
 
 

1 
 

SUPPLEMENTARY INFORMATION 1 

for "DNA methylation aging and transcriptomic studies in horses"  2 

by Horvath, Haghani et al. 3 
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SUPPLEMENTARY FIGURES 5 
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Supplementary Figure S1. Unsupervised hierarchical clustering of samples from domestic horses. 9 

Average linkage hierarchical clustering based on the inter-array correlation coefficient (Pearson correlation). 10 

The cluster branches (first color band) correspond to tissue type (second color band): brown=blood, 11 

lightgreen=liver, purple=heart, midnightblue=kidney, darkorange=pituitary gland. Third color band encodes 12 

horse breed (darkorange=thorough bred, royalblue=Quarter Horse, paleturquoise=Warmblood, 13 

pink=Hanoverian. Fourth color band visualized the animal ID. Age encodes chronological age (red=old 14 

age). Sex encodes female (pink) and male (lightblue). The figure uses N=333 arrays/tissue samples.  15 
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 18 
Figure S2. Horse clocks applied to blood samples from plains zebra. Each dot corresponds to 19 

a blood sample from zebras (N=76). Each panel reports the results from a different horse clock (y-20 

axis): A) Multi-tissue clock, B) blood clock, C) liver clock, D) human-horse clock for chronological 21 

age, E) human-horse clock for relative age. DNA methylation based age estimates and 22 

chronological age are in units of years. Relative age is a number between 0 and 1. The solid line 23 

corresponds to linear least squares regression and the diagonal line to y=x. Each panel reports 24 

the number of blood samples (N=76), the median absolute error, and the Pearson correlation 25 

coefficient. 26 
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Figure S3. Horse clocks applied to skin samples from plains zebra.  31 

Dots correspond to skin samples from zebras. Each panel corresponds to a different horse clock 32 

(y-axis): A) Multi-tissue clock, B) blood clock, C) liver clock, D) human-horse clock for 33 

chronological age, E) human-horse clock for relative age The solid line corresponds to linear least 34 

squares regression and the diagonal line to y=x. Each panel reports the number of samples 35 

(N=20), the median absolute error and the Pearson correlation coefficient. 36 
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 43 

Figure S4. Leave-one-species out (LOSO) analysis of equid clock for blood samples. 44 

The LOSO cross validation method is used to evaluate to what extend the equid clock generalizes 45 

to equid species that were not part of the training set. The cross validation schemes cycles 46 

through species. For each left out species (test set) a new equid clock is trained on the remaining 47 

equid species. Next the resulting clock equid clock is evaluated in the left out equid species to 48 

arrive at an unbiased DNAm based estimate. B-E) each panel corresponds to a different equid 49 

species considered as test set. Each panel reports the number of blood samples (N), the median 50 

absolute error (in units of years) and the Pearson correlation coefficient (cor). Cross validation 51 

estimate of age (y-axis) versus chronological age in A) all species combined, B) Equus africanus 52 

somaliensis, C) Equus caballus, D) Equus grevyi, E) Equus quagga. Blood samples (dots) are 53 

colored by species as indicated in the respective panels.  54 
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 55 
Figure S5. Scatter plots of age-related changes in horse blood and liver. A) CpGs that gain methylation 56 

with age in both blood and liver. B) CpGs that lose methylation with age in both blood and liver. C) 57 

Examples of blood specific changes. D) Examples of liver specific changes. E) Select CpGs with divergent 58 

aging patterns between blood and liver. Sample sizes: N=192 blood and N=48 liver samples. The panels 59 

report Pearson correlation coefficients and corresponding two sided p values (Student T test). The shading is 60 

the 95% confidence interval of the linear regression. 61 
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 62 
Figure S6. Gene set enrichment analysis of EWAS of age in different horse tissues. The gene level 63 

enrichment study was conducted with the GREAT software 
1
. As statistical background we used all genes on 64 

the mammalian array that map to the horse genome and the human Hg19 background. Datasets: gene 65 

ontology (A), mouse phenotypes
2
  (B), promoter motifs 

1,3
 (C), and MSigDB Perturbation 

4,5
 (D). The results 66 

were filtered for significance at a nominal significance level of p < 10
-5

. We only report findings that led to 67 

significant enrichments, e.g. age related loss of methylation in blood (blood hypo) was omitted. The GREAT 68 

software was used to calculate one sided hypergeometric nominal (uncorrected) p values whose values are 69 

color coded as indicated in the legend. 70 

 71 
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  73 
Figure S7. Gene set enrichment analysis of DNA methylation changes by castration. The gene level 74 

enrichment was done using GREAT analysis 
1
 and human Hg19 background. Datasets: gene ontology (A), 75 

mouse phenotypes (B), promoter motifs (C), and MSigDB Perturbation (D). The results were filtered for 76 

significance at p < 10
-3

. The GREAT software was used to calculate one sided hypergeometric nominal 77 

(uncorrected) p values whose values are color coded as indicated in the legend. 78 
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 81 
Figure S8. Promoter CpG island status does not alter DNAm-mRNA associations.  A) Relationship of 82 

DNAm, mRNA expression, distance to transcription start site, and chromatin states in the gene promoters by 83 

CpG island status. The chromatin states are based on the stackHMM annotations, which represent a 84 

consensus chromatin state in over 100 human tissues 
6
. Pearson correlation and corresponding Fisher 85 

transformed Z statistic (y-axis) between CpG and adjacent mRNA levels (cis-relationship) across N=29 86 

tissue types from two horses. Red horizontal lines corespond to Z= 2 and Z= -2 (two sided significance level 87 

of 0.05). B) Boxplots of Z statistics (between CpG and mRNA) versus chromatin states (stackHMM) 
7
. Each 88 

panel corresponds to different input sets of CpGs with significant cis relationship between. The input sets 89 

are distinguished by 2 criteria: 1) positive/negative association with mRNA and 2) located inside/outside of 90 
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CpG island status. Boxes show the interquartile range of the z scores. The notches indicate the 95% 91 

confidence interval of the median. The whiskers represent 1.5*IQR length of the zscores. We only present 92 

chromatin states with significant associations (p=0.05).   93 

 94 

 95 

 96 



 
 

10 
 

Figure S9. Sensitivity of analysis DNAm-mRNA association. Since cerebellum was a tissue with extreme 97 

DNAm-mRNA expression signatures in some stackHMM states, the cerebellum was excluded from the 98 

analysis. A) Negative association of distance to TSS with DNAm-mRNA expression association was not 99 

affected by excluding the cerebellum sample. The Z statistics are the Fisher z-transformation of DNAm-100 

mRNA Pearson correlation for each CpG.  B) Excluding the cerebellum did not affect stackHMM 101 

relationships with DNAm-mRNA changes. Boxes show the interquartile range of the z scores. The notches 102 

indicate the 95% confidence interval of the median. The whiskers represent 1.5*IQR length of the zscores. 103 

C) Scatter plots of select CpGs with DNAm-mRNA association in horse tissues after excluding cerebellum 104 

from the analysis. Pearson correlation and corresponding two sided Student T test p values for relating 105 

DNAm and mRNA level of the adjacent genes across N=27 tissue types. The shading is the 95% confidence 106 

interval of the linear regression. 107 

 108 

 109 

Technical Details surrounding the DNAm age estimator  110 

 111 

Statistical methods used for building the clocks 112 

Each epigenetic clock was developed by fitting elastic net regression model analysis (R function glmnet) to 113 

the respective training data set. We chose the following parameters for the glmnet R function (alpha: 0.5, 114 

CV Fold: 10, Lambda choice for Clock: 1 standard error above minimum CV-MSE).  115 

 116 

Covariates and coefficient values of the horse clocks 117 

The CpGs and coefficient values can be found in Supplementary Supplementary Data 10. 118 

1) The horse multi tissue clock (trained in blood and liver samples) is based on 97 CpGs whose 119 

coefficient values are specified in the column "Coef.HorseMultiTissue". Age 120 

transformation=identity, i.e. F(Age)=Age 121 

2) The horse BLOOD tissue clock is based on 60 CpGs whose coefficient values are specified in the 122 

column "Coef.HorseBlood". Age transformation=identity, i.e. F(Age)=Age 123 

3) The horse LIVER tissue clock is based on 42 CpGs whose coefficient values are specified in the 124 

column "Coef.HorseBlood". Age transformation=identity, i.e. F(Age)=Age 125 

4) The human horse clock for chronological age is based on 435 CpGs whose coefficient values are 126 

specified in the column "Coef.HumanHorseLogLinearAge". Age transformation=log-linear 127 

described below. 128 

5) The human horse clock for relative age is based on 510 CpGs whose coefficient values are specified 129 

in the column "Coef.HumanHorseRelativeAge". Age transformation: relative age. i.e. 130 

F(Age)=Age/maxLifespan. Max lifespan for horses is 57 years. Human max lifespan =122.5 years. 131 

6) The epigenetic clocks for blood samples from equids (column Coef.EquidBloodLogLinearAge) uses 132 

63 CpGs. Age transformation=log-linear described below. 133 

General description of age transformation 134 

The human-horse clocks for chronological age used log linear transformations that are similar to those 135 

employed for the HUMAN pan tissue (Horvath 2013) 
8
. 136 

An elastic net regression model (implemented in the glmnet R function) was used to regress a transformed 137 

version of age on the beta values in the training data. The glmnet function requires the user to specify two 138 

parameters (alpha and beta). Since I used an elastic net predictor, alpha was set to 0.5. But the lambda value 139 

of was chosen by applying a 10 fold cross validation to the training data (via the R function cv.glmnet). 140 
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The elastic net regression results in a linear regression model whose coefficients b0, b1, . . . , relate to 141 

transformed age as follows 142 

F(chronological age)=b0+b1CpG1+ . . . +bpCpGp+error 143 

Note that the intercept term is denoted by b0. The coefficient values can be found in the attached Excel file. 144 

Based, on the coefficient values from the regression model, DNAmAge is estimated as follows 145 

DNAmAge=   (b0+b1CpG1+ . . . +bpCpGp) 146 

where    ( ) denotes the mathematical inverse of the function F(.). Thus, the regression model can be used 147 

to predict to transformed age value by simply plugging the beta values of the selected CpGs into the 148 

formula.  149 

Defining Properties of the log linear transformation 150 

As indicated by its name, the “log-linear” function, has a logarithmic dependence on age before the average 151 

age of sexual maturity (of the species) and a linear dependence after Age at Sexual Maturity (of the species).  152 

For the human-horse clocks we used the following averages at sexual maturity (in units of years): 13.5 years 153 

for humans and 2.58493 years for horses. 154 

Construction 155 

We used a piecewise transformation, parameterized by Age of Sexual Maturity ( ). 156 

The transformation is F(x), given by 157 

 ( )   (
     

     
)   where   ( )   {

   ( )               
                          

 

Explicitly, F(x) is given by 158 

 ( )  {
   (

     

     
)                

   

     
             

 

In order to use this transformation to predict Age on new samples, one needs to use the inverse 159 

transformation, F
-1

(y), given by 160 

   ( )   {
(     )  exp( )                  

(     )                
 

For predicting age, apply the inverse transformation to coefficient-weighted sum.  That is, 161 

           (   ) 
where   is the vector of coefficients and   is the vector of methylation values, with an intercept term. 162 

The DNAm Age estimate is estimated in two steps. 163 

First, one forms a weighted linear combination of the CpGs whose details can be found in Table  164 

 The table reports the probe identifier (cg number) used in the custom Infinium array 165 

(HorvathMammalMethylChip40) . The weights used in this linear combination are specified in the 166 

respective column entitled "Coef.".  167 

The formula assumes that the DNA methylation data measure "beta" values but the formula could be 168 

adapted to other ways of generating DNA methylation data. 169 

 170 

Species characteristics of Equids according to anAge 171 
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For the sake of reader friendliness, we reproduce select species characteristics from the anAge data base 172 

about different equid species. Our age transformations make use of column "AgeSexualMaturity.Years", 173 

which is the average across male and female age at sexual maturity. The variable names indicate the units of 174 

time, e.g Days or Years.  175 

The relative age estimate makes use of the maxLifespan which is in units of years. 176 

 177 

 178 

Speci

es 

Latin

Name 

GestationTi

me.days 

maxLifespa

n.Years 

AgeSexualMatu

rity.Years 

Female.matu

rity.days 

Male.matur

ity.days 

AverageAdu

ltWeight 

Afric

an 

wild 

ass 

Equus 

asinus 

359 47 2.347 708 1005 1.65E+05 

Horse Equus 

caball

us 

337 57 2.585 914 973 3.00E+05 

Grev

y's 

zebra 

Equus 

grevyi 

406 31 3.752 1278 1461 3.84E+05 

Kula

n 

Equus 

hemio

nus 

339 31.6 3.211 1157 1187 2.30E+05 

Kian

g 

Equus 

kiang 

299 30.1 NA NA NA 2.75E+05 

Quag

ga 

Equus 

quagg

a 

365 38 2.466 900 900 2.80E+05 

Moun

tain 

zebra 

Equus 

zebra 

362 33.2 3.134 1009 1279 2.96E+05 

Supplementary Table 1. Characteristics of equid species. Rows correspond to different equid 179 

species in this article. Columns report gestation time (in units of days), maximum lifespan (in units 180 

of years), age at sexual maturity averaged across both sexes (in units of years), female age at 181 

sexual maturity (in units of days), male age at sexual maturity (in units of days), average adult 182 

weight (in grams). These values come from the anAge data base.  183 

The DNAm Age estimate is estimated in two steps. 184 

First, one forms a weighted linear combination of the CpGs whose details can be found in the 185 

supplementary Excel file (Supplementary Data 10) 186 

The file reports the probe identifier (cg number) used in the custom Infinium array 187 

(HorvathMammalMethylChip40). The weights used in this linear combination are specified in the 188 

respective column entitled "Coef.".  189 

The formula assumes that the DNA methylation data measure "beta" values but the formula could 190 

be adapted to other ways of generating DNA methylation data. 191 

 192 

 193 
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 194 

 195 

Supplementary Note 1. 196 

R software code for horse clocks 197 

R Implementation of the log linear transformation 198 

### Applies the log linear transformation to the input vector x,i.e. to Age 199 

F= Vectorize(function(x, maturity, ...) { 200 

  if (is.na(x) | is.na(maturity)) {return(NA)} 201 

  k <- 1.5 202 

  y <- 0 203 

  if (x < maturity) {y = log((x+k)/(maturity+k))} 204 

  else {y = (x-maturity)/(maturity+k)} 205 

  return(y) 206 

}) 207 

### Inverse log linear trnasformation 208 

F.inverse= Vectorize(function(y, maturity, ...) { 209 

  if (is.na(y) | is.na(maturity)) {return(NA)} 210 

 211 

  k <- 1.5 212 

  x <- 0 213 

  if (y < 0) {x = (maturity+k)*exp(y)-k} 214 

  else {x = (maturity+k)*y+maturity} 215 

  return(x) 216 

}) 217 

 218 

# R function for multivariate regression model  219 

multivariatePredictorCoef=function(dat0, datCOEF,imputeValues=FALSE) { 220 

datout=data.frame(matrix(NA,nrow=dim(dat0)[[2]]-1,ncol=dim(datCOEF)[[2]]-1 )) 221 

match1=match(datCOEF[-1,1],dat0[,1] ) 222 

if (   sum(!is.na(match1))==0 ) stop("Input error. The first column of dat0 does not contain CpG identifiers 223 

(cg numbers).")    224 

dat1=dat0[match1,] 225 

row.names1=as.character(dat1[,1]) 226 

dat1=dat1[,-1] 227 

if (imputeValues ){dat1=impute.knn(data=as.matrix(dat1) ,k = 10)[[1]]} 228 

for (i in 1:dim(dat1)[[2]] ){ for (j in 2:dim(as.matrix(datCOEF))[[2]] ){ 229 

datout[i,j-1]=sum(dat1[,i]* datCOEF[-1,j],na.rm=TRUE)+ datCOEF[1,j]}} 230 

colnames(datout)=colnames(datCOEF)[-1] 231 

rownames(datout)=colnames(dat0)[-1] 232 

datout=data.frame(SampleID= colnames(dat0)[-1],datout) 233 

datout 234 

} # end of function 235 

 236 

# read in supplementary table 10 237 

datCoef=read.csv("SupplementaryData10.csv") 238 

 239 

The first columns should read as follows 240 

names(datCoef) 241 
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 [1] "var"                                                          242 
 [2] "Coef.HorseMultiTissue"                                        243 
 [3] "Coef.HorseBlood"                                              244 

 [4] "Coef.HorseLiver"                                              245 
 [5] "Coef.HumanHorseAgeLogLinear"                                  246 
 [6] "Coef.HumanHorseRelativeAge"                                   247 
 [7] "Coef.EquidBloodAgeLogLinear"               248 

 249 

# Restrict attention to the first 7 columns 250 

datCoef=datCoef[,c(1:7)] 251 

 252 

match1=match(datCoef[-1,1],dat0[,1] ) 253 

missingProbes= as.character(datCoef[-1,1] )[is.na(match1)] 254 

 255 

dat1=dat0[match1,] 256 

# data frame with predicted values. 257 

datPredictions=multivariatePredictorCoef(dat1,datCOEF=datCoef,imputeValues=FALSE)  258 

 259 

#let's relabel the columns by replacing "Coef" with "DNAm" since the columns contain estimates of age or 260 

relative age instead of coefficient values 261 

 262 

colnames(datPredictions)=gsub(pattern="Coef", replacement="DNAm", x=colnames(datPredictions)) 263 

# We need to transform the human horse clock for chronological age using the inverse of the log linear 264 

transformation. 265 

For data from horses, the age at sexual maturity has to be set to 2.585 years.  266 

datPredictions$DNAm.HumanHorseAgeLogLinear= 267 

F.inverse(datPredictions$DNAm.HumanHorseAgeLogLinear, maturity= 2.585) 268 

datPredictions$DNAm.EquidBloodAgeLogLinear= 269 

F.inverse(datPredictions$DNAm.EquidBloodAgeLogLinear, maturity= 2.585) 270 

 271 

The data frame "datPredictions" contains the age estimates in units of years and relative age estimates. 272 

 273 

 274 

 275 

 276 

 277 
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