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Supplemental Methods:

UK Biobank array genotyping and quality control

Genome-wide genotyping of blood-derived DNA was performed by UK Biobank across 488,377 individuals using
two genotyping arrays sharing 95% of marker content: Applied Biosystems UK BiLEVE Axiom Array (807,411
markers in 49,950 participants) and Applied Biosystems UK Biobank Axiom Array (825,927 markers in 438,427
participants) both by Affymetrix (Santa Clara, CA)*. Variants used in the present analysis include those also
imputed using the Haplotype Reference Consortium reference panel of up to 39 million bi-allelic variants and 88
million variants from the UK10K~+1000 Genomes reference panels)*. Poor quality variants and genotypes were
filtered as previously described*®, with additional filters including high-quality imputed variants (INFO score >0.4),
minor allele frequency >0.005, and with Hardy-Weinberg Equilibrium P>1x107'°, as previously implemented using

Hail-0.2 (https://hail.is/docs/0.2/index.html)***%, Across all genetic analyses, we used data for participants with

white British ancestry consenting to genetic analyses, with genotypic-phenotypic sex concordance, without sex

aneuploidy, and after excluding one from each pair of 1° or 2 degree relatives selected randomly.

UK Biobank whole exome sequencing and quality control filters

UK Biobank whole exome sequencing was performed among 200,627 individuals using whole blood-derived DNA
at the Regeneron Sequencing Center*:#*, for which the methods have been previously described for the earlier
release of data across approximately 50,000 individuals**. In brief, the IDT xGen Exome Research Panel v1.0 was
used to capture exomes at over 20x coverage across 95% of sites. Extensive additional genotype, variant, and
sample-level exclusion filters were applied to study high-quality autosomal exome sequence variants as previously

done*® using Hail-0.2.

In addition to any quality-control that was performed centrally, we applied extensive additional genotype, variant
and sample quality-control procedures to ensure a high-quality dataset for analyses for both the common variant

analyses using array genotyping data and rare variant analyses using whole exome sequencing data.

For the whole exome sequencing data used in rare variant analyses, we utilized the OQFE WES pVCF files provided
by the UK Biobank, which contained calls for 200,643 sequenced samples. We applied genotype refinement to the
raw genotype calls in the pVCF files using Hail-0.2 (https://hail.is/docs/0.2/index.html). We first split multi-allelic

sites to represent separate bi-allelic sites.

We first performed genotype quality control, filtering out calls that did not pass the following hard filters were then
set to no-call in our analysis:
e For homozygous reference calls: Genotype Quality < 20; Genotype Depth < 10; Genotype Depth > 200
e  For heterozygous calls: (Al Depth + A2 Depth)/Total Depth < 0.9; A2 Depth/Total Depth < 0.2; Genotype
likelihood[ref/ref] < 20; Genotype Depth < 10; Genotype Depth > 200



e For homozygous alternative calls: (A1 Depth + A2 Depth)/Total Depth < 0.9; A2 Depth/Total Depth < 0.9;
Genotype likelihood[ref/ref] < 20; Genotype Depth < 10; Genotype Depth > 200

These filters removed 9% of the 3,573,574,459,423 raw genotype calls leaving 3,214,727,581,104 genotype calls
across 17,981,897 variant sites and 200,643 samples.

We then performed variant-level quality control. We removed variants that failed the following filters:
e  Call rate of < 90% (restricting to males for Y chromosomal markers) (N= 4,023,284)
e Failed a liberal Hardy-Weinberg Equilibrium test (HWE) at P < 10"'* among unrelated samples (not applied
to Y chromosomal markers) (N=136,869)
e Present in Ensembl low-complexity regions (N=748,116)
e  Monomorphic in the final dataset (N=55,614)

After performing these variant filters, 13,003,057 variants remained of which 12,756,075 were autosomal.

To perform sample level quality control, we computed a number of quality metrics to identify bad-quality or
duplicated samples. We first used KING6 (version 2.2.5) to calculate pairwise heterozygote concordance rates for
each pair of samples, using the high-quality independent autosomal markers. Then we used the high-quality
autosomal variants present in both WES and array datasets to compute per-sample heterozygote concordance rates
between WES calls and genotyping array calls. We inferred the genetic sex of each participants with the --check-sex
option in PLINK, using the high-quality independent X-chromosomal markers. We set any sample with F > 0.8 to
male, while samples with F < 0.5 were set to female. Finally, using all ~12.7M autosomal WES variants, we
computed a number of additional metrics including sample call rate, transition/transversion ratio (Ti/Tv),
heterozygote/homozygote ratio (Het/Hom), SNV/indel ratio (SNV/indel) and the number of singletons. After
computing these metrics, we excluded participants based on the following criteria:

e Decided to revoke their consent

e Sample duplicates based on heterozygote concordance rates > 0.8 (N=0)

e Samples with blatant discordance between self-reported and genetically inferred sex

e Discordance between WES and array calls with heterozygote concordance rates < 0.8

e Call rate <90%

e Samples further than 8 standard deviations from the mean for Ti/Tv (n=0), Het/Hom (N=100), SNV/indel

(N=1) and number of singletons (N=111)

After applying these filters 200,337 samples remained for analysis.

Automatic image outlier detection and removal
To automatically identify poor quality fundus photographs, we developed a convolutional neural network model on
the Google Cloud’s Al platform. We used a sample of 1,000 retinal fundus photographs from the UK Biobank. We

first included all images from those with multiple photos of the same eye from a single visit (to enrich for poor



quality images; 827 photos from 206 individuals). The remaining individuals were randomly sampled from all
participants with fundus photography (additional 173 photos from 87 individuals). A board-certified
ophthalmologist (J.C.W) hand-labeled images as poor quality or good quality based on presence or absence of
motion artifact, media opacity, and ability to clearly distinguish retinal vessels on the photograph. The model was
trained and tuned on a random sample of 80% of individuals (N=233 individuals, 794 photographs) and tested on
the remaining 20% of individuals (N=60 individuals, 206 photographs). A 45% poor-quality probability was used as
the threshold to remove poor quality images to balance removal of poor-quality images and sufficient sample size
for downstream association studies, which resulted in removal rates similar to other published studies of UK
Biobank Fundus photos***°. This threshold resulted in a sensitivity of 97.4% and a specificity of 100.0% for
detecting poor quality images. The deep learning model was then applied to UK Biobank fundus photographs. Prior
to analysis, a pixel intensity threshold was used to detect the outer edge of the fundus, and images were square
cropped around the fundus boundary. For model development, images were resized to 320x320 pixels. Originally,
134,653 fundus photographs were available from 67,339 individuals from the UK Biobank enrollment visit. After
applying the outlier detection algorithm and removing all photographs with >45% probability of poor quality,

99,736 images remained from 55,603 participants, resulting in removal of 26% of the original images.

Overview of prior methods for retinal vessel segmentation:

There has been an extensive body of work using automated computational approaches to segment retinal
microvasculature and quantify microvasculature phenotypes*? 352 | These approaches can be broadly classified into
unsupervised methods and supervised methods. Unsupervised approaches®* 3* do not rely upon hand-drawn
segmentations to train a classification model and instead use mathematical transformations of the raw image to
identify edges corresponding to vessel walls, and then perform post-processing steps such as in-painting to fill in

5556 yse transformations (e.g., wavelet filters)> to

holes in segmented vasculature. Classical supervised approaches
convert the raw pixel intensities into usable features which are then passed to a machine learning algorithm such as a
Support Vector Machine or a Gaussian Mixture Model to classify each pixel as vasculature or not. More recently,
studies have shown that deep neural networks substantially improve segmentation performance over classical
approaches®. These models have an added benefit that once trained, they do not require any specific parameter
settings during inference. However, it is not yet known whether deep learning-based segmentation approaches can
generate quantifiable vascular phenotypes (e.g., fractal branching)*? and whether these phenotypes are useful

measures of disease risk.

Deep learning model training process

Our deep learning model consisted of an ensemble of 10 U-Net models each randomly initialized and trained for
1,000 epochs using this procedure. One-cycle learning rates were used with a maximum rate of 1e-4 during training.
Geometric data augmentation was used during training including 5 degrees of random rotation, 50%

brightness/contrast adjustment, 20% zoom in/out, random black-white inversion, and patch sampling to 25% of



original image size. The final segmentation mask was determined by rounding the pixel-wise probability of each

model to 0/1 and taking a majority vote for each pixel.

Fractal dimension and vascular density calculation

The segmentation model was applied to these images to calculate fractal dimension and total vessel area. Fractal
dimension was calculated using a box counting method®! as previously described for the retina*, and applied to the
segmented vasculature. Vessel density was defined as the total number of pixels in the segmented vessels given a
fixed dimension of 320x320 pixels for each image. For individuals with multiple photos from the same visit, the
maximum fractal dimension and vessel density for each eye was used. Extreme outliers for right and left eye
vascular FD and density were excluded by adjusting the traditional box and whisker upper and lower bounds and
accounting for skewness in the phenotypic data using the Robustbase package in R (setting range=3) (https://cran.r-

project.org/web/packages/robustbase/robustbase.pdf). For all analyses except for the quantitative ocular traits (where

eye-specific analyses were performed), FD and vascular density were averaged across right and left eyes and inverse
rank normalized to mean 0 and standard deviation 1. For the quantitative ocular traits, analyses were performed by
eye and retinal vascular FD and density were inverse rank normalized to mean 0 and standard deviation 1 for right

and left eyes separately.

Phenome-wide association analyses (PheWAS)
PheWAS with prevalent and incident phenotypes was performed across all of the 1,866 hierarchical phenotypes
defined from the Phecode Map 1.2°2 ICD-9 (https:/phewascatalog.org/phecodes) and ICD-10

(https://phewascatalog.org/phecodes_icd10) phenotype groupings®. Associations of retinal vascular FD and

vascular density with prevalent phenotypes were performed utilizing logistic regression models, and associations
with incident phenotypes were performed using Cox proportional hazards models after excluding individuals with
the corresponding diagnosis at or prior to enrollment. Both models were adjusted for age, age?, sex, smoking status
(current/prior/never smoker), and ethnicity (Data field 21000). The proportional hazards assumption was assessed by
Schoenfeld residuals and was satisfied for each model. Analysis was performed across disease phenotypes with at
least 9 cases with retinal fundus images available. Statistical significance was defined using false discovery rate
<0.05.

PheWAS across 88 quantitative systemic biomarkers acquired at enrollment including blood counts (Category ID
100081), blood biochemistry markers (Category ID 17518), liver MRI iron and inflammation measures (Category
126), arterial stiffness and reflection index from finger photoplethysmography (Category 100007), blood pressure
(Category 100011), pulmonary function tests from spirometry (Category 100020), left ventricular size and function
as well as pulse wave analysis from cardiac MRI (Category 102), as well as eye measures (Category 100011) were
performed. For all phenotypes, sex-specific extreme outliers were excluded by adjusting the traditional box and
whisker upper and lower bounds and accounting for skewness in the phenotypic data using the Robustbase package

in R (setting range=3) as previously performed*®*® (https://cran.r-



project.org/web/packages/robustbase/robustbase.pdf). Quantitative traits were inverse rank normalized to mean 0

and standard deviation 1. Analyses were done using linear regression in models adjusted for age, age?, sex, smoking
status (current/prior/never smoker), and ethnicity. Statistical significance was defined using false discovery rate

<0.05.

Genomic in silico analyses utilizing the GWAS summary statistics
Using the GWAS summary statistics, SNP heritability analysis was performed using LD-score regression with
LDSC-v1.0.1 (https:/github.com/bulik/lIdsc) and European LD scores from 1000 Genomes®®. Fine-mapping to

prioritize causal variants at each locus was performed using the FINEMAP-v1.4 software®. Putative causal genes

were prioritized using PoPS software®’ (https://github.com/FinucaneLab/pops) which integrates GWAS summary

statistics with gene expression, biological pathways, and predicted protein-protein interaction data to identify likely
causal genes at each genome-wide significant locus. Enrichment analysis was performed using the FUMA and
EnrichR web browsers across genes with PoPS z-score>1. Genetic correlation analysis was performed using

GNOVA, using GWAS summary statistics from the datasets listed in Supplemental Table 14 legend.

Polygenic risk score (PRS) development and PRS-PheWAS

Polygenic risk scores (PRS) were developed among individuals not included in the GWAS study (i.e., genotyped
UK Biobank participants without retinal fundus images available). Significant, independent loci were identified
using variants with P<5x108, clumped in Plink-2.0 using an r? threshold of 0.1 across 1-MB genomic windows from
the 1000 Genomes Project European reference panel. Additive PRSs for retinal vascular FD and, separately,

vascular density were developed as such: 2, Beta X SNP;; , where Beta is the weight for each of the N

j
independent genome-wide significant variants in the GWAS, and SNP;; is the number of alleles (i.e., 0, 1, or 2) for

SNP; carried by individual j in the UK Biobank.

Further phenome-wide association of the retinal vascular FD and density PRS were performed to test the
associations between genetically lowered retinal vascular FD and density associated with clinical traits in the UK
Biobank, across combined prevalent and incident phenotypes from PheCode Map 1.2%2 ICD-9 and ICD-10 codes,
adjusted for age, age?, sex, ever smoking, the first ten principal components of genetic ancestry, and genotyping
array. Given that several associations were identified with melanoma and skin cancers, additional sensitivity
analyses were further performed adjusting for self-reported skin color (Field ID 1717), ease of skin tanning (Field
ID 1727), time spent outdoors in summer and winter (Field ID 1050, 1060), and childhood sunburn occasions (Field
ID 1737). Furthermore, given slight differences in magnification of the fundus images, which is correlated with
degree of myopia (measured by spherical equivalent), we also performed sensitivity analyses adjusting for spherical

equivalent, as done previously®*.

1-sample Mendelian Randomization of blood pressure and type 2 diabetes on microvascular indices



1-sample Mendelian randomization was performed using additive PRS for SBP (75 variants), DBP (75 variants),
and type 2 diabetes mellitus (64 variants) comprised of genome-wide significant (P<5x107®), independent variants
from European GWAS external to the UK Biobank, as done previously*’-®® (Supplemental Tables 23-25). The PRS
were inverse rank normalized then scaled such that each 1 unit increase in the SBP PRS reflected 10mmHg increase
in SBP, and each 1 unit increase in DBP PRS reflected 10mmHg increase in DBP, and each lunit increase in the
type 2 diabetes PRS reflected a 2-fold increased risk of type 2 diabetes. These PRS were then associated with retinal
vascular density and FD among unrelated individuals, in linear regression models adjusted for age, age?, sex,

smoking status, and principal components 1-10 of genetic ancestry.

Rare variant association study (RVAS)
RVAS was performed among unrelated individuals with both whole exome sequencing (WES) and retinal fundus

images available using burden tests through the REGENIE package® (https://rgcgithub.github.io/regenie/options/).

Exonic variants were filtered to rare (minor allele frequency <1%), predicted high-confidence loss-of-function by
LOFTEE"! or predicted missense deleterious by MetaSVM, and grouped by protein-coding gene. RVAS gene
burden analysis was conducted, adjusting for age, age?, sex, ever smoking, and the first ten principal components of
genetic ancestry. Significance was defined based on a Bonferroni cutoff depending on the number of genes analyzed

(P<0.05/11,5930r 4.3x10° for vascular density; P<0.05/12166 or 4.1x10° for FD).



Supplemental Results:

Sensitivity analyses used in automated image quality control

To ensure that the automated image removal model training process was robust to selection bias, we used 5-fold
cross validation and found that the five models achieved an average AUC of 0.98 (+0.02), suggesting that selection
bias was minor. To ensure that the quality control model was not detecting ocular pathology, we compared
characteristics of poor-quality vs high quality images (Supplemental Table 1). Poor quality images were slightly
enriched for glaucoma and cataracts — pathology that is expected to occlude vasculature, but were otherwise not

meaningfully different.

Baseline characteristics

Across the 54,813 individuals analyzed, mean age was 56 (SD 8) years, 30,015 (55%) were female and 23,987
(44%) either previously or currently smoked (Supplemental Table 2). 50,223 (92%) self-reported ethnicity as
White, 1,454 (2.7%) Black, 1,432 (2.6%) South Asian, 213 (0.4%) Chinese, and 1,491 (2.7%) as Other. Mean BMI
was 27 (SD 4.7) kg/m?, and 1,186 (2.2%) had prevalent type 2 diabetes mellitus, 14,968 (27.3%) hypertension,
2,693 (4.9%) coronary artery disease, 8,244 (15%) hypercholesterolemia, 188 (0.3%) chronic kidney disease, 731
(1.3%) stroke. Prevalence of clinical ocular conditions was low, with 2,015 (3.7%) having self-reported or
diagnosed history of cataract, 802 (1.5%) glaucoma, 657 (1.2%) age-related macular degeneration, and 181 (0.3%)
with diagnosed retinal detachment (Supplemental Table 2).

Univariate and multivariate associations with retinal microvascular FD and density

In univariate associations, average vascular FD and density across right and left eyes significantly decreased with
age (Figure 1c), with slightly lower values present in females and individuals of Chinese or South Asian ethnicity,
and slightly higher values present in current smokers (Supplemental Figure 4, Supplemental Table 3).
Multivariate associations recapitulated the importance of including age, sex, current smoking status, and ethnicity in
predicting retinal vascular FD and density (Supplemental Table 4). In multivariate models, female sex was
associated with reduced FD but no difference was observed in vascular density compared to males. However,

ancestral differences were more evident for vascular density than FD.

Phenome-wide association study sensitivity analyses

Sensitivity analyses were performed first adjusting the incident associations for prevalent hypertension and diabetes
(Supplemental Figure 10, Supplemental Table 8), removing associations with most incident cardiovascular
conditions (including incident heart failure and hypertensive heart disease); however a significant association
remained for renal dialysis (Pre-adjustment: HR 1.61, P=1.99x1075; post-adjustment: HR 1.53, P=0.00019); however

incident ocular phenotypes persisted after adjustment. Separately, analyses were performed adjusting the incident



associations for mean spherical equivalent (Supplemental Figure 11, Supplemental Table 9), identifying

consistent association with incident ocular phenotypes after these adjustments.

GWAS Sensitivity analyses and comparison with vascular tortuosity variants

Further analyses removing prevalent type 2 diabetes mellitus cases identified consistent associations across all
previously identified genome-wide significant loci (Supplemental Figure 13, Supplemental Table 12).
Furthermore, a comparison was performed between 173 independent genome-wide significant variants?* identified
ina prior published GWAS of retinal vascular tortuosity and FD and density (Supplemental Figure 14).
Significant, positive but not perfect genetic correlations were identified between vascular tortuosity and density
(Rpearson=0.44, P=7.7x1071%) as well as FD (Rpearson=0.24, P=0.0015), with several loci showing consistent effects
between tortuosity and density (at /RF4:rs12203592, FLT1:rs17066617) and tortuosity and FD (at /RF'4:rs12203592,
OCA2:rs7164220, HERC2:rs12913832, AGF G2:1s187300659, ZKSCAN1:1s188746966), while several variants had
heterogeneous effects, particularly at the PDE3A locus.

Rare variant association study

Rare variant association study (RVAS) was performed using 25,674 individuals with whole exome sequencing data,
grouping together rare (minor allele frequency<1%), disruptive (i.e., MetaSVM’® missense deleterious or high-
confidence loss of function variants’!) variants by gene (Supplemental Figure 17, Supplemental Table 19,20).
While no exome-wide significant (i.e., P<4x10°) signal was attained, several suggestive associations were observed.
Firstly, the top gene in the FD RVAS and one of the top genes of the retinal density RVAS analyses is MITF
(melanocyte inducible transcription factor, also called microphthalmia associated transcription factor) (Beta -0.27,
P=3.3x10%), whose signal was driven by a predicted deleterious missense variant with allele frequency 0.0032,
rs149617956-A (p.Glu419Lys), which was suggestively associated with reduced vascular density (Beta -0.27 SD,
P=9.4x10%) as well as FD (Beta -0.28 SD, P=2.5x10) in the GWAS analyses. Second, for the vascular density
RVAS, nominal association was detected with GNB3 (Beta = -0.86SD, P=0.0064), which also had a more common
missense variant with allele frequency 0.071 detected in the common variant GWAS as noted earlier, not included in
this RVAS aggregation. Prior studies have linked GNB3 to myopia®?, hypertension®!, as well as retinal vascular

caliber”, and retinal degeneration®.
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Supplementary Figure 1: Machine learning for vessel segmentation. a. showing two representative photos and the
deep learning model-based segmentation versus hand-drawn segmentation. b. correlation between estimated and
actual Fractal Dimension and vessel density from the testing data points across the CHASE, DRIVE, and STARE
databases. DRIVE = Digital Retinal Images for Vessel Extraction (photographs from a diabetic retinopathy screening
program in the Netherlands of subjects 25-90 years of age (https://drive.grand-challenge.org/); CHASE = Child Heart
and Health Study in England (retinal fundus photographs of 9- and 10-year old children of different ethnic origin from
England); STARE = the Structured Analysis of the Retina database (extracted from clinical visits to the Shiley Eye
Center at the University of California, San Diego)
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Deep Learning Estimated Vascular Density

Deep Learning Estimated Fractal-Dimension

C.

Approach Accuracy AUC Reference

Deep learning 95.6% 97.4% Current manuscript

(U-Net Ensemble)

Azzopardi et al. 2015 94.0% 89.2% Azzopardi G, Strisciuglio N, Vento M and Petkov N. Trainable
COSFIRE filters for vessel delineation with application to retinal
images. Med Image Anal. 2015;19:46-57.

Zhao et al. 2015 94.0% 84.0% Zhao'Y, Liu Y, Wu X, Harding SP, Zheng Y. Retinal vessel
segmentation: An efficient graph cut approach with retinex and
local phase. PLoS One. 2015;10:e0122332.

Bankhead et al. 2012 93.8% 85.7% Bankhead P, Scholfield CN, McGeown JG and Curtis TM. Fast retinal
vessel detection and measurement using wavelets and edge
location refinement. PLoS One. 2012;7:€32435.

Nguyen et al. 2013. 93.8% 87.5% Nguyen UTV, Bhuiyan A, Park LA. An effective retinal blood vessel
segmentation method using multi-scale line detection. Pattern
Recognition. 2013;46:703-715

Soares et al. 2006 93.6% 90.7% Soares JV, Leandro JJ, Cesar RM, Jelinek HF and Cree MJ. Retinal
vessel segmentation using the 2-D Gabor wavelet and supervised
classification. IEEE Transactions on medical Imaging. 2006;25:1214-
1222.

Sofka et al. 2006 93.3% 86.3% Sofka M and Stewart CV. Retinal vessel centerline extraction using
multiscale matched filters, confidence and edge measures. IEEE
transactions on medical imaging. 2006;25:1531-1546.

Supplementary Figure 2: External validation of deep learning-based segmentation approach on the Automated
Retinal Image Analysis Dataset (N = 143). a) Scatterplot of estimated and ground-truth vascular density by presence
of disease in photo. Overall correlation is reported across all disease groups together. b) Scatterplot of estimated and
ground-truth fractal dimension, and c) Comparison of deep learning-based segmentation with other image
processing-based techniques.
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Supplementary Figure 3: Relationship of left and right sided retinal vascular parameters with
handedness. The blue line and contours reflect the best fit of the data. The dotted purple line reflects the
unity line (y=x). FD = fractal dimension.
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Supplementary Figure 5: Phenome-wide associations of retinal vascular indices with prevalent disease. Adjustment
was performed for age, age?, sex, smoking status, and ethnicity. a. —log10(P-value) of associations of retinal vascular
density and FD with incident disease plotted grouped by phenotypic category. b. Odds ratio (OR) per 1 SD decrease in
either vascular density (left) or FD (right). Labeled phenotypes have false discovery rate P<0.05. X-axis reflects an
organized grouping of the phenotypes by phenotypic category and p-value of association. FD = fractal dimension.
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Supplementary Figure 6: Phenome-wide associations with quantitative clinical traits and biomarkers. Association of
quantitative blood biomarkers and other quantitative clinical traits with vascular density (left) and FD (right). Linear
regression models were used for analysis, adjusting for age, age?, sex, smoking status, and ethnicity. Y-axis reflects the —
log10(p-value) x beta direction, whereby above 0 reflects a positive beta (ie: each SD increase in phenotype is associated
with increased vascular density or FD) and below 0 reflects a negative beta (ie: each SD increase in phenotype is
associated with decreased vascular density or FD). Horizontal dotted line reflects the Bonferroni threshold for
significance. X-axis reflects an organized grouping of the phenotypes by phenotypic category (laboratory values versus
other quantitative phenotype) and p-value of association.
Fvc = forced vital capacity, BMI = body mass index, DBP_adjMeds = diastolic blood pressure, adjusted for
antihypertensive medication use (see methods), SBP_adjMeds = systolic blood pressure, adjusted for antihypertensive

medication use
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Supplementary Figure 7: Association of retinal vascular traits with incident HTN, with and without SBP and DBP
adjustment from time of retinal fundus acquisition. a) Original Association of retinal vascular traits with incident T2D.
“Original” model refers to adjustment for age, age?, sex, smoking status, and ethnicity, and “+BP Adjustment” refers to
additionally adjusting for SBP and DBP from time of retinal fundus acquisition. b) Incident hypertension risk conferred by
DBP and SBP measured at enrollment, stratified by vascular density and FD. Shaded regions reflect the 95% confidence
interval using a restricted maximum likelihood (REML) binomial generalized additive model with integrated smoothness
(from the gam() function in R).

DBP = diastolic blood pressure, SBP = systolic blood pressure, FD = fractal dimension
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with Incident Type 2 Diabetes Mellitus HR 95% CI P Cases (N) Controls (N)
Original — . 0.92 [0.88;0.96] 3.4e-05 2,371 51,114
+HbA1c Adjustment — 0.97 [0.92;1.01] 0.15 1,898 45,981
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Supplementary Figure 8: Association of retinal vascular traits with incident T2D, with and without HbA1c
adjustment from time of retinal fundus acquisition. a) Original Association of retinal vascular traits with incident
T2D. “Original” model refers to adjustment for age, age?, sex, smoking status, and ethnicity, and “+HbAlc
Adjustment” refers to additionally adjusting for HbA1lc from time of retinal fundus acquisition. b) Incident type 2
diabetes risk conferred by HbAlc measured at enrollment, stratified by vascular density and FD percentiles. Shaded
regions reflects the 95% confidence interval using a restricted maximum likelihood (REML) binomial generalized
additive model with integrated smoothness (from the gam() function in R).

FD = fractal dimension; T2D = type 2 diabetes mellitus
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Supplementary Figure 9: Association of retinal vascular FD and density with quantitative ocular traits.
Associations were performed separately by eye. Horizontal and vertical dotted lines represent the mean values of
the corresponding trait and are provided for reference. Shaded grey region reflects the 95% confidence interval
using a restricted maximum likelihood (REML) generalized additive model with integrated smoothness (from the
gam() function in R). IOP = intraocular pressure; FD = fractal dimension; logMAR = logarithm of the minimal angle
of resolution.
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Supplementary Figure 10: Phenome-wide associations of retinal vascular indices with incident disease
additionally adjusted for prevalent type 2 diabetes mellitus and hypertension. Adjustment was performed for
age, age?, sex, smoking status, ethnicity, type 2 diabetes mellitus, and hypertension. a) —-log10(P-value) of
associations of retinal vascular density and FD with incident disease plotted grouped by phenotypic category. b.
Hazard ratio (HR) per 1 SD decrease in either vascular density (left) or FD (right). Labeled phenotypes have false

discovery rate P<0.05. X-axis reflects an organized grouping of the phenotypes by phenotypic category and p-value
of association. FD = fractal dimension, HR = hazard ratio
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Supplementary Figure 11: Phenome-wide associations of retinal vascular indices with incident disease
additionally adjusted for spherical equivalence. Adjustment was performed for age, age?, sex, smoking status
ethnicity, and spherical equivalence averaged across both eyes. a) —log10(P-value) of associations of retinal
vascular density and FD with incident disease plotted grouped by phenotypic category. b. Hazard ratio (HR)1per 1
SD decrease in either vascular density (left) or FD (right). Labeled phenotypes have false discovery rate P<0.05. X-
axis reflects an organized grouping of the phenotypes by phenotypic category and p-value of association.
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Supplementary Figure 12: Correlation of associations between genome-wide significant fine-mapped vascular
density and FD loci. Variants are labeled by their prioritized PoPS gene at that locus (presented in Extended Data
Figure 7). A list of the variants and the exact summary statistics presented in this figure is available in Supplementary
Table 11. A zoomed-in version of plot (a) is provided in panel (b). FD = fractal dimension
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Supplementary Figure 13: Genome-wide association of retinal vascular density and FD excluding individuals with
prevalent type 2 diabetes mellitus. Genome-wide association study of a. retinal vascular density and b. fractal
dimension after removing individuals with prevalent type 2 diabetes mellitus (T2DM) from the analyses (final sample
size, N=38,109). Comparison of betas and 95% confidence intervals for the fine-mapped genome-wide significant
variants (listed in Supplementary Table 12) across the original GWAS compared to the GWAS after removing prevalent
T2DM cases shows strong correlation of betas for all loci (Rpearson=0.9997). Oblique dotted line reflects y=x. FD = fractal
dimension
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Supplementary Figure 14: Correlation of 173 independent genome-wide significant variants associated with
vascular tortuosity with vascular density and FD. Correlation of betas from 173 independent variants associated with
vascular tortuosity (from Tomasoni et al. MedRxiv 2021) with retinal vascular a) density (Rpearson=0.44, P=7.7e-10) and
b) FD (Rpearson=0.24, P=0.0015). Oblique dotted line reflects y=x, horizontal and vertical dotted lines reflect beta=0.
Variants with P<1e-4 for Density (a) and FD (b) are labeled, along with the closest gene. FD = fractal dimension
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Supplementary Figure 15: Gene prioritization by locus using PoPS for a) FD and b) vascular density. X-axes reflect
chromosomal location, y-axes and colors reflect PoPS z-scores. PoPS = Polygenic Priority Score>®.
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Supplementary Figure 16: Genetic correlation analyses and fine-mapping for retinal vascular density and FD. a,b)
Genetic correlation analysis for vascular density and FD with other published GWAS studies (see legend of
Supplementary Table 13 for GWAS study details). For the genetic correlation analysis: ***:P<0.0001, **:
0.0001<P<0.01, *: 0.01<P<0.05. c,d) The 7 and 13 top finemapped variants at each PoPS-prioritized gene for FD and
vascular density, and their association with other phenotypes. GWAS Z-scores reflect the GWAS z-score (ie: beta/se)
for the respective GWAS outcome and the listed FD- or density- lowering allele. For the finemapping analysis, ***:
P<5x10-8, **: 5x10-8<P<0.0001, *: 0.05<P<0.0001. AMD = age-related macular degeneration; SBP = systolic blood
pressure; DBP = diastolic blood pressure; FD = fractal dimension; GWAS = genome-wide association study; T2D = type
2 diabetes mellitus
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Supplementary Figure 17: Rare variant association analysis of loss of function and missense variants
grouped by gene for retinal vascular a) FD and b) density. Associations are plotted stratified by
cumulative allele frequency for each gene. AF = allele frequency; FD = Fractal dimension
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Supplementary Figure 18: PheWAS of polygenic risk scores for a) vascular density and b) FD. Horizontal
dotted lines reflect the Bonferroni p-value for significance based on the number of analyzed phenotypes.
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Association of PRS

with myopia OR 95% CI P Cases (N) Controls (N)
Vascular Density PRS (SD) 0.92 [0.88;0.95] 9.5e-06 2,743 396,523
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Supplementary Figure 19: One-sample Mendelian Randomization for FD, vascular density PRS on
myopia. a. Association of the vascular density PRS and FD PRS with combined prevalent and incident
myopia in a logistic regression model that includes the following covariates: age, age?, sex, smoking status,
and the first 10 principal components of genetic ancestry. b. Relationship of vascular density PRS and
vascular FD PRS with fraction of individuals developing myopia during their lifetime. Horizontal and
vertical dotted lines in panel b. reflect the median fraction with myopia (horizontal line) across the

dataset, and the median vascular density PRS (vertical line at 0.0 SD), respectively. Shaded grey region
reflects the 95% confidence interval using a restricted maximum likelihood (REML) binomial generalized

additive model with integrated smoothness (from the gam() function in R).
FD = fractal dimension; PRS = polygenic risk score
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