Supporting Information

Benzothiazolium Derivatives Capped Silica Nanocompites for βamyloid Imaging *in vivo*

Lijun Ma, [†] Shu Yang, [§] Yufan Ma, [†] Yuzhi Chen, [†] Zhenguo Wang, [†] Tony D. James,^{*¶} Xuefei Wang,^{* ‡}Zhuo Wang^{*†}

[†] State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

[‡] School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

[¶] Department of Chemistry, University of Bath, BA2 7AY, UK.

§ Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.

[†]Corresponding author's fax: +86-01-64434898

[†]Corresponding emails: wangzhuo77@mail.buct.edu.cn

[‡]Corresponding emails:wangxf@ucas.ac.cn

[¶]Corresponding emails:T.D.James@bath.ac.uk

Table of Contents.

Table S1. Properties of four different MSN	S3
Table S2. The spectral data of probes	S3
Figure S1. The relationship between dihedral angel and transmission energy	S4
Table S3. The relationship between oscillator strengthanddihedral angel	S5
Table S4. The autodocking data between ThT and $A\beta_{1-42}$ aggregates model	S5
Table S5. The autodocking data between SZI-1 and A β_{1-42} aggregates model	S6
Table S6. The autodocking data between SZI-2 and A β_{1-42} aggregates model	S6
Table S7. The autodocking data between SZI-3 and A β_{1-42} aggregates model	S7
Figure S2. The viscosity response characteristics of SZIs	S7
Figure S3. The selectivity of SZIs	S7
Figure S4. TEMs of Aβ ₁₋₄₂ aggregates	S8
Figure S5. The fluorescence response of ThT to $A\beta_{1-42}$ aggregates	S8
Figure S6. In vivo BBB penetration test	S8
Table S8. Comparation of our probes with reported probes	S9
Figure S7. The wide range TEM of MSN-NH ₂	S10
Figure S8. The particle size distribution of different MSN nanoparticles	S10
Figure S9. The FTIR image of before and after the removal of CTAC in MSN	S10
Figure S10. The absorption spectrum of SZI-1 in different solvent	S12
Figure S11. The fluorescence intensity of SZI-1 in different solvent	S12
Figure S12. The absorption spectrum of SZI-2 in different solvent	S14
Figure S13. The fluorescence intensity of SZI-2 in different solvent	S14
Figure S14. The absorbance and fluorescence intensity of MSN-Lf@SZI-1	S15
Figure S15. The absorbance and fluorescence intensity of MSN-Lf@SZI-2	S15
Figure S16. The CLSM images of MSN-Lf@SZIs	S16
Figure S17. Photostability of SZI-1 and SZI-2	S16
Table S9. The conditions used for LC-MS analysis	S17
Table S10. Biodistribution of SZI-1 and SZI-2 in the brains of KM mice	S17
Figure S18. The representative LC-MS data of SZI-1	S18
Figure S19.The representative LC-MS data of SZI-2	S19
Figure S20. The representative mass spectrometry data of SZIs and	SZIs in
brain	S20
Figure S21-S32. Characterization data of probes	S21

Sample	TEA	Pore diameter	TEM	DLS	PDI	Zeta
	[g]	[nm]	average	average		potential
			diameter	diameter		[mV]
_			[nm]	[nm]		
MSN	0.08	2.7	40	46.80	0.177	-20.08
$MSN-NH_2$	/	/	40	60.06	0.221	17.64
MSN-PEG	/	/	40	53.40	0.394	19.91
MSN-Lf	/	/	50	60.41	0.243	8.80
MSN-	/	/	50	/	/	5.67
Lf@SZIs						

Table S1. Properties of four different MSN.

Table S2. The spectral data of probes.

		Ex	Em	Stokes	Absolute	FL			Kd	3
Probes	Sovents	[nm]	[nm] ^{a)}	shift	Quantum	Intensity	Fold ^b	Clog	[nM]	[L∙mol ⁻¹ cm ⁻
				[nm]	Yield	(Em,with)	P ^{c)}	d)	¹] ^{e)}
					[%]	Αβ)				
						[nm] ^{a)}				
	THF	527	600	73		n.d.				6897.168
	Ethanol	526.5	592	65.5		n.d.				5926.568
SZI-1	DMSO	524.5	608	83.5	19.2%	n.d.	3	0.20	507.6	7038.538
	PDO	531	595	64		n.d.			±94.7	8663.449
	PBS	510	593	83		2283			5	7481.385
	THF	568.5	702	133.5		n.d.				4944.128
	Ethanol	569.5	693	123.5		n.d.				4030.88
SZI-2	DMSO	558.5	711	152.5	30.75%	n.d.	1.7	1.26	600.6	5044.181
	PDO	575.5	692	116.5		n.d.			±94.8	5574.688
	PBS	521	688	167		778.3			2	5058.816
	THF	559	812	253		n.d.				1872.063
	Ethanol	559	810	251		n.d.				3354.34
SZI-3	DMSO	554	815	261	n.d.	n.d.	n.d.	2.19	n.d.	3433.34
	PDO	561	809	248		n.d.				3986.34
	PBS	518	803	285		n.d.				3652.17

a) Set b = 10 for a specific emission wavelength.

b) The calculation of the fluorescence enhancement fold was calculated based on the

fluorescence ratio before and after binding to $A\beta.$

c) The ClogP was calculated by ALOGPS 2.1 program

(http://146.107.217.178/lab/alogps/start.html)

n.d. refers to not determined.

d) Kd value refers to dissociation constant, which was given as best-fit values±Std. Error. The Kd value was calculated by Graphpad Prism 5.0 Software with nonlinear regression (one site-specific binding) method. The Kd was calculated by the following formula:

$$Y = \frac{B_{max} \cdot X}{k_d + X}$$

where X is the concentration of probes, Y is change in fluorescence intensity, B_{max} is the maximum specific binding has the same units as Y, Kd is the equilibrium binding constant.

e) ϵ was calculated by Lambert-Beer law.

Figure S1. The relationship between dihedral angel and transmission energy. (a) SZI-1.(b) SZI-2. (c) SZI-3. (d) Description of the distortion method in the molecule used for calculation.

	SZI-1		SZI-2		SZI-3	
Dihedral	θ_1	θ_2	θ_1	θ_2	θ_1	θ_2
(°)						
0	1.49	1.49	2.0	2.0	2.47	2.47
10	1.5	1.46	2.0	1.97	2.53	2.57
20	1.46	1.42	1.96	1.89	2.49	2.4
30	1.4	1.3	1.8	1.71	2.4	2.2
40	1.27	1.1	1.7	1.44	2.19	1.8
50	1.0	0.8	1.4	1.08	1.89	1.36
60	0.6	0.5	0.9	0.7	1.31	0.87

Table S3. The relationship between oscillator strength and dihedral angel.

Table S4. The autodocking data between ThT and $A\beta_{1\text{-}42}$ aggregates model.

Domlr	Binding	Torsional	Intermolecular	Internal	Unbound
Kalik	Energy	Energy	Energy	Energy	Extended Energy
Sunkank	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]
1_1	-6.63	0.6	-7.23	-0.39	-0.39
1_2	-6.6	0.6	-7.2	-0.42	-0.42
1_3	-6.51	0.6	-7.11	-0.38	-0.38
1_4	-6.51	0.6	-7.1	-0.41	-0.41
2_1	-6.19	0.6	-6.79	-0.51	-0.51
3_1	-5.71	0.6	-6.3	-0.45	-0.45
4_1	-5.68	0.6	-6.27	-0.41	-0.41
5_1	-5.63	0.6	-6.22	-0.38	-0.38
6_1	-5.29	0.6	-5.88	-0.52	-0.52
7_1	-5.23	0.6	-5.83	-0.52	-0.52

Donk	Binding	Torsional	Intermolecular	Internal	Unbound
Kalik SunDonla	Energy	Energy	Energy	Energy	Extended Energy
Suiraik	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]
1_1	-6.72	0.89	-7.61	-0.48	-0.48
1_2	-6.57	0.89	-7.47	-0.47	-0.47
1_3	-6.57	0.89	-7.47	-0.48	-0.48
1_4	-6.56	0.89	-7.45	-0.49	-0.49
1_5	-6.54	0.89	-7.44	-0.49	-0.49
1_6	-6.43	0.89	-7.32	-0.47	-0.47
1_7	-6.34	0.89	-7.24	-0.48	-0.48
1_8	-6.32	0.89	-7.21	-0.28	-0.28
1_9	-6.28	0.89	-7.18	-0.48	-0.48
1_10	-6.04	0.89	-6.94	-0.48	-0.48

Table S5. The autodocking data between SZI-1 and $A\beta_{1\text{-}42}$ aggregates model.

Table S6. The autodocking data between SZI-2 and $A\beta_{1\text{-}42}$ aggregates model.

Dont	Binding	Torsional	Intermolecular	Internal	Unbound	
Kalik	Energy	Energy	Energy	Energy	Extended Energy	
Suiraik	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	
1_1	-7.37	1.19	-8.56	-0.61	-0.61	
1_2	-7.31	1.19	-8.5	-0.6	-0.6	
1_3	-7.17	1.19	-8.36	-0.51	-0.51	
1_4	-7.1	1.19	-8.29	-0.61	-0.61	
1_5	-7.09	1.19	-8.29	-0.61	-0.61	
1_6	-7.05	1.19	-8.25	-0.55	-0.55	
1_7	-7.04	1.19	-8.23	-0.55	-0.55	
1_8	-6.98	1.19	-8.17	-0.55	-0.55	
1_9	-6.98	1.19	-8.17	-0.62	-0.62	
1_10	-6.94	1.19	-8.14	-0.62	-0.62	

Donla	Binding	Torsional	Intermolecular	Internal	Unbound
Kalik	Energy	Energy	Energy	Energy	Extended Energy
SUIIKalik	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]
1_1	-8.27	1.49	-9.77	-0.8	-0.8
1_2	-8.12	1.49	-9.61	-0.81	-0.81
1_3	-8.03	1.49	-9.52	-0.81	-0.81
2_1	-8.04	1.49	-9.53	-0.78	-0.78
3_1	-8.04	1.49	-9.53	-0.8	-0.8
4_1	-7.87	1.49	-9.36	-0.79	-0.79
5_1	-7.56	1.49	-9.06	-0.79	-0.79
6_1	-7.46	1.49	-8.95	-0.8	-0.8
7_1	-6.86	1.49	-8.35	-0.82	-0.82
8_1	-6.73	1.49	-8.22	-0.81	-0.81

Table S7. The autodocking data between SZI-3 and A β_{1-42} aggregates model.

Figure S2. The viscosity response characteristics of SZIs. (a) SZI-1. (b) SZI-2. The solvent was different ratios of 1,2-propanediol and water (v/v).

Figure S3. The selectivity of (a) SZI-1 (0.2 μ g), (b) SZI-2 (0.2 μ g) to different ions (20 μ M), amino acid (20 μ M) and A β_{1-42} aggregates (20 μ M). All the samples were tested in triplicate.

Figure S4. TEMs of A β_{1-42} aggregates.

Figure S5. The fluorescence response of ThT to $A\beta_{1-42}$ aggregates.

Figure S6. *In vivo* BBB penetration test. (a) The BBB penetration test using MSN-Lf@SZI-1 (left, 2 mg/kg in 50 % 1,2-propanediol and 50 % PBS) and MSN-Lf@SZI-2 (right, 2 mg/kg in 50 % 1,2-propanediol and 50 % PBS) in KM mice. (b) The BBB penetration test using SZI-1 (left, 2 mg/kg in 50 % 1,2-propanediol and 50 % PBS) and SZI-2 (right, 2 mg/kg in 50 % 1,2-propanediol and 50 % PBS) in KM mice. To be more intuitive, we also performed fluorescence imaging on the dissected mouse brain (the small images above in a and b)

	Probe	Molecule structure	Kd	Target Analyte	Refer ence
1	ANCA	$x \xrightarrow{O} (x $	1.4±0.2 ~ 13.8±3.1 μM	Aβ fibrils	(1)
2	ThT	S N+ CI-	890 nM	Aβ fibrils	(2) (3)
3	NMM	HOOC NH HN HOOC	>2 µM	Aβ fibrils	(4)
4	AN-SP		1.7 μM	Aβ oligomer	(5)
5	F-SLOH		1.90 μΜ 0.66 μΜ	Aβ fibrils Aβ oligomer	(6)
6	ARCAM 1	$(\mathbf{N}^{N}) = (\mathbf{N}^{N}) = (\mathbf{N}^{N}$	870±280 nM	Aβ fibrils	(7)
7	4c 4d	0 N-($\begin{array}{c} 4c, 0.79\pm 0.05 \\ \mu M \\ 4d, 0.90\pm 0.02 \\ \mu M \end{array}$	Aβ fibrils	(8)
8	SZI-1	N+ F	507.6±94.75 nM	Aβ fibrils	This work
9	SZI-2	N+ r	600.6±94.82 nM	Aβ fibrils	This work

Table S8. Comparation of our probes with reported probes.

Figure S7. The wide range TEM of MSN-NH₂. Scale bar is 100 nm.

Figure S8. The particle size distribution of different MSN nanoparticles. (a, b) The particle size distribution of MSN. (c, d) The particle size distribution of MSN-NH₂. (e, f) The particle size distribution of MSN-PEG. (g, h) The particle size distribution of MSN-Lf.

Figure S9. The FTIR image of before and after the removal of CTAC in MSN.

Figure S10. The absorption spectrum and corresponding standard curves of SZI-1 in different solvent. (a, b) DMSO, (c, d) EtOH, (e, f) PDO, (g, h) PBS, (i, j) THF. (k) Normalized Abs of SZI-1 in different solvent. The concentration has been given in the figure.

Figure S11. The fluorescence intensity of SZI-1 in different solvent. (a) DMSO, (b) EtOH, (c) PDO, (d)PBS (e) THF. (f) Normalized FL of SZI-1 in different solvent. The concentration has been given in the figure.

Figure S12. The absorption spectrum and corresponding standard curves of SZI-2 in different solvent. (a, b) DMSO, (c, d) EtOH, (e, f) PDO, (g, h) PBS, (i, j) THF. (k) Normalized Abs of SZI-2 in different solvent. The concentration has been given in the figure.

Figure S13. The fluorescence intensity of SZI-2 in different solvent. (a) DMSO, (b) EtOH, (c) PDO, (d) PBS, (e) THF. (f) Normalized FL of SZI-2 in different solvent. The concentration has been given in the figure.

Figure S14. The fluorescence intensity of MSN-Lf@SZI-1 in (a) PBS and (b) PDO. (c) The Abs of MSN-Lf@SZI-1. The concentration has been given in the figure.

Figure S15. The fluorescence intensity of MSN-Lf@SZI-2 in (a) PBS and (b) PDO. (c) The Abs of MSN-Lf@SZI-2. The concentration has been given in the figure.

Figure S16. The confocal laser scanning microscope (CLSM) images of (a) MSN-Lf@SZI-1 (b) MSN-Lf@SZI-2 (c) MSN-Lf@SZI-3. The excitation wavelength (λ_{ex}) were 488 nm (a), 552 nm (b, c), respectively.

Figure S17. Photostability of SZI-1 and SZI-2 under continuous white light (15-16 mV) illumination.

	LC-MS analysis						
Probe	Eluent	Retention Time	Analysis Time	UV detector			
	CH ₃ CN: H ₂ O	[min]	[min]	[nm]			
SZI-1	5:95 ~ 95:5	12.165	32	254			
SZI-1 in brain	5:95 ~ 95:5	12.635	32	254			
SZI-2	5:95 ~ 95:5	13.128	32	254			
SZI-2 in brain	5:95 ~ 95:5	12.967	32	254			

Table S9. The conditions used for LC-MS analysis.

Table S10. Uptake of SZI-1 and SZI-2 in the brains of KM mice.

Probe	Concentration	Intravenous	LC-MS	Peak	The quality of	Wet	Uptake	Mean Uptake
	$[\mu g \ / \ mL]^{a}$	Injection	injection	Area ^c	the probe in	weight of	[% ID/g]	$[\% ID/g]^{b}$
		Volume	volume		the brain	brain		
		[µL]	[µL]		[µg]	[g]		
SZI-1	47.5	125	50	30.82	0.64	0.42	25.47	1572 + 951
SZI-1	47.5	125	50	20.66	0.30	0.42	11.99	15.75 ± 8.51
SZI-1	47.5	125	50	18.96	0.24	0.42	9.73	
SZI-2	40	125	50	21.86	0.19	0.42	7.47	7.00 + 0.70
SZI-2	40	125	50	8.31	0.13	0.42	6.19	7.09 ± 0.79
SZI-2	40	125	50	15.12	0.16	0.42	7.62	

a) The concentration actually refers to the concentration of the probe in MSN-Lf@SZIs,

which was qualified by a UV-visible spectrophotometer according to standard curve.

b) % ID/g means % injection dose per gram of brain wet weight.

c) The peak area was determined by Origin 8.0 sofware.

Figure S18.The representative LC-MS data of SZI-1. (a) The LC-MS chromatogram curve of SZI-1. (b) The standard curve of SZI-1. (c) The UV-Vis spectrometry of SZI-1 detected by LC-MS. (d) The UV-Vis spectrometry of SZI-1 in brain detected by LC-MS. (e) The representative peak area of SZI-1 in brain. The retention time was determined by mass spectrometry data of SZI-1 detected by LC-MS. The mass spectrometry data (ESI-MS) was given in Figure S20.

Figure S19. The representative LC-MS data of SZI-2. (a) The LC-MS chromatogram curve of SZI-2. (b) The standard curve of SZI-2. (c) The UV-Vis spectrometry of SZI-2 detected by LC-MS. (d) The UV-Vis spectrometry of SZI-2 in brain detected by LC-MS. (e) The representative peak area of SZI-2 in brain. The retention time was determined by mass spectrometry data of SZI-2 detected by LC-MS. The mass spectrometry data (ESI-MS) was given in Figure S20.

Figure S20. The representative mass spectrometry data of SZIs and SZIs in brain. (a) The mass spectrometry data of SZI-1. (b) The mass spectrometry data of SZI-1 in brain. (c) The mass spectrometry data of SZI-2. (d) The mass spectrometry data of SZI-2 in brain.

Figure S22. The mass Spectra (EI) of compound 1.

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.(f1 (ppm)

Figure S23. The ¹H NMR of compound 2.

Figure S24. The mass Spectra (EI) of compound 2.

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 321.141991
 1
 C20H21N2S
 100.00
 321.141996
 -0.0
 -0.1
 36.7
 11.5
 even
 ok

Figure S31. Mass Spectra (ESI) of SZI-2

Figure S32. Mass Spectra (ESI) of SZI-3

References

- Cao, K.; Farahi, M.; Dakanali, M.; Chang, W. M.; Sigurdson, C. J.; Theodorakis, E. A.; Yang, J. J. Am. Chem. Soc. 2012, 134, 42, 17338–17341.
- (2) Diner, I.; Dooyema J.; Gearing, M.; Walker, L. C.; Seyfried, N. T. *Bioconjugate Chemistry* **2017**, 28, 10, 2627-2637.
- (3) Fu, W.; Yan, C.; Guo, Z.; Zhang, J.; Zhang, H.; He, T.; Zhu, W. J. Am. Chem. Soc. 2019, 141, 7, 3171–3177.
- (4) Li, M.; Zhao, A.; Ren, J.; Qu, X. ACS Chem. Neurosci. 2017, 8, 6, 1299–1304.
- (5) Lv, G.; Sun, A.; Wei, P.; Zhang, N.; Lan H.; Yi T. Chem. Commun. 2016, 52, 8865.
- (6) Li, Y.; Xu, D.; Sun, A.; Ho, S. L.; Poon, C. Y.; Chan, H. N.; Ng, O. T. W.; Yung, K. K. L.;
 Yan, H.; Li, H. W.; Wong, M. S. *Chem. Sci.* 2017, 8, 8279-8284.
- (7) Guan, Y.; Cao, K. J.; Cantlon, A.; Elbel, K.; Theodorakis, E. A.; Walsh, D. M.; Yang, J.;
 Shah, J. V. ACS Chem. Neurosci. 2015, 6, 9, 1503–1508.
- (8) Jung, S. J.; Lee, J. Y.; Kim, T. H.; Lee, D. E.; Jeon, J.; Yang, S. D.; Hur, M. G.; Min, J. J.;
 Park, Y. D. *Bioorg. Med. Chem. Lett.* 2016, 26, 7, 1784-1788.