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Figure S1: Expression profiles of non-NC cell types, Related to Figure 1. A) Violin plots

showing QC metrics for whole arch single-cell object. Cells were excluded with >4000

features or <1500 features detected (dashed lines). Cells were excluded with >4% of reads

mapped to mitochondrial genes (dashed line). B) Feature plot showing nFeature per cell in

filtered whole arch object. C) Feature plot showing percent mitochondrial reads per cell in

filtered whole arch object. D) Feature plot showing Doublet detection scores generating

using DoubletFinder. E) Heatmap showing top marker genes in each cell type in Fig. 1C.

F) Stacked barplots showing the number of each cell type recovered in each time point. G)

Feature plots showing expression of strong marker genes for each cell type overlayed with

UMAP.
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Figure S2: Marker gene profiles of NC lineages and in vivo temporal expression
patterns of foxd3, Related to Figure 3. A) Heatmap showing average expression
of top lineage markers in each NC subtype. B) Doublet detection scores generating
using DoubletFinder overlayed with ForceAtlas (FA) Embedding. C) Dendroplot with
cells ordered according to pseudotime and colored according to real developmental
time point identity. D) Feature plots showing relative expression (dark purple
indicates high levels) of lineage markers overlayed with FA embedding. E) Confocal
micrographs of isHCR for foxd3 expression (white) at 12, 18, and 24 hpf in
tg(sox10:lynTdTomato) embryos where NC plasma membranes are marked by
tdTomato (red). Enlarged region is the PA1 migratory stream. F) Quantification of
foxd3 expression from isHCR images in PA1 using corrected total fluorescence
intensity (Y axis) at 12 hpf (n = 7 embryos, mean = 278640), 18 hpf (n = 5 embryos,
mean = 48478), and 24 hpf (n = 5 embryos, mean = 118584). Dots represent means
in individual embryos; lines represent means within conditions. Error bars represent
mean +£SD. G) Local regression graph for foxd3 expression levels (Y axis) in pigment
(green), glial (yellow) and skeletal (blue) progenitors across pseudotime (X axis).
Lines indicate moving averages for each branch. H) Barplots showing expression
levels of foxd3 (Y axis) across developmental time points (X axis). Lines indicate
means, boxes indicate IQR, whiskers indicate IQR*1.5, points indicate outliers. For

micrographs, Scale bars = 50pum.
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Figure S3: Temporal NC trajectories inferred from scRNA-seq are robust, Related to
Figure 3. A-C) Temporal trajectories and the coarse graph of cell type compositions
obtained using different parameter combinations. Number of principal components (n_pc),
number of neighbors (n_neighbors), and number of variable genes (n_var_genes). Colors
match lineage colors in Fig S3D. D) UMAPs showing integration by CCA of each library to

remove timepoint-specific gene expression differences.
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Figure S4: Additional marker gene analysis of skeletal and pigment lineages at 24 hpf in
vivo and at 18 hpf in silico, Related to Figure 4.Confocal micrographs of isHCRs co-labeled
for A) phida1 (green) and B) mitfa (magenta) in putative pigment progenitors (upper panels) and
sox11a (green) and dIx2a (magenta) in putative skeletal progenitors (lower panels) at 24 hpfin
tg(sox10:lynTdTomato) embryos where NC plasma membranes are marked by tdTomato (red).

C) Feature plots showing expression of 4 marker genes in 18 hpf neural crest.
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Figure S5: Cell-cell signaling analysis suggests changes in source of Wnt
signaling across development in the NC, Related to Figure 6. A) Heatmap
showing average expression of Wnt ligands in each cell type in the single cell
timeline. B) Heatmaps showing average expression of Wnt receptors in NC cells
both at different timepoints and in different lineages. C) Signaling analysis for cell-cell
communication between NC cells and other cell types through SoptSC, color code
corresponding to Fig. 1C. The bottom half of each circos plot represents signal-
sending clusters; the top half represents signal-receiving clusters. Arrows are colored
according to signal-sending cell type. Width of arrows indicates probability of a
signaling event between the two cell types. D) Feature plot showing expression of
wnt11 in all cell types except endothelial, with NC expression confined mostly to early

NC cells and pigment cells.
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Figure S6: isHCR of mitfa reveals pigment progenitors are specified in atp6ap6
crispants, Related to Figure 6. A) Confocal micrographs of isHCR showing mitfa
expression (green) at 24 hpf in a Cas9-injected control (left panel) and atp6ap2 CRISPR-
injected embryo (right panel) in tg(sox10:lynTdTomato) transgenics where NC plasma
membranes are marked by tdTomato (red). B) Quantification of mitfa expression using
corrected total fluorescence intensity between control embryos (n = 4 embryos, mean =
35447) and atp6ap2 CRISPR embryos (n = 5 embryos, mean = 31242). Wilcox p-value =
0.73. Dots represent means in individual embryos. Lines represent means within

conditions. Error bars represent means +SD. For micrographs, Scale bars = 50um.



