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Appendix A: Notation and set-up
We will suppose that the interest lies with the effect of a time-varying exposure

that can take one of two levels at any given time on a failure time outcome. In

particular, we consider a strictly increasing sequence (t0, t1, ..., tK) of K + 1 time

points (with tK+1 = −t−1 = +∞ for notational convenience). For k = 0, 1, ...,K−1,

let Ak denote the level of time-varying exposure of interest at tk. We denote the

history of any stochastic sequence (X0, X1, ..., XK−1) up to and including tk by

Xk = (X0, X1..., Xk) for k = 0, 1, ...,K − 1 (and let X = XK−1 and X−1 = 0 for

notational convenience). For example, A = (A0, A1, ..., AK−1). Denote by T (a) the

counterfactual time elapsed until the event of interest since t0 that would have been

realised had A been set to a, and let Yk(a) = I(T (a) < tk) for k = 0, 1, ...,K, where

I represents the indicator function. By convention, we stipulate that for all k, Yk(a)

is invariant to the kth through K−1th elements of a (i.e., current survival status is

not affected by future exposures). With slight abuse of notation, for k = 0, 1...,K,

we let Yk(a0) denote the outcome that would have been realised had (only) A0 been

set to a0.

Consistency

For theorems about per-protocol effects, we assume consistency of the form: for

k = 1, ...,K and all a, Yk(a) = Yk if al = Al for all l = 0, ..., k − 1 such that Yl = 0.

For theorems about intention-to-treat effects, a weaker condition is sufficient and

assumed: for k = 1, ...,K and a = 0, 1, Yk(a) = Yk if a = A0. The assumption

may be further relaxed for theorems in which the estimand does not involve Yk(a),

k < K: for a = 0, 1, YK(a) = YK if a = A0.

Conditional exchangeability

We also consider a sequence of variables L = (L0, L1, ..., LK−1) that satisfies one of

the following conditions:

∀k, ∀a : (Yk+1(a), ..., YK(a)) ⊥⊥ Ak|Yk(a) = 0, Lk, Ak−1 = ak−1,

(sequential conditional exchangeability, SCE)

where ak−1 is understood to represent the (k− 1)th through (K − 1)th elements of

a, or

∀a0 : (Y1(a0), ..., YK(a0)) ⊥⊥ A0|L0,

(baseline conditional exchangeability, BCE)

although sometimes a weaker form of BCE suffices: ∀a0 : YK(a0) ⊥⊥ A0|L0.

Positivity

For the theorems that follow, we assume positivity to preclude division by zero and

undefined conditional probabilities, so that the weights that we will encounter are

finite and strictly greater than 1. The assumption can sometimes be relaxed if we

are willing to interpolate or extrapolate under (parametric) modelling assumptions.
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Appendix B: Identification results for non-matching
strategies
Intention-to-treat effect

For simplicity, it is assumed below that the covariates are discrete. The results can

however be extended to more general distributions.

Theorem 1 (Case-base sampling for marginal intention-to-treat effect) Suppose

BCE holds as well as

Pr(S = 1|L0, A0) = Pr(S = 1) = δ (S1)

for some δ ∈ (0, 1]. Then,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
,

where

W =
1

Pr(A0 = a|L0, S = 1)

∣∣∣∣
a=A0

,

Proof First, observe that Pr(A0 = a|L0, S = 1) = Pr(A0 = a|L0) for a = 0, 1,

because

Pr(A0 = a|L0, S = 1) =
Pr(S = 1|L0, A0 = a) Pr(A0 = a|L0)

Pr(S = 1|L0)

=
δ

δ
Pr(A0 = a|L0) (by S1)

= Pr(A0 = a|L0)

Hence,

W =
1

Pr(A0 = a|L0)

∣∣∣∣
a=A0

.

Now, consider the numerator of the left-hand side of the main equation in

Theorem 1 and note that, because of the above, we have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =

∑1
y=0 E

[
I(A0 = 1)WYK |YK = y

]
Pr(YK = y)∑1

y=0 E
[
I(A0 = 0)WYK |YK = y

]
Pr(YK = y)

=
E
[
I(A0 = 1)WYK

]
E
[
I(A0 = 0)WYK

]
=

E
[
WYK |A0 = 1

]
Pr(A0 = 1)

E
[
WYK |A0 = 0

]
Pr(A0 = 0)

,
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where

E
[
WYK |A0 = a

]
= E

{
E
[
WYK |L0, A0 = a

]
|A0 = a

}
=
∑
l

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

=
∑
l

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

(by consistency)

=
∑
l

Pr(YK(a) = 1|L0 = l) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

(by baseline conditional exchangeability)

=
∑
l

Pr(YK(a) = 1|L0 = l) Pr(A0 = a|L0 = l) Pr(L0 = l)

Pr(A0 = a|L0 = l) Pr(A0 = a)

=
1

Pr(A0 = a)

∑
l

Pr(YK(a) = 1, L0 = l)

=
Pr(YK(a) = 1)

Pr(A0 = a)
,

so that

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
.

Next, consider the denominator of the left-hand side of the main equation in

Theorem 1 and observe that

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
E
[
I(A0 = 1)WS

]
E
[
I(A0 = 0)WS

] =
E
[
WS|A0 = 1

]
Pr(A0 = 1)

E
[
WS|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WS|A0 = a

]
= E{E

[
WS|L0, A0 = a

]
|A0 = a}

=
∑
l

Pr(S = 1|L0, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

=
∑
l

δ Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)
(by S1)

=
δ

Pr(A0 = a)

∑
l

Pr(L0 = l)

=
δ

Pr(A0 = a)
,

so that

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] = 1.
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It follows that

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
.

Theorem 2 (Case-base sampling for conditional intention-to-treat effect) Suppose

BCE hold as well as S1, or the weaker version Pr(S = 1|L0, A0) = Pr(S = 1|L0) =

δL0
∈ (0, 1]. Then,

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
Pr(YK(1) = 1|L0)

Pr(YK(0) = 1|L0)
.

Proof We have

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

] =

∑1
y=0 E

[
I(A0 = 1)YK |L0, YK = y

]
Pr(YK = y|L0)∑1

y=0 E
[
I(A0 = 0)YK |L0, YK = y

]
Pr(YK = y|L0)

=
E
[
I(A0 = 1)YK |L0

]
E
[
I(A0 = 0)YK |L0

]
=

E
[
YK |L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
YK |L0, A0 = 0

]
Pr(A0 = 0|L0)

=
E
[
YK(1)|L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
YK(0)|L0, A0 = 0

]
Pr(A0 = 0|L0)

(by consistency)

=
E
[
YK(1)|L0

]
Pr(A0 = 1|L0)

E
[
YK(0)|L0

]
Pr(A0 = 0|L0)

.

(by baseline conditional exchangeability)

Also,

E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
E
[
I(A0 = 1)S|L0

]
E
[
I(A0 = 0)S|L0

]
=

E
[
S|L0, A0 = 1

]
Pr(A0 = 1|L0)

E
[
S|L0, A0 = 0

]
Pr(A0 = 0|L0)

=
δL0

Pr(A0 = 1|L0)

δL0
Pr(A0 = 0|L0)

(under the assumption that Pr(S = 1|L0, A0) = Pr(S = 1|L0) = δL0 ∈ (0, 1])

=
Pr(A0 = 1|L0)

Pr(A0 = 0|L0)
.
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It immediately follows that

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
Pr(YK(1) = 1|L0)

Pr(YK(0) = 1|L0)
.

Corollary 1 If in addition to the conditions of Theorem 2,

Pr(YK = 1|L0 = l, A0 = 1)

Pr(YK = 1|L0 = l, A0 = 0)
= θ (homogeneity condition H1)

for all l and some constant θ, then

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
,

because of the collapsibility of the risk ratio.

Theorem 3 (Survivor sampling for conditional intention-to-treat effect) Suppose

BCE holds as well as

Pr(S = 1|L0, A0, YK) = Pr(S = 1|L0, YK) = δL0 × (1− YK) (S2)

for some δL0
∈ (0, 1]. Then,

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
Odds(YK(1) = 1|L0)

Odds(YK(0) = 1|L0)
.

Proof First, consider the numerator of the left-hand side of the equation in

Theorem 3 and observe

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

] =
Pr(YK = 1|L0, A0 = 1)

Pr(YK = 1|L0, A0 = 0)
Odds(A0 = 1|L0)

=
Pr(YK(1) = 1|L0, A0 = 1)

Pr(YK(1) = 1|L0, A0 = 0)
Odds(A0 = 1|L0)

(by consistency)

=
Pr(YK(1) = 1|L0)

Pr(YK(1) = 1|L0)
Odds(A0 = 1|L0).

(by baseline conditional exchangeability)
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Next, consider the denominator and observe that

E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
E
[
I(A0 = 1)S|L0

]
E
[
I(A0 = 0)S|L0

]
=

E
[
S|L0, A0 = 1

]
E
[
S|L0, A0 = 0

]Odds(A0 = 1|L0)

=
δL0 Pr(YK = 0|L0, A0 = 1)

δL0
Pr(YK = 0|L0, A0 = 0)

Odds(A0 = 1|L0)

(by S2)

=
Pr(YK(1) = 0|L0, A0 = 1)

Pr(YK(0) = 0|L0, A0 = 0)
Odds(A0 = 1|L0)

(by consistency)

=
Pr(YK(1) = 0|L0)

Pr(YK(0) = 0|L0)
Odds(A0 = 1|L0).

(by baseline conditional exchangeability)

It follows that

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)|L0, S = 1

]
E
[
I(A0 = 0)|L0, S = 1

] =
Odds(YK(1) = 1|L0)

Odds(YK(0) = 1|L0)
.

Remark (Remark to Theorem 3) Under BCE, the stronger version of S2,

Pr(S = 1|L0, A0, YK) = Pr(S = 1|YK) = δ × (1− YK) (S2∗)

for some δ ∈ (0, 1] and with

W =
1

Pr(A0 = a|L0)

∣∣∣∣∣
a=A0

,

we have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
Odds(YK(1) = 1)

Odds(YK(0) = 1)
(1)

(see proof below). However, from

Pr(A0 = a|L0, S = 1) =
Pr(S = 1|L0, A0 = a) Pr(A0 = a|L0)

Pr(S = 1|L0)

=
δ Pr(YK = 0|L0, A0 = a) Pr(A0 = a|L0)

δ Pr(YK = 0|L0)
(by S2∗)
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= Pr(A0 = a|L0, YK = 0),

it follows that the weights W above are not identified by

1

Pr(A0 = a|L0, S = 1)

∣∣∣∣∣
a=A0

when YK 6⊥⊥ A0|L0. (However, Pr(A0 = a|L0, S = 1) approximates Pr(A0 =

a|L0) under a rare event assumption.) In fact, the target marginal odds ratio is

not identifiable, under BCE and S2∗ with unknown δ, from the available data

distribution, which is formed by the distribution of (L0, A0, YK , S)|(YK = 1∨S = 1).

A proof is given below.

Proof of (1) under stated conditions As shown in the proof to Theorem 1,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
.

Now,

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
E
[
I(A0 = 1)WS

]
E
[
I(A0 = 0)WS

] =
E
[
WS|A0 = 1

]
Pr(A0 = 1)

E
[
WS|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WS|A0 = a

]
= E{E

[
WS|L0, A0 = a

]
|A0 = a}

=
∑
l

Pr(S = 1|L0, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

=
∑
l

δ Pr(YK = 0|L0 = l, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

(by S2∗)

=
δ

Pr(A0 = a)

∑
l

Pr(YK = 0|L0 = l, A0 = a) Pr(L0 = l)

=
δ

Pr(A0 = a)

∑
l

Pr(YK(a) = 0|L0 = l, A0 = a) Pr(L0 = l)

(by consistency)

=
δ

Pr(A0 = a)

∑
l

Pr(YK(a) = 0, L0 = l)

(by baseline conditional exchangeability)

=
δ Pr(YK(a) = 0)

Pr(A0 = a)
,

so that

E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
Pr(YK(1) = 0)

Pr(YK(0) = 0)
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and, in turn,

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W |S = 1

]
E
[
I(A0 = 0)W |S = 1

] =
Odds(YK(1) = 1)

Odds(YK(0) = 1)
.

Proof of nonidentifiability of target marginal odds ratio under stated conditions Consider

two distributions of (L0, A0, YK , S) satisfying S2∗, each characterised by the

following conditionals:

YK ∼ Bernoulli(α),

S|YK ∼ Bernoulli(δ × (1− YK)),

L0|YK , S ∼ L0|YK ∼ Bernoulli(5/10− 2/10× YK),

A0|L0, YK , S ∼ A0|L0, YK ∼ Bernoulli(3/10 + 2/10× L0 + 3/10× YK).

The parameter values of the distributions are given in the table below.

Parameter Distribution 1 Distribution 2

α 1/10 2/10

δ 1/10 9/40

Now, for all l, a, y, s ∈ {0, 1},

Pr(L0 = l, A0 = a, YK = y, S = s|YK = 1 ∨ S = 1)

=
Pr(L0 = l, A0 = a, YK = y, S = s, YK = 1 ∨ S = 1)

Pr(YK = 1 ∧ S = 0) + Pr(YK = 0 ∧ S = 1) + Pr(YK = 1 ∧ S = 1)

=
I(y = 1 ∨ s = 1) Pr(L0 = l, A0 = a, YK = y, S = s)

Pr(YK = 1) + δ Pr(YK = 0)

= I(y = 1 ∨ s = 1)
Pr(L0 = l, A0 = a|YK = y) Pr(S = s|YK = y) Pr(YK = y)

α+ δ(1− α)

=


Pr(L0 = l, A0 = a|YK = 0)

(
1− α

α+ δ(1− α)

)
if y = 0 ∧ s = 1,

Pr(L0 = l, A0 = a|YK = 1)
α

α+ δ(1− α)
if y = 1 ∧ s = 0,

0 otherwise,

where

α

α+ δ(1− α)
= 10/19

under Distribution 1 and under Distribution 2. Hence, Distribution 1 and 2 imply

the same available data distribution.
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However, as we now show, the distributions imply different target marginal odds

ratios. Since

Pr(YK(a) = 1) =

1∑
l=0

Pr(YK(a) = 1|L0 = l) Pr(L0 = l)

=

1∑
l=0

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l) (by BCE)

=

1∑
l=0

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l) (by consistency)

=

1∑
l=0

Pr(L0 = l, A0 = a|YK = 1) Pr(YK = 1)

Pr(L0 = l, A0 = a)

1∑
y=0

Pr(L0 = l|YK = y) Pr(YK = y)

=
1∑
l=0

(
1 +

Pr(L0 = l, A0 = a|YK = 0) Pr(YK = 0)

Pr(L0 = l, A0 = a|YK = 1) Pr(YK = 1)

)−1 1∑
y=0

Pr(L0 = l|YK = y) Pr(YK = y)

for a = 0, 1, we have

Pr(YK(1) = 1) =
5 + 2α

10 + (25/7)/odds(α)
+

5− 2α

10 + (125/12)/odds(α)
and

Pr(YK(0) = 1) =
5 + 2α

10 + (25/2)/odds(α)
+

5− 2α

10 + (125/3)/odds(α)
,

so that

Odds(YK(1) = 1)

Odds(YK(0) = 1)
=


587, 791

167, 166
≈ 3.5 under Distribution 1,

512, 539

148, 789
≈ 3.4 under Distribution 2.

Hence, we found an available data distribution that is compatible with more than

one value of the target marginal odds ratio. This concludes the proof.

Theorem 4 (Risk-set sampling for marginal intention-to-treat effect) Suppose

BCE holds as well as

Pr(Sk = 1|L0, A0, Yk) = Pr(Sk = 1|Yk) = δ × (1− Yk), (S3)

for some δ ∈ (0, 1]. If

Pr(Yk+1(a) = 1|Yk(a) = 0) = θa (H2)

for a = 0, 1 and some constants θ0, θ1, then

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W

∑K−1
k=0 Sk

]
E
[
I(A0 = 0)W

∑K−1
k=0 Sk

] =
Pr(Yk+1(1) = 1|Yk+1(1) = 0)

Pr(Yk+1(0) = 1|Yk+1(0) = 0)
,
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where

W =
1

Pr(A0 = a|L0, S0 = 1)

∣∣∣∣
a=A0

,

Proof First, observe that Pr(A0 = a|L0, S0 = 1) = Pr(A0 = a|L0) for a = 0, 1,

because

Pr(A0 = a|L0, S0 = 1) =
Pr(S0 = 1|L0, A0 = a) Pr(A0 = a|L0)

Pr(S0 = 1|L0)

=
δ

δ
Pr(A0 = a|L0) (by S3)

= Pr(A0 = a|L0)

Hence,

W =
1

Pr(A0 = a|L0)

∣∣∣∣
a=A0

.

For the numerator of the main result of Theorem 4, we thus have

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
E
[
I(A0 = 1)WYK

]
E
[
I(A0 = 0)WYK

]
=

E
[
WYK |A0 = 1

]
Pr(A0 = 1)

E
[
WYK |A0 = 0

]
Pr(A0 = 0)

,

where

E
[
WYK |A0 = a

]
= E

{
E
[
WYK |L0, A0 = a

]
|A0 = a

}
=
∑
l

Pr(YK = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

=
∑
l

Pr(YK(a) = 1|L0 = l, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

(by consistency)

=
∑
l

Pr(YK(a) = 1|L0 = l) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

(by baseline conditional exchangeability)

=
∑
l

Pr(YK(a) = 1|L0 = l) Pr(A0 = a|L0 = l) Pr(L0 = l)

Pr(A0 = a|L0 = l) Pr(A0 = a)

=
1

Pr(A0 = a)

∑
l

Pr(YK(a) = 1, L0 = l)

=
Pr(YK(a) = 1)

Pr(A0 = a)
,

so that

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
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=

∑K−1
k=0 Pr(Yk+1(1) = 1, Yk(1) = 0)∑K−1
k=0 Pr(Yk+1(0) = 1, Yk(0) = 0)

=

∑K−1
k=0 Pr(Yk+1(1) = 1|Yk(1) = 0) Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk+1(0) = 1|Yk(0) = 0) Pr(Yk(0) = 0)

=

∑K−1
k=0 θ1 Pr(Yk(1) = 0)∑K−1
k=0 θ0 Pr(Yk(0) = 0)

(by H2)

=
θ1
θ0

∑K−1
k=0 Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk(0) = 0)

For the denominator, we have

E
[
I(A0 = 1)W

∑K−1
k=0 Sk

]
E
[
I(A0 = 0)W

∑K−1
k=0 Sk

] =
E
[
W
∑K−1
k=0 Sk|A0 = 1

]
Pr(A0 = 1)

E
[
W
∑K−1
k=0 Sk|A0 = 0

]
Pr(A0 = 0)

,

where

E
[
W
∑K−1
k=0 Sk|A0 = a

]
=
∑K−1
k=0 E

{
E
[
WSk|L0, A0 = a

]
|A0 = a

}
=

K−1∑
k=0

∑
l

Pr(Sk = 1|L0, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

=

K−1∑
k=0

∑
l

δ Pr(Yk = 0|L0 = l, A0 = a) Pr(L0 = l|A0 = a)

Pr(A0 = a|L0 = l)

(by S3)

=

K−1∑
k=0

∑
l

δ Pr(Yk = 0|L0 = l, A0 = a) Pr(L0 = l)

Pr(A0 = a)

=

K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0|L0 = l, A0 = a) Pr(L0 = l)

Pr(A0 = a)

(by consistency)

=

K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0|L0 = l) Pr(L0 = l)

Pr(A0 = a)

(by baseline conditional exchangeability)

=
1

Pr(A0 = a)

K−1∑
k=0

∑
l

δ Pr(Yk(a) = 0, L0 = l)

=
1

Pr(A0 = a)

K−1∑
k=0

δ Pr(Yk(a) = 0),

so that

E
[
I(A0 = 1)W

∑K−1
k=0 Sk

]
E
[
I(A0 = 0)W

∑K−1
k=0 Sk

] =

∑K−1
k=0 δ Pr(Yk(1) = 0)∑K−1
k=0 δ Pr(Yk(0) = 0)

=

∑K−1
k=0 Pr(Yk(1) = 0)∑K−1
k=0 Pr(Yk(0) = 0)

.
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It follows that

E
[
I(A0 = 1)W |YK = 1

]
E
[
I(A0 = 0)W |YK = 1

]
E
[
I(A0 = 1)W

∑K−1
k=0 Sk

]
E
[
I(A0 = 0)W

∑K−1
k=0 Sk

] =
Pr(Yk+1(1) = 1|Yk(1) = 0)

Pr(Yk+1(0) = 1|Yk(0) = 0)
.

Remark (Remark to Theorem 4) Condition S3 holds if, for some constant δ∗k,

Pr(Sk = 1) = δ∗k Pr(Yk+1 = 1, Yk = 0),

Sk ⊥⊥ (L0, A0, Y k)|Yk = 0,

Pr(Sk = 1|Yk = 1) = 0.

 (S3∗)

The first requirement of S3∗ essentially means that the frequency of incident cases in

the kth window is proportional to the frequency of controls selected in this window.

Under S3∗, S3 is met with δ = δ∗k Pr(Yk+1 = 1|Yk = 0), because

Pr(Sk = 1|L0, A0, Y k) = Pr(Sk = 1|Yk)

= Pr(Sk = 1|Yk = 0)× (1− Yk)

= Pr(Sk = 1|Yk = 0)× (1− Yk)

=
Pr(Sk = 1)

Pr(Yk = 0)
× (1− Yk)

=
δ∗k Pr(Yk+1 = 1, Yk = 0)

Pr(Yk = 0)
× (1− Yk)

= δ∗k Pr(Yk+1 = 1|Yk = 0)× (1− Yk).

Therefore, stipulating that δ∗k is k-invariant is to state that Pr(Yk+1 = 1|Yk = 0) is

constant for k = 0, ...,K − 1.

Theorem 5 (Risk-set sampling for conditional intention-to-treat effect) Suppose

BCE holds as well as S3, or the weaker version Pr(Sk = 1|L0, A0, Yk) = Pr(Sk =

1|L0, Yk) = δL0
× (1− Yk), δL0

∈ (0, 1]. If

Pr(Yk+1(a) = 1|L0 = l, Yk(a) = 0) = θa (H3)

for a = 0, 1, all l and some constants θ0, θ1, then

E
[
I(A0 = 1)|L0, YK = 1

]
E
[
I(A0 = 0)|L0, YK = 1

]
E
[
I(A0 = 1)

∑K−1
k=0 Sk|L0

]
E
[
I(A0 = 0)

∑K−1
k=0 Sk|L0

] =
Pr(Yk+1(1) = 1|L0, Yk(1) = 0)

Pr(Yk+1(0) = 1|L0, Yk(0) = 0)
.

The proof to Theorem 5 is similar to that of Theorem 4 and therefore omitted.
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Per-protocol effect

In this subsection, an individual qualifies as a case if and only if YK = 1 and

the subject adheres to the protocol that was assigned at baseline. For any study

participant, let Sk denote selection as a control for the period [tk, tk+1) and suppose

Sk satisfies

Sk = 1⇒ Yk = 0 with probability 1, and

Pr(Sk = 1|Lk, Ak, Yk = 0) = Pr(Sk = 1|Ak−1, Yk = 0) and

Pr(Sk = 1|Ak−1, A0 = ... = Ak−1, Yk = 0) = δ,

 (S4)

for some δ ∈ (0, 1].

Remark (Remark to Theorem 6) Condition S4 holds if, for some constant δ∗k,

Pr(Sk = 1) = δ∗k Pr(Yk+1 = 1, Yk = 0,∀j < k : Aj = A0) and

Sk ⊥⊥ (Lk, Ak, Y k)|(Yk = 0,∀j < k : Aj = A0) and

Sk = 1⇒ (Yk = 0,∀j < k : Aj = A0) with probability 1.

 (S4∗)

The first requirement of S4∗ essentially means that the frequency of protocol-

adherent incident cases in the kth window is proportional to the frequency of controls

selected in this window. Under S4∗, S4 is met with δ = δ∗k Pr(Yk+1 = 1|Yk = 0,∀j <
k : Aj = A0), because

Pr(Sk = 1|Lk, Ak, Y k)

= Pr(Sk = 1|Yk = 0,∀j < k : Aj = A0)× (1− Yk)× I(∀j < k : Aj = A0)

=
Pr(Sk = 1)

Pr(Yk = 0,∀j < k : Aj = A0)
× (1− Yk)× I(∀j < k : Aj = A0)

=
δ∗k Pr(Yk+1 = 1, Yk = 0,∀j < k : Aj = A0)

Pr(Yk = 0,∀j < k : Aj = A0)
× (1− Yk)× I(∀j < k : Aj = A0)

= δ∗k Pr(Yk+1 = 1|Yk = 0,∀j < k : Aj = A0)× (1− Yk)× I(∀j < k : Aj = A0).

Similarly, condition S4 holds if, for some constant δ∗∗k ,

Pr(Sk = 1) = δ∗∗k Pr(Yk+1 = 1, Yk = 0) and

Sk ⊥⊥ (Lk, Ak, Y k)|(Yk = 0) and

Sk = 1⇒ Yk = 0 with probability 1,

 (S4∗∗)

in which case, δ = δ∗∗k Pr(Yk+1 = 1|Yk = 0), because

Pr(Sk = 1|Lk, Ak, Y k)

= Pr(Sk = 1|Yk = 0)× (1− Yk)

=
Pr(Sk = 1)

Pr(Yk = 0)
× (1− Yk)

=
δ∗∗k Pr(Yk+1 = 1, Yk = 0)

Pr(Yk = 0)
× (1− Yk)

= δ∗∗k Pr(Yk+1 = 1|Yk = 0)× (1− Yk).



Page 15 of 32

Theorem 6 (Risk-set sampling for marginal per-protocol effect) Suppose SCE

and S4 hold. If

Pr(Yk+1(a) = 1|Yk(a) = 0) = θa (H4)

for a = 0, 1 and some constants θ0, θ1, then

E
[∑K−1

k=0 I(Ak = 1)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = 0)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0⇒ Aj = A0)
]

E
[
I(A0 = 1)

∑K−1
k=0 WkSk|∀j : Yj = 0⇒ Aj = A0

]
E
[
I(A0 = 0)

∑K−1
k=0 WkSk|∀j : Yj = 0⇒ Aj = A0

]
=

Pr(Yk+1(1) = 1|Yk(1) = 0)

Pr(Yk+1(0) = 1|Yk(0) = 0)
,

where

Wk =

k∏
j=0

1

Pr(Aj = aj |Lj , Aj−1, Yj = 0, Sj = 1)

∣∣∣∣
aj=Aj

.

Proof First, observe that Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0, Sk = 1) =

Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0) for a′, a = 0, 1, because

Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0, Sk = 1)

=
Pr(Sk = 1|Lk, (∀j < k : Aj = a), Ak = a′, Yk = 0) Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0)

Pr(Sk = 1|Lk, (∀j < k : Aj = a), Yk = 0)

=
δ

δ
Pr(Ak = a′|Lk, (∀j < k : Aj = a), Yk = 0). (by S4)

Hence, if ∀j < k : Aj = A0, then

Wk =

k∏
j=0

1

Pr(Aj = aj |Lj , Aj−1, Yj = 0)

∣∣∣∣
aj=Aj

.

For the numerator of the main result of Theorem 6, we thus have

E
[∑K−1

k=0 I(Ak = 1)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = 0)WkI(Yk+1 = 1, Yk = 0)|YK = 1, (∀j : Yj = 0⇒ Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a′)WkI(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = A0)
]

=

∑K−1
k=0 E

[
WkYk+1(1− Yk)I(∀j ≤ k : Aj = a)

]∑K−1
k=0 E

[
WkYk+1(1− Yk)I(∀j ≤ k : Aj = a′)

]

=

K−1∑
k=0

∑
lk

Pr(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = a, Lk = lk)∏k
j=0 Pr(Aj = a|Yj = 0, Lk = lk,∀i < j : Ai = a)

K−1∑
k=0

∑
lk

Pr(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = a′, Lk = lk)∏k
j=0 Pr(Aj = a′|Yj = 0, Lk = lk,∀i < j : Ai = a′)

,
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where

∑
lk

Pr(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = a, Lk = lk)∏k
j=0 Pr(Aj = a|Yj = 0, Lk = lk,∀i < j : Ai = a)

=
∑
lk

Pr(Yk+1 = 1|Yk = 0, Lk = lk,∀j ≤ k : Aj = a)

× Pr(Lk = lk|Yk = 0, Lk−1 = lk−1,∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1 = 1|Yj = 0, Lj = lj ,∀i ≤ j : Ai = a)

× Pr(Lj = lj |Yj = 0, Lj−1 = lj−1,∀i < j : Ai = a)

=
∑
lk

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk = lk,∀j ≤ k : Aj = a)

× Pr(Lk = lk|Yk(a) = 0, Lk−1 = lk−1,∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj ,∀i ≤ j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)

(by consistency)

=
∑
lk

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk = lk,∀j < k : Aj = a)

× Pr(Lk = lk|Yk(a) = 0, Lk−1 = lk−1,∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj ,∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)

(by sequential conditional exchangeability)

=
∑
lk−1

Pr(Yk+1(a) = 1|Yk(a) = 0, Lk−1 = lk−1,∀j < k : Aj = a)

×
k−1∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj ,∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)

=
∑
lk−1

Pr(Yk+1(a) = 1, Yk(a) = 0|Yk−1(a) = 0, Lk−1 = lk−1,∀j < k : Aj = a)

× Pr(Lk−1 = lk−1|Yk−1(a) = 0, Lk−2 = lk−2,∀j < k − 1 : Aj = a)

×
k−2∏
j=0

Pr(Yj+1(a) = 1|Yj(a) = 0, Lj = lj ,∀i < j : Ai = a)

× Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)

...

(by repeating previous three steps, under sequential conditional exchangeability)
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= Pr(Yk+1(a) = 1, Yk(a) = 0)

and, similarly,

∑
lk

Pr(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = a′, Lk = lk)∏k
j=0 Pr(Aj = a′|Yj = 0, Lk = lk,∀i < j : Ai = a′)

= Pr(Yk+1(a′) = 1, Yk(a′) = 0).

Hence,

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = A0)
]

E
[∑K−1

k=0 I(Ak = a′)WkI(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = A0)
]

=

∑K−1
k=0 Pr(Yk+1(a) = 1, Yk(a) = 0)∑K−1
k=0 Pr(Yk+1(a′) = 1, Yk(a′) = 0)

=

∑K−1
k=0 Pr(Yk+1(a) = 1|Yk(a) = 0)

∏k
j=1 Pr(Yj(a) = 0|Yj−1(a) = 0)∑K−1

k=0 Pr(Yk+1(a′) = 1|Yk(a′) = 0)
∏k
j=1 Pr(Yj(a

′) = 0|Yj−1(a′) = 0)

=

∑K−1
k=0 θa(1− θa)k∑K−1
k=0 θa′(1− θa′)k

(H4)

=
1− (1− θa)K

1− (1− θa′)K
(since (1− r)

∑u
k=l ar

k = a(rl − ru+1) for any real a, r)

For the denominator, we have

E
[
I(A0 = a)

∑K−1
k=0 WkSk|∀j : Yj = 0⇒ Aj = A0

]
E
[
I(A0 = a′)

∑K−1
k=0 WkSk|∀j : Yj = 0⇒ Aj = A0

]
=

E
[∑K−1

k=0 I(Ak = a)WkSk|∀j : Yj = 0⇒ Aj = A0

]
E
[∑K−1

k=0 I(Ak = a′)WkSk|∀j : Yj = 0⇒ Aj = A0

]
=

∑K−1
k=0 E

[
I(Ak = a)WkSk|∀j : Yj = 0⇒ Aj = A0

]∑K−1
k=0 E

[
I(Ak = a′)WkSk|∀j : Yj = 0⇒ Aj = A0

]
=

∑K−1
k=0 E

[
I(Ak = a)WkSk|Yk = 0,∀j ≤ k : Aj = A0

]
Pr(Yk = 0|∀j : Yj = 0⇒ Aj = A0)∑K−1

k=0 E
[
I(Ak = a′)WkSk|Yk = 0,∀j ≤ k : Aj = A0

]
Pr(Yk = 0|∀j : Yj = 0⇒ Aj = A0)

(by S4)

=

∑K−1
k=0 E

[
I(Ak = a)WkSk|Yk = 0,∀j ≤ k : Aj = A0

]
Pr(Yk = 0,∀j ≤ k : Aj = A0)∑K−1

k=0 E
[
I(Ak = a′)WkSk|Yk = 0,∀j ≤ k : Aj = A0

]
Pr(Yk = 0,∀j ≤ k : Aj = A0)

=

∑K−1
k=0 E

[
WkSk|Yk = 0,∀j ≤ k : Aj = a

]
Pr(Yk = 0,∀j ≤ k : Aj = a)∑K−1

k=0 E
[
WkSk|Yk = 0,∀j ≤ k : Aj = a′

]
Pr(Yk = 0,∀j ≤ k : Aj = a′)

=

K−1∑
k=0

∑
lk

E
[
Sk|Yk = 0, Lk = lk,∀j ≤ k : Aj = a

]
Pr(Yk = 0, Lk = lk,∀j ≤ k : Aj = a)∏k

j=0 Pr(Aj = a|Yj = 0, Lj = lj ,∀i < j : Ai = a)

K−1∑
k=0

∑
lk

E
[
Sk|Yk = 0, Lk = lk,∀j ≤ k : Aj = a′

]
Pr(Yk = 0, Lk = lk,∀j ≤ k : Aj = a′)∏k

j=0 Pr(Aj = a′|Yj = 0, Lj = lj ,∀i < j : Ai = a′)
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=

K−1∑
k=0

∑
lk

δ
Pr(Yk = 0, Lk = lk,∀j ≤ k : Aj = a)∏k

j=0 Pr(Aj = a|Yj = 0, Lj = lj ,∀i < j : Ai = a)

K−1∑
k=0

∑
lk

δ
Pr(Yk = 0, Lk = lk,∀j ≤ k : Aj = a′)∏k

j=0 Pr(Aj = a′|Yj = 0, Lj = lj ,∀i < j : Ai = a′)

(by S4)

=

∑K−1
k=0

∑
lk
δ
∏k
j=0 Pr(Yj = 0, Lj = lj |Yj−1 = 0, Lj−1 = lj−1,∀i < j : Ai = a)∑K−1

k=0

∑
lk
δ
∏k
j=0 Pr(Yj = 0, Lj = lj |Yj−1 = 0, Lj−1 = lj−1,∀i < j : Ai = a′)

=

K−1∑
k=0

∑
lk

δ

k∏
j=0

Pr(Lj = lj |Yj = 0, Lj−1 = lj−1,∀i < j : Ai = a)×
Pr(Yj = 0|Yj−1 = 0, Lj−1 = lj−1,∀i < j : Ai = a)

K∑
k=0

−1
∑
lk

δ

k∏
j=0

Pr(Lj = lj |Yj = 0, Lj−1 = lj−1,∀i < j : Ai = a′)×
Pr(Yj = 0|Yj−1 = 0, Lj−1 = lj−1,∀i < j : Ai = a′)

=

K−1∑
k=0

∑
lk

δ
k∏
j=0

Pr(Lj = lj |Yj(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)×
Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)

K−1∑
k=0

∑
lk

δ

k∏
j=0

Pr(Lj = lj |Yj(a′) = 0, Lj−1 = lj−1,∀i < j : Ai = a′)×
Pr(Yj(a

′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1,∀i < j : Ai = a′)

(by consistency)

=

K−1∑
k=0

∑
lk−1

δ

k∏
j=0

Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1,∀i < j : Ai = a)×
Pr(Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−1

δ

k∏
j=0

Pr(Yj(a
′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1,∀i < j : Ai = a′)×

Pr(Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a′)

=

K−1∑
k=0

∑
lk−1

δ

k∏
j=0

Pr(Yj(a) = 0|Yj−1(a) = 0, Lj−1 = lj−1,∀i < j − 1 : Ai = a)×
Pr(Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−1

δ

k∏
j=0

Pr(Yj(a
′) = 0|Yj−1(a′) = 0, Lj−1 = lj−1,∀i < j − 1 : Ai = a′)×

Pr(Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a′)

(by sequential conditional exchangeability)

=

∑K−1
k=0

∑
lk−1

δ
∏k
j=0 Pr(Yj(a) = 0, Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a)∑K−1

k=0

∑
lk−1

δ
∏k
j=0 Pr(Yj(a

′) = 0, Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a′)

=

K−1∑
k=0

∑
lk−2

δ
Pr(Yk(a) = 0|Yk−1(a) = 0, Lk−2 = lk−2,∀i < k − 1 : Ai = a)×∏k−1

j=0 Pr(Yj(a) = 0, Lj−1 = lj−1|Yj−1(a) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a)

K−1∑
k=0

∑
lk−2

δ
Pr(Yk(a′) = 0|Yk−1(a′) = 0, Lk−2 = lk−2,∀i < k − 1 : Ai = a′)×∏k−1

j=0 Pr(Yj(a
′) = 0, Lj−1 = lj−1|Yj−1(a′) = 0, Lj−2 = lj−2,∀i < j − 1 : Ai = a′)

... (by sequential conditional exchangeability)

=

∑K−1
k=0 δ Pr(Yk(a) = 0)∑K−1
k=0 δ Pr(Yk(a′) = 0)

=

∑K−1
k=0 Pr(Yk(a) = 0)∑K−1
k=0 Pr(Yk(a′) = 0)
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=
1 +

∑K−1
k=1

∏k
j=1 Pr(Yj(a) = 0|Yj−1(a) = 0)

1 +
∑K−1
k=1

∏k
j=1 Pr(Yj(a

′) = 0|Yj−1(a′) = 0)

=
1 +

∑K−1
k=1 (1− θa)k

1 +
∑K
k=1(1− θa′)k

(by H4)

=
1 + [1− θa − (1− θa)K−1]/θa

1 + [1− θa′ − (1− θa′)K−1]/θa′

(since (1− r)
∑u
k=l ar

k = a(rl − ru+1) for any real a, r)

=
θa′(1− (1− θa)K−1)

θa(1− (1− θa′)K−1)
.

Hence,

E
[∑K−1

k=0 I(Ak = a)WkI(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = A0)|YK = 1
]

E
[∑K−1

k=0 I(Ak = 1− a)WkI(Yk+1 = 1, Yk = 0,∀j ≤ k : Aj = A0)|YK = 1
]

E
[∑K−1

k=0 I(Ak = a)WkSk
]

E
[∑K−1

k=0 I(Ak = 1− a)WkSk
]

=
1− (1− θa)K−1

1− (1− θa′)K−1
× θa(1− (1− θa′)K−1)

θa′(1− (1− θa)K−1)

= θa/θa′ ,

which completes the proof.

Appendix C: Identification results for exact 1:M
matching strategies

Intention-to-treat effect

In this subsection, cases are defined by YK = 1 and have baseline exposure A0. All

cases are assigned a (possibly variable) number M ≥ 0 of control exposures A′i,

i = 1, ...,M , subject to

Pr(M > 0|YK = 1) > 0 and

M ⊥⊥ A0|(L0, YK = 1) and

∀l, a, a′ : Pr(A′i = a′|L0 = l, A0 = a, YK = 1,M,M > 0) = Pr(A0 = a′|L0 = l),


(M1)

or

Pr(M > 0|YK = 1) > 0 and

M ⊥⊥ A0|(L0, YK = 1) and

∀l, a, a′ : Pr(A′i = a′|L0 = l, A0 = a, YK = 1,M,M > 0) = Pr(A0 = a′|L0 = l, YK = 0),


(M2)
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or

Pr(M > 0|YK = 1) > 0 and

M ⊥⊥ A0|(L0, YK = 1, J) and

∀l, a, a′ : Pr(A′i = a′|L0 = l, A0 = a, Y K , J = j,M,M > 0) = Pr(A0 = a′|L0 = l, Yj = 0), where

J = max{k = 0, 1, ...,K : Yk = 0}.


(M3)

That is, cases are matched with subjects that have the same baseline covariate level

and who are alive at baseline (M1), at the end of study (M2), or whenever the case

is alive (M3).

For simplicity, it is assumed below that the variables are discrete. The results can

however be extended to more general distributions.

Theorem 7 (Case-base sampling for marginal intention-to-treat effect) If M1 and

BCE hold and

Pr(YK = 1|L0 = l, A0 = 1)

Pr(YK = 1|L0 = l, A0 = 0)
= θ (H1)

for all l and some constant θ, then

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
Pr(YK(1) = 1)

Pr(YK(0) = 1)
.

Proof We have

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
E
[∑M

i=1 I(A′i = 0)
∣∣A0 = 1, YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1)
∣∣A0 = 0, YK = 1,M > 0

]
×Odds(A0 = 1|YK = 1,M > 0),

where

E
[∑M

i=1 I(A′i = 0)
∣∣A0 = 1, YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1)
∣∣A0 = 0, YK = 1,M > 0

]
=

∑
m>0 E

[∑m
i=1 I(A′i = 0)

∣∣A0 = 1, YK = 1,M = m
]

Pr(M = m|A0 = 1, YK = 1,M > 0)∑
m>0 E

[∑m
i=1 I(A′i = 1)

∣∣A0 = 0, YK = 1,M = m
]

Pr(M = m|A0 = 0, YK = 1,M > 0)

=

∑
m>0

∑m
i=1

∑
l Pr(A′i = 0|L0 = l, A0 = 1, YK = 1,M = m) Pr(M = m,L0 = l|A0 = 1, YK = 1,M > 0)∑

m>0

∑m
i=1

∑
l Pr(A′i = 1|L0 = l, A0 = 0, YK = 1,M = m) Pr(M = m,L0 = l|A0 = 0, YK = 1,M > 0)

=

∑
m>0

∑m
i=1

∑
l Pr(A0 = 0|L0 = l) Pr(M = m,L0 = l|A0 = 1, YK = 1,M > 0)∑

m>0

∑m
i=1

∑
l Pr(A0 = 1|L0 = l) Pr(M = m,L0 = l|A0 = 0, YK = 1,M > 0)

(by M1)

=

∑
m>0

∑m
i=1

∑
l Pr(A0 = 0|L0 = l) Pr(M = m,L0 = l, A0 = 1|YK = 1)∑

m>0

∑m
i=1

∑
l Pr(A0 = 1|L0 = l) Pr(M = m,L0 = l, A0 = 0|YK = 1)

1

Odds(A0 = 1|YK = 1,M > 0)

=

∑
m>0

∑m
i=1

∑
l q(l,m) Pr(YK = 1|L0 = l, A0 = 1)∑

m>0

∑m
i=1

∑
l q(l,m) Pr(YK = 1|L0 = l, A0 = 0)
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× 1

Odds(A0 = 1|YK = 1,M > 0)

(under M1 and definition of q(l,m) (see below))

=

∑
m>0

∑m
i=1

∑
l q(l,m)θPr(YK = 1|L0 = l, A0 = 0)∑

m>0

∑m
i=1

∑
l q(l,m) Pr(YK = 1|L0 = l, A0 = 0)

1

Odds(A0 = 1|YK = 1,M > 0)

(by H1)

=
θ

Odds(A0 = 1|YK = 1,M > 0)

where q(l,m) = Pr(M = m|L0 = l, YK = 1) Pr(A0 = 0|L0 = l) Pr(A0 = 1|L0 =

l) Pr(L0 = l).

It follows that

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
Pr(YK = 1|L0, A0 = 1)

Pr(YK = 1|L0, A0 = 0)

=
Pr(YK(1) = 1|L0, A0 = 1)

Pr(YK(0) = 1|L0, A0 = 0)

(by consistency)

=
Pr(YK(1) = 1|L0)

Pr(YK(0) = 1|L0)

(by baseline conditional exchangeability)

=
Pr(YK(1) = 1)

Pr(YK(0) = 1)
.

Theorem 8 (Survivor sampling for conditional intention-to-treat effect) Suppose

M2 and BCE hold. If

Odds(YK = 1|L0, A0 = 1)

Odds(YK = 1|L0, A0 = 0)
= θ (H5)

for some constant θ, then

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
Odds(YK(1) = 1|L0)

Odds(YK(0) = 1|L0)
.

Proof We have

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
E
[∑M

i=1 I(A′i = 0)
∣∣A0 = 1, YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1)
∣∣A0 = 0, YK = 1,M > 0

]
×Odds(A0 = 1|YK = 1,M > 0),

where

E
[∑M

i=1 I(A′i = 0)
∣∣A0 = 1, YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1)
∣∣A0 = 0, YK = 1,M > 0

]
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=

∑
m>0 E

[∑m
i=1 I(A′i = 0)

∣∣A0 = 1, YK = 1,M = m
]

Pr(M = m|A0 = 1, YK = 1)∑
m>0 E

[∑m
i=1 I(A′i = 1)

∣∣A0 = 0, YK = 1,M = m
]

Pr(M = m|A0 = 0, YK = 1)

=

∑
m>0

∑m
i=1

∑
l Pr(A′i = 0|L0 = l, A0 = 1, YK = 1,M = m) Pr(M = m,L0 = l|A0 = 1, YK = 1,M > 0)∑

m>0

∑m
i=1

∑
l Pr(A′i = 1|L0 = l, A0 = 0, YK = 1,M = m) Pr(M = m,L0 = l|A0 = 0, YK = 1,M > 0)

=

∑
m>0

∑m
i=1

∑
l Pr(A0 = 0|L0 = l, YK = 0) Pr(M = m,L0 = l|A0 = 1, YK = 1,M > 0)∑

m>0

∑m
i=1

∑
l Pr(A0 = 1|L0 = l, YK = 0) Pr(M = m,L0 = l|A0 = 0, YK = 1,M > 0)

(by M2)

=

∑
m>0

m∑
i=1

∑
l

Pr(YK = 0|L0 = 0, A0 = 0) Pr(A0 = 0|L0 = l)

Pr(YK = 0|L0 = l)
Pr(M = m,L0 = l, A0 = 1|YK = 1)

∑
m>0

m∑
i=1

∑
l

Pr(YK = 0|L0 = 0, A0 = 1) Pr(A0 = 1|L0 = l)

Pr(YK = 0|L0 = l)
Pr(M = m,L0 = l, A0 = 0|YK = 1)

× 1

Odds(A0 = 1|YK = 1,M > 0)

=

∑
m>0

∑m
i=1

∑
l q(l,m) Pr(YK = 1|L0 = l, A0 = 1) Pr(YK = 0|L0 = 0, A0 = 0)∑

m>0

∑m
i=1

∑
l q(l,m) Pr(YK = 1|L0 = l, A0 = 0) Pr(YK = 0|L0 = 0, A0 = 1)

× 1

Odds(A0 = 1|YK = 1,M > 0)

(under M2 and definition of q(l,m) (see below))

=

∑
m>0

∑m
i=1

∑
l q(l,m)θPr(YK = 1|L0 = l, A0 = 0) Pr(YK = 0|L0 = 0, A0 = 1)∑

m>0

∑m
i=1

∑
l q(l,m) Pr(YK = 1|L0 = l, A0 = 0) Pr(YK = 0|L0 = 0, A0 = 1)

× 1

Odds(A0 = 1|YK = 1,M > 0)
(by H5)

=
θ

Odds(A0 = 1|YK = 1,M > 0)

where q(l,m) = Pr(M = m|L0 = l, YK = 1) Pr(A0 = 0|L0 = l) Pr(A0 = 1|L0 =

l) Pr(L0 = l)/Pr(YK = 0|L0 = l).

From the definition of θ, it follows that

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
Odds(YK(1) = 1|L0, A0 = 1)

Odds(YK(0) = 1|L0, A0 = 0)

(by consistency)

=
Odds(YK(1) = 1|L0)

Odds(YK(0) = 1|L0)

(by baseline conditional exchangeability)

=
Odds(YK(1) = 1)

Odds(YK(0) = 1)
.

Theorem 9 (Risk-set sampling for conditional intention-to-treat effect) Suppose

M3 and BCE hold. If

Pr(Yj+1 = 1|L0, A0 = 1, Yj = 0)

Pr(Yj+1 = 1|L0, A0 = 0, Yj = 0)
= θ (H6)
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for j = 0, 1, ...,K and some constant θ, then

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

] =
Pr(Yj+1(1) = 1|L0, Yj(1) = 0)

Pr(Yj+1(0) = 1|L0, Yj(0) = 0)
.

Proof If J = max{k = 0, 1, ...,K : Yk = 0}, then

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1,M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1,M > 0

]
=

∑
m>0 E

[∑m
i=1 I(A′i = 0, A0 = 1)

∣∣YK = 1,M = m
]

Pr(M = m|YK = 1,M > 0)∑
m>0 E

[∑m
i=1 I(A′i = 1, A0 = 0)

∣∣YK = 1,M = m
]

Pr(M = m|YK = 1,M > 0)

=

∑
m>0 E

[∑m
i=1 I(A′i = 0, A0 = 1)

∣∣YK = 1,M = m
]

Pr(M = m,YK = 1)∑
m>0 E

[∑m
i=1 I(A′i = 1, A0 = 0)

∣∣YK = 1,M = m
]

Pr(M = m,YK = 1)

=

∑
m>0

∑K−1
j=0

∑
l E
[∑m

i=1 I(A′i = 0, A0 = 1)
∣∣L0 = l, J = j,M = m

]
Pr(L0 = l, J = j,M = m)∑

m>0

∑K−1
j=0

∑
l E
[∑m

i=1 I(A′i = 1, A0 = 0)
∣∣L0 = l, J = j,M = m

]
Pr(L0 = l, J = j,M = m)

=

∑
m>0

∑m
i=1

∑K−1
j=0

∑
l E
[
I(A′i = 0, A0 = 1)

∣∣L0 = l, J = j,M = m
]

Pr(L0 = l, J = j,M = m)∑
m>0

∑m
i=1

∑K−1
j=0

∑
l E
[
I(A′i = 1, A0 = 0)

∣∣L0 = l, J = j,M = m
]

Pr(L0 = l, J = j,M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′i = 0, A0 = 1)

∣∣L0 = l, Yj = 0, Yj+1 = 1,M = m
]

× Pr(L0 = l, Yj = 0, Yj+1 = 1,M = m)∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

E
[
I(A′i = 1, A0 = 0)

∣∣L0 = l, Yj = 0, Yj+1 = 1,M = m
]

× Pr(L0 = l, Yj = 0, Yj+1 = 1,M = m)

=

∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A′i = 0|L0 = l, A0 = 1, Yj = 0, Yj+1 = 1,M = m)

× Pr(L0 = l, A0 = 1, Yj = 0, Yj+1 = 1,M = m)∑
m>0

m∑
i=1

K−1∑
j=0

∑
l

Pr(A′i = 1|L0 = l, A0 = 0, Yj = 0, Yj+1 = 1,M = m)

× Pr(L0 = l, A0 = 0, Yj = 0, Yj+1 = 1,M = m)

=

∑
m>0

∑m
i=1

∑K−1
j=0

∑
l Pr(A0 = 0|L0 = l, Yj = 0) Pr(L0 = l, A0 = 1, Yj = 0, Yj+1 = 1,M = m)∑

m>0

∑m
i=1

∑K−1
j=0

∑
l Pr(A0 = 1|L0 = l, Yj = 0) Pr(L0 = l, A0 = 0, Yj = 0, Yj+1 = 1,M = m)

(by M3)

=

∑
m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l,m) Pr(Yj+1 = 1|L0 = l, A0 = 1, Yj = 0)∑

m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l,m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)

(under M3 and definition of qj(l,m) (see below))

= θ

∑
m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l,m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)∑

m>0

∑m
i=1

∑K−1
j=0

∑
l qj(l,m) Pr(Yj+1 = 1|L0 = l, A0 = 0, Yj = 0)

(by H6)

= θ.

where qj(l,m) = Pr(M = m|L0 = l, Yj = 0) Pr(A0 = 1|L0 = l, Yj = 0) Pr(A0 =

0|L0 = l, Yj = 0) Pr(L0 = l, Yj = 0).
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Thus,

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣YK = 1

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣YK = 1

] =
Pr(Yj+1 = 1|L0, A0 = 1, Yj = 0)

Pr(Yj+1 = 1|L0, A0 = 0, Yj = 0)

=
Pr(Yj+1(1) = 1|L0, A0 = 1, Yj(1) = 0)

Pr(Yj+1(0) = 1|L0, A0 = 0, Yj(0) = 0)

(by consistency)

=
Pr(Yj+1(1) = 1|L0, Yj(1) = 0)

Pr(Yj+1(0) = 1|L0, Yj(0) = 0)
.

(by baseline conditional exchangeability)

Per-protocol effect

In this subsection, an individual qualifies as a case if and only if YK = 1 and the

subject adheres to the protocol that was assigned at baseline (i.e., Ak = A0 for all

k = 0, 1, ...,K if Yk = 0). All cases are assigned a (possibly variable) number M ≥ 0

control exposures A′i, i = 1, ...,M , subject to

Pr(M > 0|YK = 1,∀j : (Yj = 0⇒ Aj = A0)) > 0 and

M ⊥⊥ A0|(J, YK = 1, LJ = lJ ,∀i ≤ J : Ai = A0) and

∀l, a : Pr(A′i = a′|LJ = lJ ,∀j ≤ J : Aj = A0, A0 = a, YJ = 0, J,M,M > 0)

= Pr(AJ = a′|LJ = lJ ,∀j ≤ J : Aj = A0, YJ = 0), where

J = max{k = 0, 1, ...,K : Yk = 0}.


(M4)

Theorem 10 (Risk-set sampling for conditional per-protocol effect) Suppose M4

holds. If

Pr(Yj+1 = 1|Lj = lj , Yj = 0,∀i ≤ j : Ai = 1)

Pr(Yj+1 = 1|Lj = lj , Yj = 0,∀i ≤ j : Ai = 0)
= θ (H7)

for all j, lj and some constant θ, then

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣∣YK = 1,∀j : (Yj = 0⇒ Aj = A0),M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣∣YK = 1,∀j : (Yj = 0⇒ Aj = A0),M > 0

]
=

Pr(Yj+1(1) = 1|Lj = lj , Yj(1) = 0,∀i ≤ j : Ai = 1)

Pr(Yj+1(0) = 1|Lj = lj , Yj(0) = 0,∀i ≤ j : Ai = 0)
.

Proof Let J = max{k = 0, 1, ...,K : Yk = 0}. Then, for a = 0, 1,

E

[
M∑
i=1

I(A′i = 1− a,A0 = a)

∣∣∣∣∣YK = 1,∀j ≤ J : Aj = A0,M > 0

]

=

K−1∑
j=0

∑
lj

E

[
M∑
i=1

I(A′i = 1− a,A0 = a)

∣∣∣∣∣Lj = lj , J = j, YK = 1,∀j ≤ J : Aj = A0,M > 0

]
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× Pr(Lj = lj , J = j|YK = 1,∀i ≤ J : Ai = A0,M > 0)

=

K−1∑
j=0

∑
lj

E

[
M∑
i=1

I(A′i = 1− a,A0 = a)

∣∣∣∣∣Lj = lj , Yj = 0, Yj+1 = 1,∀j ≤ J : Aj = A0,M > 0

]

× Pr(Lj = lj , Yj = 0, Yj+1 = 1|YK = 1,∀i ≤ J : Ai = A0,M > 0)

=
∑
m>0

K−1∑
j=0

∑
lj

E

[
m∑
i=1

I(A′i = 1− a,A0 = a)

∣∣∣∣∣Lj = lj , Yj = 0, Yj+1 = 1,∀j ≤ J : Aj = A0,M = m

]

× Pr(M = m,Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0,M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

E

[
I(A′u = 1− a,A0 = a)

∣∣∣∣∣Lj = lj , Yj = 0, Yj+1 = 1,∀j ≤ J : Aj = A0,M = m

]

× Pr(M = m,Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0,M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A′u = 1− a|Lj = lj , Yj = 0, Yj+1 = 1,∀j ≤ J : Aj = a,M = m)

× Pr(M = m,A0 = a, Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0,M > 0)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A0 = 1− a|Yj = 0, Lj = lj ,∀i ≤ j : Ai = A0)

× Pr(M = m,A0 = a, Lj = lj , Yj = 0, Yj+1 = 1|∀j ≤ J : Aj = A0,M > 0)

(by M4)

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(A0 = 1− a|Yj = 0, Lj = lj ,∀i ≤ j : Ai = A0)

× Pr(M = m,Lj = lj , A0 = a, Yj+1 = 1, Yj = 0,∀i ≤ j : Ai = A0)

× Pr(YK = 1,∀i : (Yi = 0⇒ Ai = A0),M > 0)−1

=
∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = a, Yj = 0,∀i ≤ j : Ai = A0)

× qj(lj ,m) Pr(YK = 1,∀i : (Yi = 0⇒ Ai = A0),M > 0)−1,

(under M4)

where

qj(lj ,m) = Pr(M = m|Lj = lj , Yj = 0, Yj+1 = 1,∀i ≤ j : Ai = A0)

× Pr(A0 = 1− a|Yj = 0, Lj = lj ,∀i ≤ j : Ai = A0)

× Pr(A0 = a|Yj = 0, Lj = lj ,∀i ≤ j : Ai = A0)

× Pr(Lj = lj , Yj = 0,∀i ≤ j : Ai = A0).

It follows that

E
[∑M

i=1 I(A′i = 0, A0 = 1)
∣∣∣YK = 1,∀j : (Yj = 0⇒ Aj = A0),M > 0

]
E
[∑M

i=1 I(A′i = 1, A0 = 0)
∣∣∣YK = 1,∀j : (Yj = 0⇒ Aj = A0),M > 0

]
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=

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0,∀i ≤ j : Ai = A0)

×qj(lj ,m) Pr(YK = 1,∀i : (Yi = 0⇒ Ai = A0),M > 0)−1

∑
m>0

m∑
u=1

K−1∑
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 0, Yj = 0,∀i ≤ j : Ai = A0)

×qj(lj ,m) Pr(YK = 1,∀i : (Yi = 0⇒ Ai = A0),M > 0)−1

=

∑
m>0

∑m
u=1

∑K−1
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0,∀i ≤ j : Ai = A0)qj(lj ,m)∑
m>0

∑m
u=1

∑K−1
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , A0 = 1, Yj = 0,∀i ≤ j : Ai = A0)qj(lj ,m)

= θ

∑
m>0

∑m
u=1

∑K−1
j=0

∑
lj

Pr(Yj+1 = 1|Lj = ljYj = 0,∀i ≤ j : Ai = 0)qj(lj ,m)∑
m>0

∑m
u=1

∑K−1
j=0

∑
lj

Pr(Yj+1 = 1|Lj = lj , Yj = 0,∀i ≤ j : Ai = 0)qj(lj ,m)

(by H7)

= θ.

The desired results follows by consistency.

Appendix D: Parametric identification by conditional
logistic regression for exact or partial 1:M matching
We now allow for the possibility that cases (YK = 1) are matched to M ≥ 0 controls

on only part of L0. That part of L0 on which exact matching is done will be denoted

L∗0; the other part is denoted L′0, so that L0 = (L∗0, L
′
0). The identification result

below rests on the assumption that cases are assigned M ≥ 0 pairs (A′i, L
′
i) of

baseline exposure and baseline covariate data, i = 1, ...,M , subject to

Pr(M > 0|YK = 1) > 0 and

M ⊥⊥ (A0, L0)|(L∗0, YK = 1) and

∀l, l′, a : Pr(A′i = a, L′i = l′|L∗0 = l, L′0, A0, YK = 1,M,M > 0) =

Pr(A0 = a, L′0 = l′|L∗0 = l, YK = 0) and

(L′0, A0), (L′1, A
′
1), ..., (L′M , A

′
M ) are mutually independent given (L∗0, YK = 1,M > 0).


(M2∗)

It is assumed below that the variables are discrete with finite support for simplicity.

The results can however be extended to more general distributions.

Theorem 11 (Conditional logistic regression for conditional intention-to-treat

effect) Suppose BCE and M2∗ hold. For some known real-valued functions fj,

j = 1, ..., p, assume the following model:

logit Pr(YK(a) = 1|L0) = α+

p∑
j=1

fj(a, L
∗
0, L
′
0)βj (Outcome Model)

For i = 0, ...,M , let Xi,j = fj(A
′
i, L
∗
0, L
′
i) − fj(A0, L

∗
0, L
′
0), with A′0 = A0, and

assume for any γ1, ..., γp ∈ R, not all zero, that

Pr

(
M∨
i=1

[
p∑
j=1

γjXi,j 6= 0

]∣∣∣∣∣YK = 1,M > 0

)
> 0, (Linear Independence)
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where
∨

denotes the logical OR operator (i.e., given any indexed collection (Pi)i∈I

of propositions,
∨
i∈I Pi is the proposition that Pi is true for at least one i ∈ I).

Then,

E

[
− log

(
1 +

M∑
i=1

exp

[
p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1,M > 0

]

is uniquely maximized at β̃ = β.

Proof We first demonstrate that

E

[
− log

(
1 +

M∑
i=1

exp

[
p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1,M > 0

]

has at most one maximum by showing that it is strictly concave as a function of β̃.

Let X = (X1, ..., XM ) and Xi = (Xi,1, ..., Xi,p), i = 1, ...,M . To show that function

f ,

f(β) = E

[
log

(
1 +

M∑
i=1

exp

[
p∑
j=1

Xi,jβj

])−1∣∣∣∣∣YK = 1,M > 0

]

=
∑
m>0

∑
x

log

(
1 +

m∑
i=1

exp

[
p∑
j=1

xi,jβj

])−1
Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0),

is convex (and −f concave) it suffices to show that its Hessian is positive

semidefinite, i.e., that
∑p
t=1

∑p
u=1 βkβlHk,l(β) ≥ 0 for all β ∈ Rp, where

Hk,l(β) =
∂

∂βl

∂

∂βk
f(β).

Positive definiteness of the Hessian, i.e.,
∑p
k=1

∑p
l=1 βkβlHk,l(β) > 0 for all β ∈ Rp

such that βk 6= 0 for some k ∈ {1, ..., p}, implies strict convexity of f (and −f
strictly concave).

Letting g(Xi, β) = exp
{∑p

j=1Xi,jβj
}

for i = 1, ...,M , we have

Hk,l(β) =
∂

∂βl

∂

∂βk
f(β)

=
∂

∂βl

∑
m>0

∑
x

∑m
i=1 xi,kg(xi, β)

1 +
∑m
i=1 g(xi, β)

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)

=
∂

∂βl

∑
m>0

∑
x

∑m
i=1 xi,kg(xi, β)

1 +
∑m
i=1 g(xi, β)

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)

=
∑
m>0

∑
x

(
1 +

m∑
i=1

g(xi, β)

)−2[(
1 +

m∑
i=1

g(xi, β)

)(
m∑
i=1

Xi,kXi,lg(xi, β)

)

−

(
m∑
i=1

Xi,kg(xi, β)

)(
m∑
i=1

Xi,lg(xi, β)

)]
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× Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0),

so that, with vi =
√
g(xi, β) and wi =

∑p
j=1 xi,jβj

√
g(xi, β),

p∑
k=1

p∑
l=1

βkβlHk,l(β)

=
∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2
×

[
p∑
k=1

p∑
l=1

βkβl

(
1 +

m∑
i=1

g(xi, β)

)(
m∑
i=1

xi,kxi,lg(xi, β)

)

−
p∑
k=1

p∑
l=1

βkβl

(
m∑
i=1

xi,kg(xi, β)

)(
m∑
i=1

xi,lg(xi, β)

)]

=
∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2
×

[(
1 +

m∑
i=1

g(xi, β)

)(
m∑
i=1

g(xi, β)

(
p∑
k=1

βkxi,k

)(
p∑
l=1

βlxi,l

))

−

(
m∑
i=1

p∑
k=1

βkxi,kg(xi, β)

)(
m∑
i=1

p∑
l=1

βlxi,lg(xi, β)

)]

=
∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2
×

[(
1 +

m∑
i=1

g(xi, β)

)(
m∑
i=1

(
p∑
k=1

βkxi,k
√
g(xi, β)

)2)
−

(
m∑
i=1

p∑
k=1

βkxi,kg(xi, β)

)2]

=
∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2
×

[
m∑
i=1

(
p∑
k=1

βkxi,k
√
g(xi, β)

)2

+

(
m∑
i=1

v2i,j

)(
m∑
i=1

w2
i,j

)
−

(
m∑
i=1

vi,jvi,j

)2]

≥
∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2 m∑
i=1

(
p∑
k=1

βkxi,k
√
g(xi, β)

)2

.

(by the Cauchy-Schwarz inequality)

Now,

∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2 m∑
i=1

(
p∑
k=1

βkxi,k
√
g(xi, β)

)2

=
∑
m>0

∑
x

Pr(X = x|YK = 1,M = m) Pr(M = m|YK = 1,M > 0)(
1 +

∑m
i=1 g(xi, β)

)2 m∑
i=1

g(xi, β)

(
p∑
k=1

βkxi,k

)2

= E

[(
1 +

M∑
i=1

g(Xi, β)

)−2 M∑
i=1

g(Xi, β)

(
p∑
k=1

βkXi,k

)2∣∣∣∣∣YK = 1,M > 0

]
≥ 0
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with strict inequality under Linear Independence. Thus,

E

[
− log

(
1 +

M∑
i=1

exp

[
p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1,M > 0

]

has at most one maximum.

It remains to be shown that

E

[
− log

(
1 +

M∑
i=1

exp

[
p∑
j=1

Xi,j β̃j

])−1∣∣∣∣∣YK = 1,M > 0

]

is maximized at β̃ = β, i.e., ∂/∂β̃kf(β̃) = 0 for all k = 1, ..., p at β̃ = β.

Now,

∂

∂β̃k
f(β̃) = E

[∑M
i=1Xi,kg(Xi, β̃)

1 +
∑m
i=1 g(Xi, β̃)

∣∣∣∣∣YK = 1,M > 0

]

=
∑
l∗

∑
m>0

E

[∑m
i=1Xi,kg(Xi, β̃)

1 +
∑m
i=1 g(Xi, β̃)

∣∣∣∣∣L∗0 = l∗, YK = 1,M = m

]
Pr(L∗0 = l∗,M = m|, YK = 1,M > 0),

where

E

[∑m
i=1Xi,kg(Xi, β̃)

1 +
∑m
i=1 g(Xi, β̃)

∣∣∣∣∣L∗0 = l∗, YK = 1,M = m

]

=
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)] exp

{∑p
k=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)]β̃k

}
1 +

∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(a0, l∗, l0)]β̃k

}
× Pr(A0 = a0, A

′
1 = a1, ..., Am = am, L

′
0 = l0, ..., L

′
m = lm|L∗0 = l∗, YK = 1,M = m)

=
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)] exp

{∑p
k=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)]β̃k

}
1 +

∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(a0, l∗, l0)]β̃k

}
× h(a0, ..., aM , l0, ..., lM ) Pr

(
A0 = a0, A

′
1 = a1, ..., AM = aM , L

′
0 = l0, ..., L

′
m = lm

∣∣∣∨
σ

[
(A0 = aσ(0), L

′
0 =σ(0), A

′
1 = aσ(1), L

′
1 =σ(1), ..., Am = aσ(m), L

′
m =σ(m))

]
, L∗0 = l∗, YK = 1,M = m

)
,

where permutation σ denotes a bijection from {0, 1, ...,M} to itself and

h(a0, ..., aM , l0, ..., lM )

= Pr
(∨

σ

[
(A0 = aσ(0), L

′
0 =σ(0), A

′
1 = aσ(1), L

′
1 =σ(1), ..., Am = aσ(m), L

′
m =σ(m))

]∣∣∣
L∗0 = l∗, YK = 1,M = m

)
.

Next, let B0 = (L′0, A0) and Bi = (L′i, A
′
i), i = 1, 2, ...,M . Let bi = (li, ai) for

i = 0, ...,M . We have

Pr

(
B0 = b0, , ..., BM = bM

∣∣∣∣∣∨
σ

[
(B0, ..., BM ) = (bσ(0), ..., bσ(M))

]
, L∗0, YK = 1,M,M > 0

)
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=
Pr(B0 = b0, ..., BM = bM |L∗0, YK = 1,M > 0)

Pr
(∨

σ

[
B0 = bσ(0), ..., BM = aσ(M)

]∣∣∣L∗0, YK = 1,M,M > 0
)

∝ Pr(B0 = b0, ..., BM = bM |L∗0, YK = 1,M > 0)∑
σ Pr

(
B0 = bσ(0), ..., BM = aσ(M)

∣∣∣L∗0, YK = 1,M,M > 0
)

=

∏M
i=0 Pr(Bi = bi|L∗0, YK = 1,M,M > 0)∑

σ

∏M
i=0 Pr(Bi = bσ(i)|L∗0, YK = 1,M,M > 0)

(by mutual independence of M2∗)

=
Pr(B0 = b0|L∗0, YK = 1)

∏M
i=1 Pr(B0 = bi|L∗0, YK = 0)∑

σ Pr(B0 = bσ(0)|L∗0, YK = 1)
∏M
i=1 Pr(B0 = bσ(i)|L∗0, YK = 0)

(by M2∗)

=
Pr(YK = 1|B0 = b0, L

∗
0)
∏M
i=1[1− Pr(YK = 1|B0 = bi, L

∗
0)]∑

σ Pr(YK = 1|B0 = bσ(0), L
∗
0)
∏M
i=1[1− Pr(YK = 1|B0 = bσ(i), L

∗
0)]

=
Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)

∏M
i=1[1− Pr(YK = 1|L0 = (L∗0, li), A0 = ai)]∑

σ Pr(YK = 1|L0 = (L∗0, lσ(0)), A0 = aσ(0))
∏M
i=1[1− Pr(YK = 1|L0 = (L∗0, lσ(i)), A0 = aσ(i))]

=

Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)

1− Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)

M∏
i=0

[1− Pr(YK = 1|L0 = (L∗0, li), A0 = ai)]

∑
σ

Pr(YK = 1|L0 = (L∗0, lσ(0)), A0 = aσ(0))

1− Pr(YK = 1|L0 = (L∗0, lσ(0)), A0 = aσ(0))

M∏
i=0

[1− Pr(YK = 1|L0 = (L∗0, lσ(i)), A0 = aσ(i))]

=

Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)

1− Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)∑
σ

Pr(YK = 1|L0 = (L∗0, lσ(0)), A0 = aσ(0))

1− Pr(YK = 1|L0 = (L∗0, lσ(0)), A0 = aσ(0))

∝

Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)

1− Pr(YK = 1|L0 = (L∗0, l0), A0 = a0)
M∑
i=0

Pr(YK = 1|L0 = (L∗0, li), A0 = ai)

1− Pr(YK = 1|L0 = (L∗0, li), A0 = ai)

=

expit
{
α+

∑p
j=1 fj(a0, L

∗
0, l0)βj

}
1− expit

{
α+

∑p
j=1 fj(a0, L

∗
0, l0)βj

}
M∑
i=0

expit
{
α+

∑p
j=1 fj(ai, L

∗
0, li)βj

}
1− expit

{
α+

∑p
j=1 fj(ai, L

∗
0, li)βj

}
=

exp
[∑p

j=1 fj(a0, L
∗
0, l0)βj

]∑M
i=0 exp

[∑p
j=1 fj(ai, L

∗
0, li)βj

]
=

(
M∑
i=0

exp

[
p∑
j=1

[
fj(ai, L

∗
0, li)− fj(a0, L∗0, l0)

]
βj

])−1

=

(
1 +

M∑
i=1

exp

[
p∑
j=1

[
fj(ai, L

∗
0, li)− fj(a0, L∗0, l0)

]
βj

])−1
.

Thus,

E

[∑m
i=1Xi,jg(Xi, β̃)

1 +
∑m
i=1 g(Xi, β̃)

∣∣∣∣∣L∗0 = l∗, YK = 1,M = m

]
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∝
∑

l0,...,lm

∑
a0,...,am

∑m
i=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)] exp

{∑p
k=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)]β̃k

}
1 +

∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(a0, l∗, l0)]β̃k

}
× 1

1 +
∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(a0, l∗, l0)]βk

}h(a0, ..., aM , l0, ..., lM )

∝
∑

l0,...,lm

∑
a0,...,am

h(a0, ..., aM , l0, ..., lM )

×
m∑
i=1

[fk(ai, l
∗, li)− fk(a0, l

∗, l0)]
exp

{∑p
k=1[fk(ai, l

∗, li)− fk(a0, l
∗, l0)]β̃k

}
1 +

∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(a0, l∗, l0)]β̃k

}
× 1

1 +
∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(a0, l∗, l0)]βk

}
∝

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
m∑
u=1

m∑
i=1

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]
exp

{∑p
k=1[fk(ai, l

∗, li)− fk(au, l
∗, lu)]β̃k

}
1 +

∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(au, l∗, lu)]β̃k

}
× 1

1 +
∑m
i=1 exp

{∑p
k=1[fk(ai, l∗, li)− fk(au, l∗, lu)]βk

}
=

∑
{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
m∑
u=1

m∑
i=1

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]
exp

{∑p
k=1 fk(ai, l

∗, li)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
}

×
exp

{∑p
k=1 fk(au, l

∗, lu)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}

=
∑

{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×

[ ∑
u,i∈{1,...,m}:i>u

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]
exp

{∑p
k=1 fk(ai, l

∗, li)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
}

×
exp

{∑p
k=1 fk(au, l

∗, lu)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}

+
∑

u,i∈{1,...,m}:i<u

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]
exp

{∑p
k=1 fk(ai, l

∗, li)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
}

×
exp

{∑p
k=1 fk(au, l

∗, lu)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}]

=
∑

{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×

[ ∑
u,i∈{1,...,m}:i>u

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]
exp

{∑p
k=1 fk(ai, l

∗, li)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
}

×
exp

{∑p
k=1 fk(au, l

∗, lu)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}

−
∑

u,i∈{1,...,m}:i>u

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]
exp

{∑p
k=1 fk(au, l

∗, lu)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
}
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×
exp

{∑p
k=1 fk(ai, l

∗, li)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}]

=
∑

{(l0,a0),...,(lm,aM )}

h(a0, ..., aM , l0, ..., lM )

×
∑

u,i∈{1,...,m}:i>u

[fk(ai, l
∗, li)− fk(au, l

∗, lu)]

×

[
exp

{∑p
k=1 fk(ai, l

∗, li)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
} exp

{∑p
k=1 fk(au, l

∗, lu)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}

−
exp

{∑p
k=1 fk(au, l

∗, lu)β̃k
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)β̃k
} exp

{∑p
k=1 fk(ai, l

∗, li)βk
}∑m

i=0 exp
{∑p

k=1 fk(ai, l∗, li)βk
}],

which is clearly zero when β̃ = β. If follows that

∂

∂β̃k
f(β̃) = E

[∑M
i=1Xi,kg(Xi, β̃)

1 +
∑m
i=1 g(Xi, β̃)

∣∣∣∣∣YK = 1,M > 0

]
= 0

for all k = 1, ..., p if and only if β̃ = β.


