, which carries visual signals from the retina; “Layer 6”
represents recurrent excitation from Layer 6 of V1; “ambient” is an amalgamation of weak
cortical neuromodulatory signals. Since our primary goal is to investigate background firing
rates (when external input rates are low), we model signals from all three sources as statistically
independent, approximately Poisson (Bernoulli) processes, i.e., to generate a point process of
rate R with timestep ∆t, we place 0 or 1 spike in each time bin with probability R∆t.
Architecture of layer 4Cα network in V1. Consider a part of a 2D cortical sheet representing
3× 3 hypercolumns, each occupying 0.5× 0.5 mm2 in layer 4Cα. This region contains 26,244
E-cells and 8,649 I-cells, which we assume are uniformly distributed, resulting in 3,877 cells
(2,916 E, 961 I) per hypercolumn. In our model, E-cells are assumed to be spiny stellate cells
and I-cells PV basket cells. The strength of connectivity between cells depends on the cell types
(E or I, to be discussed later in Equations and Sect. B), while the probability of connection
between any two cells in a local circuit is determined by a truncated Gaussian function of
cell-to-cell distances. (In layer 4Cα there are no long-range connections.) For E-to-Q and I-to-Q
connections, the standard deviations of the Gaussian functions are 0.2/

p
2 mm and 0.125/

p
2

mm, respectively, reflecting the different reach of E and I cells. The peak connection probability
for E→E is 0.15, while the numbers for E→I, I→E, and I→I are set as 0.6, due to the much
denser I-cell connections. We truncate all the Gaussian functions at X o = 0.36 mm. Specifically,
for a pair of neurons (i, j) which are x mm away from each other, the projection probability
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from j to i is

P EE(x) = 0.15× exp
§

−
� x

0.2

�2ª

,

P EI(x) = 0.60× exp
§

−
� x

0.125

�2ª

,

P I E(x) = 0.60× exp
§

−
� x

0.2

�2ª

,

P I I(x) = 0.60× exp
§

−
� x

0.125

�2ª

,

and

P i j(x) = 0 for x > X o; i, j ∈ {E, I}.

The connection probabilities and cell densities result in that, on average, each E-cell has ∼210
presynaptic E-cells and ∼110 I presynaptic cells, while each I -cell has ∼840 presynaptic E-cells
and ∼110 presynaptic I-cells. We leave the neurons close to the boundary as is and choose not
to compensate for the missed presynaptic neurons.
Equations. We use conductance-based leaky-integrate-and-fire (LIF) models for neuronal
dynamics within the Layer 4Cα network. For a neuron i with cell type Q ∈ {E, I}, its membrane
potential vi advances by

dvi

dt
= −g L

Q(vi − Vrest)− gE
i (t)(vi − V E)− g I

i (t)(vi − V I) . (A)

We nondimensionalize voltages, setting resting potential to Vrest = 0 and spiking threshold
Vth = 1. Every time vi reaches Vth, a spiking event occurs at neuron i and the signal is sent to all
its postsynaptic neurons. Afterwards, vi enters a refractory period for τref = 2 ms right away,
then reset to Vrest.

With the selections of the reversal potentials V E = 14/3 and V I = −2/3 [2], the membrane
potential vi is driven by three current terms in Eq (A):

(i) Towards Vrest = 0 due to the leaky current −g L
Q(vi − Vrest), where g L

Q stands for membrane
leakage conductance of cell type Q.

(ii) Towards V I = −2/3 due to the inhibitory current−g I
i (t)(vi−V I), where the inhibitory con-

ductance g I
i (t) is determined by the spiking series generated by inhibitory cells presynaptic

to neuron i, i.e.,

g I
i (t) = SQI

∑

j∈N4C,I (i)

∞
∑

k=1

Ggaba(t − t j(k)) . (B)

Here, SQI stands for the connectivity from an I-cell to a type-Q cell. Cell j belongs to
N4C,I(i), the collection of all presynaptic I-cells to neuron i, generating a spiking time
series {t j}. In addition, Ggaba(t) is a Green’s function modeling the temporal increment of
inhibitory conductances induced by each I-spike through GABA receptors (details provided
in Sect. B).
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(iii) Towards V E = 14/3 due to the excitation current −gE
i (t)(vi − V E). The excitatory con-

ductance of neuron i, gE
i (t), consists of four components:

gE
i (t) = SQlgn

∞
∑

k=1

Gampa(t − t i,lgn(k))

︸ ︷︷ ︸

(I) LGN

+ SQamb
∞
∑

k=1

Gampa(t − t i,amb(k))

︸ ︷︷ ︸

(II) ambient

+ SQL6
∞
∑

k=1

�

ρQ
ampaGampa(t − t i,L6(k)) +ρQ

nmdaGnmda(t − t i,L6(k))
�

︸ ︷︷ ︸

(III) Layer 6

(C)

+ SQE
∑

j∈N4C,E(i)

∞
∑

k=1

�

ρQ
ampaGampa(t − t j(k)) +ρQ

nmdaGnmda(t − t j(k))
�

︸ ︷︷ ︸

(IV) Layer 4

.

Terms I-IV represent synaptic conductances induced by LGN, ambient, Layer 6 input, and
Layer 4 recurrent excitation, respectively. For each neuron i, the spiking series in terms
I-III are modeled by Poisson processes as described above. For E-spikes from Layer 4 and
6, two different types of excitatory synapses (AMPA and NMDA) induce different temporal
increment of gE

i (t) (term III and IV), while only AMPA synapse is involved for LGN and
ambient input (term I and II). Here, ρQ

amda,nmda stand for the fractions of synaptic input
received by AMPA and NMDA receptors in a type-Q neuron; (SQlgn, SQamb, and SQL6, SQE)
denote the respective synaptic coupling weights of these sources towards type-Q cells.

For the E-to-E input in Layer 4, two additional biological details are incorporated in the model.
First, we consider a possibility for synaptic failure pfail = 20%, i.e., whether the k-th spike from
neuron j successfully induces a change in gE

i (t) depends on an independent coin-toss with
p = 0.8. Second, if a spike is “successful", a random delay is added to t j(k) to model the fact
that E-neurons project to the dendrites of other E-cells, instead of the soma. In all, when neuron
i is an E-neuron, the term IV in Eq (C) is replaced by

SEE
∑

j∈N4C,E(i)

∞
∑

k=1

σ j(k)
�

ρE
ampaGampa(t − (t j(k) +τ j(k))) +ρE

nmdaGnmda(t − (t j(k) +τ j(k)))
�

,

where σ j(k) stands for the coin-toss, and the τ j(k) are independent, identically distributed
random delay times uniformly distributed on [0,1] ms.

B Parameters

We now list the specific parameter values used. We remark that while EPSC and IPSCs have
been measured in the laboratory and so can be assumed to be known, the coupling weights
— which involve how one neuron affects another — cannot be measured directly. This is the
main reason we mostly regard the coupling weights as free parameters to be investigated in
this paper, in spite of experimental evidence that may provide certain ranges for them.
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Neuronal parameters. The following parameters are used for L4 neurons, and are fixed
throughout the paper.

(i) Reversal potentials: V I = −2/3, V E = 14/3

(ii) Leakage conductances: g L
E = (20 ms)−1, g L

I = (16.7 ms)−1

(iii) Postsynaptic conductances:

Gs(t) =
1

τ
decay
s −τrise

s

�

e
− t
τrise

s − e
− t

τ
decay
s

�

,

where (τrise
s ,τdecay

s ) stand for the time scales of activation/inactivation of synapse type
s = ampa,nmda, gaba; the time constants used here are

- (τrise
ampa,τ

decay
ampa) = (0.5,3) ms

- (τrise
nmda,τ

decay
nmda) = (2,80) ms

- (τrise
gaba,τ

decay
gaba ) = (0.5, 5) ms

(iv) Fraction of AMPA and NMDA receptors activated by E-spikes: (ρE
ampa,ρ

E
nmda) = (0.8, 0.2),

and (ρE
ampa,ρ

E
nmda) = (0.67, 0.33)

(v) Synaptic failure: σ j(k) = 1 with p = 0.8, and σ j(k) = 0 with p = 0.2

(vi) Synaptic delays: the τ j(k) are uniformly distributed between [0,1] ms

(vii) Refractory period: τref = 2 ms

For biophysical constants, see, e.g., [2]. We follow [1, 3] for all other parameters.

Network parameters. These include all synaptic coupling weights and rates of external input,
making up the parameter space in which we compute the landscape of E- and I-firing rates.
We specify below our choices of them. Those parameters that are specified with ranges form
the 7D space of free parameters we investigate in this paper. These a priori constraints of free
parameters are discussed later in this section. Generally, we first choose the values of SEE and
S I I (independently of other parameters), then index some of the other parameters to SEE and
S I I .

(i) Synaptic coupling weights chosen independently: SEE ∈ (0.018, 0.030), S I I ∈ (0.08, 0.20)

(ii) Synaptic coupling weights depending on SEE:

- SElgn ∈ (1.5, 3)× SEE, S I lgn ∈ (1.5, 3)× SElgn

- SEL6 = 1
3 × SEE

- SEI ∈ (0.9, 2.4)× SEE

(iii) Synaptic coupling weights depending on S I I :

- S I E ∈ (0.1, 0.25)× S I I
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- S IL6 = 1
3 × S I E

(iv) LGN input rates: F Elgn = F I lgn = 80 Hz

(v) Layer 6 input rates: F EL6 = 250 Hz, F IL6 ∈ (1.5, 6)× F EL6

(vi) Ambient input:

- F Eamb = F Iamb = 500 Hz

- SEamb = S Iamb = 0.01

Prior biological constraints and scaling conventions. We justify our choices of the ranges of
free parameters above. Following (often indirect) suggestions from experimental observations
and heuristic reasoning, one can arrive at some bounds on them. The ranges we impose are
broader than those suggested by available data; the greater the uncertainty, the wider the net
we cast. Specifically:

- SEE ∈ (0.015,0.03): This follows from the conventional wisdom that when an E-cell is
stimulated in vitro, it takes 10-50 consecutive spikes in relatively quick succession to
produce a spike. Numerical simulation suggests the assumed order of magnitude for SEE

is reasonable [4].

- SEI ∈ (0.9, 2.4)×SEE and S I E ∈ (0.1, 0.25)×S I I : In the absence of experimental guidance,
we located these ranges numerically as follows: We examined firing rate maps for wider
ranges than these, and found that, for the most part, the geometry on inhibition planes
forces the good areas to lie within these ranges.

- S I I ∈ (0.08, 0.20): There is no direct empirical information on this parameter; however,
there is evidence that EPSPs for I-cells are similar in size to those for E-cells [5]. We choose
the range for S I I by following the logistic that S I I ∈ (0.08, 0.20) and S I E ∈ (0.1, 0.25)×S I I

means S I E ∈ (0.008, 0.05), which contains and is significantly larger than the range of
SEE above.

- SElgn ∈ (1.5,3.0)× SEE: Results from [6] suggest that the sizes of EPSPs from LGN are
∼ 2× those from L4. We therefore assume a range around 2.

- S I lgn ∈ (1.5,3.0)× SElgn: we assume S I lgn > SElgn because it has been reported that LGN
produces larger EPSCs in I-cells [7].

- F IL6 ∈ (1.5, 6)× F EL6: Within L4, an I-cell has 3.5-4 times as many presynaptic E-neurons
as an E-cell. If we hypothesize a similar ratio between L6 and L4, it would follow that
F IL6 ∈ (3.5, 4)× F EL6. We relax the interval to (1.5, 6) because of uncertainty surrounding
L6: whether the effect of L6 on L4 is net-excitatory or net-inhibitory is an issue that is
currently unresolved for the real cortex. A wider range also serves to absorb potential
errors in the assumption that S IL6 = 1

3 × S I E.

C Closer look at MF+v: solvability of MF equation and implementation
details

Biologically meaningful solutions of MF equation. In some situations, the MF equation (4)
yields negative firing rates when given valid mean voltages; we have indicated such parameters
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by gray in all parameter plots. Here, we discuss some of the reasons underlying these failures.
First, recall that in Methods, we had asserted that the MF equation Eq (8) can be written in

matrix form as
~f= R(~f)×

�

M(~v) ·~f+ ~s(~v)
�

.

(This was Eq (9) in Methods.) This can be seen by defining

R(~f) =
�

1− fEτref 0
0 1− fIτref

�

M(~v) =

�

SEEN EE(1− pfail)(V E − vE) SEI N EI(V I − vE)

S I EN I E(V E − v I) S I I N I I(V I − v I)

�

(D)

~s(~v) =

�
�

SElgnF Elgn + SEL6F EL6 + SEambF Eamb
�

(V E − vE)− g L
E vE

�

S I lgnF I lgn + S IL6F IL6 + S IambF Iamb
�

(V E − v I)− g L
I v I

�

and verifying directly. Our interest is in finding nonnegative solutions ~f of this equation given
mean voltages ~v. The solvability of Eq (9) depends on the properties of the matrix M(~v), which
in turn depends on L4 connectivity and the mean voltages ~v. Note that the entries of ~s(~v)
represent the mean currents into E and I cells, respectively, and must be positive for cells to fire
with positive rates.

Among the scenarios in which these equations fail to give meaningful firing rates, by far the
simplest is when the equations are (nearly) singular. Ignoring the refractory factor R(~f) (whose
effect is perturbative), Eq (9) is equivalent to

~f= [I −M(~v)]−1 × ~s(~v) , (E)

where

[I −M(~v)] =
�

1− [4E→ E] −[4I→ E]
−[4E→ I] 1− [4I→ I]

�

=
�

~α1 ~α2

�

,

provided I −M(~v) is nonsingular. In the above, [P→ Q] indicate the corresponding entry of
matrix M(~v), i.e., the net contribution to an E/I-cell from one E/I-kick. When det(I−M(~v)) = 0,
the linearized equation above may not have a solution, suggesting MF+v iteration is likely to
fail when I −M(~v) is (nearly) singular.

One can in fact take a more geometric view of the solvability of Eq (9), one that makes
questions surrounding solvability more transparent. Let ~α1 and ~α2 be the columns of I − ~M(~v).
Eq (9) yields nonnegative firing rates precisely when there exist f1, f2 > 0 such that f1~α1+ f2~α2 =
~s(v). This can be visualized by defining S = { f1~α1 + f2~α2 | f1, f2 > 0} and noting that the

intersection of S with the first quadrant {s1, s2 > 0} is precisely the set of all ~s such that
~f= (I − ~M(~v))−1~s results in nonnegative firing rates. Fig A(i) shows an example. Here, the two
(normalized) column vectors ~α1 and ~α2 are linearly independent, and the set S (the region
bounded by span(~α1) and span(~α2) and contains the black line) has a large intersection with
the first quadrant, so that most nonnegative values of ~s lead to nonnegative rates. Note that
these parameters lie well above the good area; cf. Figs 1 and A.
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A
S IE /S II =0.194

SEI /S EE=1.58

S IE /S II =0.194

SEI /S EE=1.27

S IE /S II =0.194

SEI /S EE=1.11

B
S IE /S II =0.194

SEI /S EE=1.58

S IE /S II =0.194

SEI /S EE=1.27

S IE /S II =0.194

SEI /S EE=1.11

C
S IE /S II =0.194

SEI /S EE=1.58

S IE /S II =0.194

SEI /S EE=1.27

S IE /S II =0.194

SEI /S EE=1.11

Figure A: A geometric view of the solvability of MF equations. Each panel contains two
normalized column vectors of I −M(~v) , i.e., ~α1 (green vector in the third quadrant) and
~α2 (purple vector in the first quadrant). The black line segment marks the region S =
{ f1~α1 + f2~α2 | f1, f2 > 0}. (i) Eq (9) is nonsingular and well-behaved. (ii) Eq (9) is near-
singular and its column vectors are nearly collinear. C. det(I −M(~v)) changes sign and MF+v
gives negative firing rates.

To see what else might happen, we now move along a line in the inhibition plane defined
by S I E/S I I = 0.194, starting from the value SEI/SEE = 1.58 used in Fig A(i) and moving down.
Fig A(ii) shows what happens for SEI/SEE = 1.27, which lies within the good area: ~α1 and ~α2

become more nearly collinear, though there is still a sizable intersection between S and the first
quadrant, so that most values of ~s lead to positive firing rates. However, as SEI decreases even
further, det(I −M(~v)) changes sign, and the set S abruptly flips to the other side of the dividing
line, leading Eq (9) to produce negative firing rates for many values of ~s.

In Fig B, we extend this picture to the inhibition plane. For each choice of SEI/SEE and
S I E/S I I , we compute M(~v) by assuming ~v= (vE, vI) = (0.55,0.65). Each panel shows the two
(normalized) column vectors ~α1 and ~α2, along with a black line marking the region S(~α1, ~α2).
Observe that as SEI/SEE and S I E/S I I decrease, ~α1 and ~α2 first become linearly dependent (so
that I −M(~v) becomes singular), then changing orientation and resulting in negative firing rate
estimates (gray panels).

Two final remarks. First, the boundary between gray and white panels corresponds roughly
to where det(I−M(~v)) changes sign. This is also where explosive dynamics occur in our network
simulations due to low suppression index SIE or very low E-firing rates (caused by high external
input to I-cells; more below). This suggests that parameters where the MF+v algorithm fails to
give biologically meaningful estimates are also parameters where the network model itself fails
to give biologically meaningful results.

Second, concerning the narrow wedge of ~s-values in the first quadrant that yield negative
firing rate estimates, i.e., the set bounded by ~α2 (oblique purple vector in the first quadrant)
and the vertical axis in Fig A(i,ii). The same pattern also occur in the upper part of Fig B: These
correspond to when the external inputs to I-cells are too high. Though the corresponding sets
of ~s-values are small, they can have a significant impact. For example, for high-S I lgn and/or
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Figure B: Solvability of Eq (9) on the inhibition plane. Here, SEE = 0.024 and S I I = 0.120, and
we fix ~v= (vE, vI) = (0.55, 0.65) for all panels. Panels with gray color corresponds to negative
firing rates from the MF equations, and the boundary between gray and white panels roughly
corresponds to where det(I −M(~v)) changes sign.
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high-F IL6 regimes, this can lead to large swaths of gray. See Figs 2 and 3, and Sect. E.

Implementation and design of MF+v. As explained in Methods (see M2), our first attempt at a
fixed point iteration did not result in a convergent algorithm. So we iterate until the firing rate
estimates stabilize to a narrow, nearly linear band in firing rate space, then average a number
of successive estimates to produce an estimate.

Algorithm 1: The MF+v method.

Result: MF computed firing rates ~f, and mean voltages ~v.
1 Set parameters SEE, S I lgn, F EL6, etc.;
2 (~f0,~v0)← initial conditions;
3 M ←maximum number of training iterations; // see text for value
4 tLIF← integration time; // default tLIF = 20s
5 ε← early termination tolerance; // default ε = 0.05
6 k← early termination horizon; // default k = 15
// Training loop

7 for p← 1 to M do
8 ~vp = LIF(~fp−1, t LI F);
9 ~fp =MF(~vp,~fp−1);

10 if CV (~fp, · · · ,~fp−k)< ε then
11 goto FINALIZE;
12 end
13 FINALIZE:

14 if p < M then
// Convergence criterion satisfied
// Compute a more accurate estimate via a longer time average

15 `1← number of voltages to use in moving average; // default `1 = 10
16 `2← number of firing rates to use in final estimate; // default `2 = 50
17 for q← p+ 1 to p+ `2 do
18 ~vq = LIF(~f∗q−1, tLIF);
19 ~v∗q =mean(~vq−`1

, · · · ,~vq); // moving average

20 ~f∗q =MF(~v∗q,~f∗q−1);
21 end
22 return mean(~f∗p+1, · · · ,~f∗p+`2

);
23 else

// Unconverged
24 return FAIL

Algorithm 1 gives a precise summary and lists all other hyperparameter values used. A
practical issue is that we need to check the variance of the voltage and firing estimates to
determine when to stop iterating. To make this efficient, instead of carrying out accurate but
expensive long-time average for every iteration, we use shorter runs that may be noisy by
themselves but can be averaged together to produce accurate estimates. We then use a small
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number of consecutive iterations to check convergence during an initial, “training” phase, and
when certain stopping criteria are satisfied, we compute a more accurate estimate and output
the result.

In this paper, the precise stopping criterion is based on comparing the coefficient of variation

CV (~vp, · · · ,~vp−k) =
var(~vp, · · · ,~vp−k)

1/2

mean(~vp, · · · ,~vp−k)
(F)

of the last k voltage estimates is against a pre-specified tolerance ε. When the stopping criterion
is satisfied, we use moving averages of the voltages to compute a larger number of iterations,
and use these to estimate the firing rate. For the network models studied in this paper, we have
found the estimates to be insensitive to the exact choice of the maximum iteration number M .
We typically set M in the range 300–500.

D Miscellaneous information on MF+v

Here we record some additional information that have affected our decision to use MF+v in
this paper.

Effects of refractory period and different kick sizes. The mean voltages ~v produced by the
LIF equations (and hence the MF-computed firing rates ~f) can depend on parameters in a
nontrivial way, making it difficult to estimate ~v using analytical methods. Here, we illustrate
the parameter dependence of LIF neurons via two examples, using the parameters in Sect. B.
In both examples, a pair of LIF neurons (one E and one I) are each presented with Poissonian
spike trains modeling L4 inputs, with input rates f in

E and f in
I , in addition to L6, LGN, and amb

inputs. The two neurons are uncoupled and given independent inputs. We denote the resulting
output rates f out

E and f out
I .

Our first example concerns the refractory period τref, which can significantly impact neuronal
activity because membrane conductances and currents steadily decay during refractory periods;
the larger the τref, the more conductance is “missed” by the neuron while refractory. For instance,
for an E-cell with a 3 Hz firing rate, its membrane potential stays unchanged for 3×τref in each
second. This can be a non-negligible fraction of time, and the effect is exacerbated by higher
firing rates. Fig C(i) shows the mean voltages and firing rates as τref varies from 0 to 4 ms.
Though f out

E does not change much (5.5-5.8 Hz), f out
I experiences a sharp change (19-25 Hz).

Our second example is motivated by the observation that for neurons in a mean-driven
regime (a limit often studied in theoretical analyses of neuron models), their output rate
depends on L4 kick sizes SQQ′ (Q,Q′ ∈ {E, I}) only through the product SQQ′ × f in

Q′ . Thus, if

we vary SQQ′ while keeping SQQ′ × f in
Q′ constant, any variation in output rates (~fout) would be

due to fluctuations in the L4 inputs. To test this, we perform the scaling SQQ′ 7→ αSQQ′ and
f in
Q′ 7→ f in

Q′ /α for a range of scaling factors α. Other parameters, including (SQlgn, FQlgn) and
(SQL6, FQlgn) (which were previously indexed to SQE) are kept constant. Fig C(ii) shows the
results. Observe that both ~v and ~fout experience sharp changes when α moves away from 1. In
particular, the firing rates are almost 0 when α is small (low fluctuation), and unreasonably
high when α is large (high fluctuation). These results suggest that for the background regime
studied here, MF+v (as is the network that it models) operates in a fluctuation driven regime.
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Figure C: Mean voltages and firing rates computed by MF+v with different (i) refractory
periods (τref) and (ii) L4 excitatory kick sizes (SEE scaling factor α). Here, SEE × f in

E = 0.13,
SEI × f in

I = 0.65, S I E × f in
E = 0.10, and S I I × f in

I = 2.25.
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Figure D: The LIF-only algorithm. We begin by choosing initial values f 0
E and f 0

I . In the first
iteration, these values are used to drive a pair of LIF neurons for 20 seconds (biological time).
The resulting firing rates (instead of the membrane voltages in MF+v) are then fed into the
next iteration as the L4 input. In the above, all dashed lines are modeled by Poisson processes.
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Algorithm 2: The LIF-only algorithm. We have removed the early termination criterion
to simplify comparison with MF+v.

Result: LIF-computed ~f.
1 Set parameters SEE, S I lgn, F EL6, etc.;
2 ~f0← initial conditions;
3 M ←maximum number of training iterations; // default M = 100
4 tLIF← integration time; // default tLIF = 20s
// Training loop

5 for p← 1 to M do
6 ~fp = LIF(~fp−1, t LI F);
7 end
8 `1← number of voltages to use in moving average; // default `1 = 10
9 `2← number of firing rates to use in final estimate; // default `2 = 50

10 for q← p+ 1 to p+ `2 do
11 ~fq = LIF(~f∗q−1, tLIF);

12 ~f∗q =mean(~fq−`1
, · · · ,~fq); // moving average

13 end
14 return mean(~f∗p+1, · · · ,~f∗p+`2

);

Comparison to LIF-only. A natural alternative to MF+v is an LIF-only method: We drive a pair
of LIF models (one E and one I) with Poissonian spike trains of rate ~f as L4 input, along with
Poisson spike trains modeling inputs from LGN, L6, and amb, and look for values of ~f that lead
to output rates equal to ~f. That is, we look for a self-consistent MF approximation without
reference to Eq (4). This can be implemented by simply iterating LIF neurons and feed f p to
iteration p+ 1 directly as the L4 E/I input. A schematic representation is in Fig D, with details
in Algorithm 2.

We find that all else being equal, the LIF-only algorithm is much less stable than MF+v. To
demonstrate this, we select two parameters from Fig 9C (SEI ∈ {0.0433, 0.0402}) and compare
a simplified version of MF+v and LIF-only. In these runs, to avoid uncertainties associated with
early termination, we train both algorithms for M = 100 iterations, then compute running
averages. For MF+v, this means that in Algorithm 1, we set M = 100 and ε = 0, and always
take the first branch after FINALIZE; see Algorithm 2 for LIF-only. Fig E shows the results. In
the left panels, we plot the firing rates ~fp for iterates p 6 100 and running averages ~f∗p for
100< p 6 400. As can be seen, firing rates from MF+v stabilizes quickly to network-computed
rates, while LIF-only (right) sometimes exhibits large oscillations.

A potential explanation for the behavior of LIF-only is that (as we noted in Methods Sect. M2)
one can obtain many more samples of voltages per unit time than spikes. Since the variance
of firing rate estimates is roughly inversely proportional to the number of spikes, the single
neuron rate estimates in the LIF-only algorithm are far noisier at typical background firing rates.
We have also tested other variants of LIF-only, such as averaging over ensembles of pairs of LIF
neurons. However, the LIF-only method remains rather unstable (data not shown). Although
LIF-only occasionally gives good predictions of firing rates, it is far less reliable in comparison

13
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Figure E: Comparison of MF+v and LIF-only. Both are trained for 100 iterations with identical LIF
neuron simulation time tLIF = 20s. (i) E/I firing rate trajectories from ~fp (iteration 0-100) and ~f∗p
(iteration 101-400), for SEI = 0.0402. Left: MF+v exhibits stable estimates for both parameter
choices. Right: LIF-only exhibit large oscillations. (ii) Same as A, but for SEI = 0.0433.

to MF+v.

E Additional firing rate maps

As mentioned in Results, here we show versions of Fig 2 with different choices of parameters.
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Figure F: A version of Fig 2 with SEE = 0.021, S I I = 0.12, and F IL6/F EL6 = 3.
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Figure G: A version of Fig 2 with SEE = 0.021, S I I = 0.12, and F IL6/F EL6 = 4.5.
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Figure H: A version of Fig 2 with SEE = 0.021, S I I = 0.16, and F IL6/F EL6 = 3.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
Ilg

n
/S

E
lg

n
=

1.
5

S
E

I /S
E

E

SElgn /S EE=1.5 SElgn /S EE=2.0 SElgn /S EE=2.5 SElgn /S EE=3.0

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
Ilg

n
/S

E
lg

n
=

2.
0

S
E

I /S
E

E

0.1 0.15 0.2 0.25

SIE/SII

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
Ilg

n
/S

E
lg

n
=

2.
5

S
E

I /S
E

E

0.1 0.15 0.2 0.25

SIE/SII
0.1 0.15 0.2 0.25

SIE/SII
0.1 0.15 0.2 0.25

SIE/SII

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure I: A version of Fig 2 with SEE = 0.021, S I I = 0.16, and F IL6/F EL6 = 4.5.
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Figure J: A version of Fig 2 with SEE = 0.021, S I I = 0.20, and F IL6/F EL6 = 3.
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Figure K: A version of Fig 2 with SEE = 0.021, S I I = 0.20, and F IL6/F EL6 = 4.5.
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Figure L: A version of Fig 2 with SEE = 0.024, S I I = 0.12, and F IL6/F EL6 = 3.
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Figure M: A version of Fig 2 with SEE = 0.024, S I I = 0.12, and F IL6/F EL6 = 4.5.
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Figure N: A version of Fig 2 with SEE = 0.024, S I I = 0.16, and F IL6/F EL6 = 3.
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Figure O: A version of Fig 2 with SEE = 0.024, S I I = 0.16, and F IL6/F EL6 = 4.5.
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Figure P: A version of Fig 2 with SEE = 0.024, S I I = 0.20, and F IL6/F EL6 = 3.
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Figure Q: A version of Fig 2 with SEE = 0.024, S I I = 0.20, and F IL6/F EL6 = 4.5.
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Figure R: A version of Fig 2 with SEE = 0.027, S I I = 0.12, and F IL6/F EL6 = 3.
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Figure S: A version of Fig 2 with SEE = 0.027, S I I = 0.12, and F IL6/F EL6 = 4.5.
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Figure T: A version of Fig 2 with SEE = 0.027, S I I = 0.16, and F IL6/F EL6 = 3.
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Figure U: A version of Fig 2 with SEE = 0.027, S I I = 0.16, and F IL6/F EL6 = 4.5.
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Figure V: A version of Fig 2 with SEE = 0.027, S I I = 0.20, and F IL6/F EL6 = 3.
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Figure W: A version of Fig 2 with SEE = 0.027, S I I = 0.20, and F IL6/F EL6 = 4.5.
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