Supplementary Information

Supplementary figure 1: Mean insertion frequencies per gene for each time point. Coloured points show mean insertion frequencies per gene in biofilm conditions compared to planktonic conditions for each time point. Black points show insertion frequencies per gene compared between identical replicates and show the experimental error. Mean insertion frequencies combine all replicates with and without promoter induction with IPTG.

Pathway	Gene	Gene	Gene	Gene	Gene	Gene	Gene	Gene	Gene	Gene	Time	Differenc biofilm co plankt	e in insertions in ondition relative to onic condition	S	ignificantly diffe	erent phenotyp	be from wild typ	be?	Ref
		point	Log fold change *	Observed change	Biomass	Aggregation	Curli production	Adhesion	Biofilm architecture										
Cell division	zapE	48h	-3.4	Fewer insertions	No change	Increased	No change	Reduced	No change	1									
c-di-GMP	rcdA	48h	-0.8	Fewer insertions	Reduced		Reduced			2									
metabolism	pdeF	48h	-0.3	Fewer insertions						3									
Curli biosynthesis	csgC	24h,	-1.6	Fewer insertions						4									
		48h	-0.6																
	csgD	24h,		Increased	Reduced	Reduced	Reduced			1									
		48h	-1.4	expression															
				beneficial at 24h,															
				Fewer insertions															
				at 48h															
	csgE	12h,	-2.5	Fewer insertions	Reduced		Reduced												
		48h	-1.6																
	csgF	48h	-4.8	Fewer insertions															
DNA	dam	24h	-3.9	Fewer insertions	No change	Reduced	No change			5									
housekeeping	maoP	24h	1.6	More insertions	Reduced	Reduced	Reduced	Reduced	Reduced	6									
									density and										
									biomass										

Supplementary table 1: Genes determined by TraDIS-Xpress to be important for biofilm formation in E. coli

Flagella-	flhD	24h,	-3.9	Increased	No change	No change	No change			7
associated		48h	-2.6	expression						
motility				beneficial						
	flhC	48h	-4.1	Fewer insertions	No change	Reduced	No change			
	flgD	24h	-3.0	Fewer insertions	No change	No change	No change			8
	fliE	48h	-4.7	Fewer insertions	No change	Reduced	No change			
	hdfR	12h,	3.8	More insertions	Reduced	No change	Reduced			9
		24h	2.4							
	IrhA	12h,	2.0	More insertions	No change	Reduced	No change	Increased	Early	10
		24h,	3.2						microcolony	
		48h	2.3						formation,	
									reduced in	
									the mature	
									biofilm	
LPS	wzzB	48h	-1.4	Fewer insertions	Reduced		No change			11
Oxidised protein	msrQ	48h	-0.4	Fewer insertions	No change		No change			12
repair										
Protein	dsbA	12h,	-0.7	Fewer insertions	No change	Increased	Increased			13
modification		24h	-3.0							
Purine	purD	48h	-4.3	Fewer insertions	Reduced	No change	Reduced	No change	Reduced	14
ribonucleotide									microcolony	
biosynthesis									formation	
	purE	48h	-5.7	Fewer insertions	Reduced	Increased	Reduced			
	purH	48h	-3.2	Fewer insertions						

	purL	48h	-3.1	Fewer insertions						
rRNA	rlml	12h	-3.8	Fewer insertions	Reduced	No change	No change			15
methyltransferase										
RNase III	ymdB	24h,	-0.5	Fewer insertions	Reduced	Increased	No change			16
regulator		48h	-2.5							
Sugar	sgbE	48h	-2.5	Fewer insertions	No change		No change			17
metabolism and										
transport										
Toxin-antitoxin	tomB	12h,	-0.5	Fewer insertions	Reduced	Reduced	Reduced	Increased	Early	18
system		24h,	-0.4						microcolony	
		48h	-1.6						formation,	
									reduced in	
									the mature	
									biofilm	
Transcriptional	dksA	12h,	4.4	More insertions	Reduced	Reduced	Reduced	Increased	Reduced	19-21
regulators and		24h	2.9						microcolony	
signalling									formation	
systems	leuO	12h,		Increased	Reduced	Reduced	No change	No change	Reduced	22
		48h	-0.6	expression					microcolony	
				beneficial at 12h,					formation	
				Fewer insertions						
				at 48h						
	marR	12h	-4.1	Fewer insertions	Reduced	No change	No change			23

	ompR	24h,	-0.8	Fewer insertions	Reduced	Reduced	Reduced			24
		48h	-4.7							
	Irp	48h	-5.9	Fewer insertions	Reduced	Reduced	Reduced			25
	gadW	48h	-1.1	Fewer insertions	No change	No change	No change			26
	rcsC	48h	-2.9	Fewer insertions	Reduced		No change			27
Transmembrane	mscL	48h	-0.9	Fewer insertions						28
transport, porins	tolC	48h	-2.9	Fewer insertions	No change	Reduced	No change			29
and channels	ompF	48h	-2.7	Fewer insertions	Reduced		No change			24
	fadL	48h	-1.5	Fewer insertions						30
tRNA modification	truA	24h,	-3.3	Fewer insertions	No change	Increased	No change	No change	Increased	31
		48h	-5.9						filamentation	
									after 24- and	
									48-hours	
									growth	
Type 1 fimbriae	fimB	12h,	-0.4	Fewer insertions	No change	Reduced	No change			32
		24,	-1.3	and increased						
		48h	-2.1	expression						
				beneficial at all						
				time points						
	fimE	12h,	1.5	More insertions	Reduced	Reduced	No change			-
		24,	3.3							
		48h	2.6							
	fimC	48h	-1.3	Fewer insertions						33

	fimD	24h,	-2.3	Fewer insertions						33
		48h	-2.1							
Putative fimbrial-	ydeR	48h	-2.4	Fewer insertions						34
like protein										
Unknown	yigZ	12h	-2.8	Fewer insertions	No change	Increased	No change	No change	No change	35
	yebB	48h	-2.3	Fewer insertions						36,37
	yedN	48h	-1.7	Fewer insertions						38
	yjbL	48h	-2.8	Fewer insertions	Reduced		No change			15
	ykgJ	12h		Reduced	No change	Increased	No change	No change	Increased	39
				expression					filamentation	
				beneficial					after 24- and	
				(increased					48-hours	
				expression of					growth	
				antisense mRNA						
				beneficial)						

* Log fold change is only shown for genes where there are differences in insertion frequency inside the coding region. Where the plot files generated by TraDIS-*Xpress* show a difference in insertion frequency between the biofilm and planktonic conditions upstream or downstream of a gene, log fold change cannot easily by quantified and therefore the effect has been described in the column titled 'observed change'. Significant differences in insertion frequencies have been manually verified with the plot files generated by TraDIS-*Xpress*.

References

- 1 Marteyn, B. S. *et al.* ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics. *mBio* **5**, e00022-00014, doi:10.1128/mBio.00022-14 (2014).
- 2 Pfiffer, V., Sarenko, O., Possling, A. & Hengge, R. Genetic dissection of *Escherichia coli*'s master diguanylate cyclase DgcE: Role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system. *PLoS Genet.* **15**, e1008059, doi:10.1371/journal.pgen.1008059 (2019).
- 3 Lacey, M. M., Partridge, J. D. & Green, J. *Escherichia coli* K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. *Microbiology* **156**, 2873-2886, doi:10.1099/mic.0.037887-0 (2010).
- 4 Barnhart, M. M. & Chapman, M. R. Curli Biogenesis and Function. *Annu. Rev. Microbiol.* **60**, 131-147, doi:10.1146/annurev.micro.60.080805.142106 (2006).
- 5 Szyf, M. *et al.* DNA methylation pattern is determined by the intracellular level of the methylase. *Proc. Natl. Acad. Sci. U. S. A.* **81**, 3278-3282, doi:10.1073/pnas.81.11.3278 (1984).
- 6 Valens, M., Thiel, A. & Boccard, F. The MaoP/maoS Site-Specific System Organizes the Ori Region of the *E. coli* Chromosome into a Macrodomain. *PLoS Genet.* **12**, e1006309e1006309, doi:10.1371/journal.pgen.1006309 (2016).
- Fitzgerald, D. M., Bonocora, R. P. & Wade, J. T. Comprehensive Mapping of the *Escherichia coli* Flagellar Regulatory Network. *PLoS Genet.* **10**, e1004649, doi:10.1371/journal.pgen.1004649 (2014).
- 8 Macnab, R. M. Genetics and biogenesis of bacterial flagella. *Annu. Rev. Genet.* **26**, 131-158, doi:10.1146/annurev.ge.26.120192.001023 (1992).
- 9 Ko, M. & Park, C. H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. *J. Bacteriol.* **182**, 4670-4672, doi:10.1128/jb.182.16.4670-4672.2000 (2000).
- 10 Lehnen, D. *et al.* LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in *Escherichia coli*. *Mol. Microbiol*. **45**, 521-532, doi:10.1046/j.1365-2958.2002.03032.x (2002).
- 11 Stenberg, F. *et al.* Protein complexes of the *Escherichia coli* cell envelope. *J. Biol. Chem.* **280**, 34409-34419, doi:10.1074/jbc.M506479200 (2005).
- 12 Gennaris, A. *et al.* Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. *Nature* **528**, 409-412, doi:10.1038/nature15764 (2015).
- 13 Bardwell, J. C. Building bridges: disulphide bond formation in the cell. *Mol. Microbiol.* **14**, 199-205, doi:10.1111/j.1365-2958.1994.tb01281.x (1994).
- 14 Zhang, Y., Morar, M. & Ealick, S. E. Structural biology of the purine biosynthetic pathway. *Cellular and Molecular Life Sciences* **65**, 3699-3724, doi:10.1007/s00018-008-8295-8 (2008).
- Herzberg, M., Kaye, I. K., Peti, W. & Wood, T. K. YdgG (TqsA) controls biofilm formation in *Escherichia coli* K-12 through autoinducer 2 transport. *J. Bacteriol.* 188, 587-598, doi:10.1128/jb.188.2.587-598.2006 (2006).
- 16 Kim, T., Lee, J. & Kim, K.-s. *Escherichia coli* YmdB regulates biofilm formation independently of its role as an RNase III modulator. *BMC Microbiol.* **13**, 266-266, doi:10.1186/1471-2180-13-266 (2013).
- 17 Yew, W. S. & Gerlt, J. A. Utilization of L-ascorbate by *Escherichia coli* K-12: assignments of functions to products of the *yjf-sga* and *yia-sgb* operons. *J. Bacteriol.* **184**, 302-306, doi:10.1128/jb.184.1.302-306.2002 (2002).

- 18 Garcia-Contreras, R., Zhang, X. S., Kim, Y. & Wood, T. K. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. *PLoS One* **3**, e2394, doi:10.1371/journal.pone.0002394 (2008).
- 19 Girard, M. E. *et al.* DksA and ppGpp Regulate the σS Stress Response by Activating Promoters for the Small RNA DsrA and the Anti-Adapter Protein IraP. *J. Bacteriol.* **200**, e00463-00417, doi:10.1128/jb.00463-17 (2018).
- 20 Lemke, J. J., Durfee, T. & Gourse, R. L. DksA and ppGpp directly regulate transcription of the *Escherichia coli* flagellar cascade. *Mol. Microbiol.* **74**, 1368-1379, doi:10.1111/j.1365-2958.2009.06939.x (2009).
- 21 Mallik, P., Paul, B. J., Rutherford, S. T., Gourse, R. L. & Osuna, R. DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of *fis* expression in *Escherichia coli*. *J. Bacteriol.* **188**, 5775-5782, doi:10.1128/JB.00276-06 (2006).
- 22 Dillon, S. C. *et al.* LeuO is a global regulator of gene expression in *Salmonella enterica* serovar Typhimurium. *Mol. Microbiol.* **85**, 1072-1089, doi:10.1111/j.1365-2958.2012.08162.x (2012).
- Alekshun, M. N. & Levy, S. B. Alteration of the Repressor Activity of MarR, the Negative Regulator of the *Escherichia coli marRAB* Locus, by Multiple Chemicals In Vitro. *J. Bacteriol.* 181, 4669-4672 (1999).
- 24 Cai, S. J. & Inouye, M. EnvZ-OmpR interaction and osmoregulation in *Escherichia coli*. *J. Biol. Chem.* **277**, 24155-24161, doi:10.1074/jbc.M110715200 (2002).
- 25 Calvo, J. M. & Matthews, R. G. The leucine-responsive regulatory protein, a global regulator of metabolism in *Escherichia coli*. *Microbiol. Rev.* **58**, 466-490 (1994).
- 26 Tucker, D. L. *et al.* Genes of the GadX-GadW regulon in *Escherichia coli*. *J. Bacteriol*. **185**, 3190-3201, doi:10.1128/jb.185.10.3190-3201.2003 (2003).
- Ferrières, L. & Clarke, D. J. The RcsC sensor kinase is required for normal biofilm formation in *Escherichia coli* K-12 and controls the expression of a regulon in response to growth on a solid surface. *Mol. Microbiol.* 50, 1665-1682, doi:10.1046/j.1365-2958.2003.03815.x (2003).
- 28 Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in *E. coli* encoded by *mscL* alone. *Nature* **368**, 265-268, doi:10.1038/368265a0 (1994).
- 29 Morona, R., Manning, P. A. & Reeves, P. Identification and characterization of the TolC protein, an outer membrane protein from *Escherichia coli*. *J. Bacteriol.* **153**, 693-699 (1983).
- Nunn, W. D. & Simons, R. W. Transport of long-chain fatty acids by *Escherichia coli*:
 mapping and characterization of mutants in the *fadL* gene. *Proc. Natl. Acad. Sci. U. S. A.* **75**, 3377-3381, doi:10.1073/pnas.75.7.3377 (1978).
- 31 Hamma, T. & Ferré-D'Amaré, A. R. Pseudouridine Synthases. *Chem. Biol.* **13**, 1125-1135, doi:<u>https://doi.org/10.1016/j.chembiol.2006.09.009</u> (2006).
- 32 Klemm, P. Two regulatory *fim* genes, *fimB* and *fimE*, control the phase variation of type 1 fimbriae in *Escherichia coli*. *The EMBO Journal* **5**, 1389-1393, doi:10.1002/j.1460-2075.1986.tb04372.x (1986).
- 33 Allen, W. J., Phan, G. & Waksman, G. Pilus biogenesis at the outer membrane of Gramnegative bacterial pathogens. *Curr. Opin. Struct. Biol.* 22, 500-506, doi:<u>https://doi.org/10.1016/j.sbi.2012.02.001</u> (2012).
- 34 Da Re, S. *et al.* Identification of commensal *Escherichia coli* genes involved in biofilm resistance to pathogen colonization. *PLoS One* **8**, e61628, doi:10.1371/journal.pone.0061628 (2013).

- 35 Park, F. *et al.* Crystal structure of YIGZ, a conserved hypothetical protein from *Escherichia coli* k12 with a novel fold. *Proteins: Structure, Function, and Bioinformatics* **55**, 775-777, doi:10.1002/prot.20087 (2004).
- 36 Schurr, T., Nadir, E. & Margalit, H. Identification and characterization of *E.coli* ribosomal binding sites by free energy computation. *Nucleic Acids Res.* **21**, 4019-4023, doi:10.1093/nar/21.17.4019 (1993).
- 37 Alper, H. & Stephanopoulos, G. Uncovering the gene knockout landscape for improved lycopene production in *E. coli. Applied Microbiology and Biotechnology* **78**, 801-810, doi:10.1007/s00253-008-1373-x (2008).
- 38 Goodall, E. C. A. *et al.* The Essential Genome of *Escherichia coli* K-12. *mBio* **9**, e02096-02017, doi:10.1128/mBio.02096-17 (2018).
- 39 Kacharia, F. R., Millar, J. A. & Raghavan, R. Emergence of New sRNAs in Enteric Bacteria is Associated with Low Expression and Rapid Evolution. *J. Mol. Evol.* **84**, 204-213, doi:10.1007/s00239-017-9793-9 (2017).