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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript describes and evaluate a protein-peptide modelling approach making use of the 

recently released AlphaFold2 code. The idea is similar to another study posted in BioRxiv (citation 40 

in the manuscript): Adding a linker between the protein and the peptide. The method is 

demonstrated on a set of 162 non-redundant protein peptide complexes and compared to the 

previously published protocol by the same group and co-workers (PIPER-FlexPepDock (PFPD)). The 

overall performance is impressive considering AF2 was not trained on complexes. Overall the results 

are clearly presented with thorough analysis and comparisons between approaches. 

 

I only have rather minor comments. 

 

1) When discussing the RMSD values shown in Figure 1A), the authors should indicate how the 

superimposition was done (probably on the protein alone). Also I would suggest to indicate in the 

figure as vertical lines the CAPRI criteria (l-RMS limits). 

 

2) The authors remark that the two approaches (PDPD and AF2) show no correlation in performance, 

which opens the way to a combination of the two. In a real scenario however one will not know 

which one might give the best results. How would you then combine the results / select one or the 

other method? Some discussion about this should be added. 

 

3) Related to 2, it would be interesting to show if a Rosetta refinement of the AF2 models would lead 

to clear binding funnels. Especially for case where one of the two approaches fails. Could the 

presence or absence of a funnel point to the correct model? 

 

4) Some more info on the benchmark could be provided, especially the distribution of sequence 

lengths and also the fraction of extended vs helical conformations. 

 

5) Related to 4), all data, notebooks, analysis scripts and generated models should be made freely 

available 

 



6) I would suggest to do a careful reading of the manuscript to improve readability, e.g. add here and 

there some pronouns (it does currently feel a bit as it has been very quickly written...) 

 

 

Reviewer #2 (Remarks to the Author): 

 

In this manuscript, the authors examine the possibility to use Alphafold2 to dock peptides. The 

results are quite impressive (as expected from 

 

First, it has to be mentioned that the authors seem to have rushed to submit the paper. They have 

used work by the Colab alphafold team (Ovchinnikov and Steinegger mainly I think) and run a 

preliminary version of their notebook on a previously published dataset. They did not even bother to 

read the code from Deepmind and realize that it is easy to perform this type of docking without 

using the Gly-linker. Obviously, the study should be replaced without the GLY-linker, but I do not 

expect the results to change significantly. I will assume that this is the case for the rest of my review. 

 

As has been reported in numerous Twitter posts AF2 can be used in many different ways beyond the 

folding of a single domain. Here, the authors show that it can dock and fold approximately 25% of 

the protein-peptide complexes. They compare this with state-of-the-art methods and show that the 

performance is better than when the motif is not used, but worse than when it is known. They also 

use the docked peptides to try to extract motifs. 

 

Although I think the paper is interesting, I can not help to not feel a bit disappointed - the paper 

does not really provide any information on (1) the best strategies to perform the docking (2) the 

limits (why does it not work in some cases, (3) how AF2 can achieve this impressive performance (it 

certainly learns something about folding as the authors say - but what and how, (4) any novel 

biology, or (5) how we can achieve even better performance. 

 

To address these questions I would suggest that the authors do(in addition to rerun everything 

without the linker) 

 

1. Examine different strategies for docking (one obvious test is to see what happens if you run 

several recycles, or generate several models. Is it just a bit randomness when it works or not or if it 

really something that separates the failed and successful cases. 



 

2. Examine what happens if the template (i.e. the structure) of the protein is used as input (and also 

the same for the peptide). How does that change things ? 

 

3. Examine what happens when you have peptides that should not bind (or try to do an Alanine 

scanning of the peptide). Does that matter etc ? What happens with a poly-A ? 

 

4. Run this on a much larger dataset of peptide-proteins with unknown structures (the SLIM 

database). THis might provide some really interesting biological findings. 

 

 

 

Yours 

 

Arne 



We thank the two reviewers for their quick, helpful and supportive comments that have 

allowed us to significantly improve our manuscript. While our initial submission was quickly 

performed and written, we have taken the time and effort to significantly revisit and extend 

our study and are now happy to report a comprehensive and much improved manuscript. 

Overall, the baseline result has not changed: AF2 can accurately predict a large fraction of 

peptide-protein complexes, without dedicated training on peptide-protein docking. Our 

analyses suggest that memorization does not play a major role and support a more general 

notion that AF2 applies what it has learned from monomer structures to modeling of peptide-

protein interfaces, reinforcing the view of peptide protein binding as complementation of 

protein folding. 

  

We performed initial calibration of optimal AF2 performance on the motif and non-motif sets 

previously assessed (total of 26 complexes). Calibration included the investigation of several 

parameters: (1) prediction by providing the peptide as separate chain, compared to 

prediction using a poly-glycine linker; (2) increase the number of recycles; (3) use of 

environmental sequences; (4) use of stochastic dropout; and (5) increase the number of 

random seeds. Based on these runs, we decided to proceed with a protocol that (1) 

combines both submissions with separate and poly-glycine linked peptide chains; (2) uses 9 

instead of 3 recycles; and (3) inclusion of environmental sequences (Supplementary Figure 

4).  

Next, we invested much time and effort to curate the validation benchmark. We now present 

a greatly improved, curated dataset of almost 100 complexes on which we benchmarked 

AF2 performance (Supplementary Table 1). All entries in our datasets are non-redundant at 

the ECOD domain level, ensuring unbiased representation of peptide-protein interactions.  

Finally, we inspected the use of models for further analysis of an interaction, and 

investigated a number of factors that could contribute to the success of AF2 peptide docking 

reported here. This includes investigation of the importance of the peptide sequence on the 

one hand, and the availability of templates used in the training or prediction step, to 

prediction accuracy. These analyses reinforce our notion that peptide-protein interaction 

specific memorization does not play an important role. Instead, it seems that AF2 is able to 

apply concepts learned from monomer prediction to the modeling of peptide-receptor 

interfaces. 

 

Below we include detailed responses to all the Reviewer’s concerns and suggestions. We 

hope that after this detailed and comprehensive review, improvement and extension of the 

manuscript, we have addressed all concerns and the manuscript can be accepted for 

publication.  

 

 

Reviewer #1: 

 

This manuscript describes and evaluates a protein-peptide modelling approach making use 

of the recently released AlphaFold2 code. The idea is similar to another study posted in 

BioRxiv (citation 40 in the manuscript): Adding a linker between the protein and the peptide. 

The method is demonstrated on a set of 162 non-redundant protein peptide complexes and 

compared to the previously published protocol by the same group and co-workers (PIPER-

FlexPepDock (PFPD)). The overall performance is impressive considering AF2 was not 



trained on complexes. Overall the results are clearly presented with thorough analysis and 

comparisons between approaches. 

 

I only have rather minor comments. 

 

1) When discussing the RMSD values shown in Figure 1A), the authors should 

indicate how the superimposition was done (probably on the protein alone). Also I 

would suggest to indicate in the figure as vertical lines the CAPRI criteria (l-RMS 

limits). 

 

A:  

Our measure differs slightly from the standard CAPRI measures: Throughout the paper we 

report RMSD values calculated over the peptide interface residues, after aligning the 

receptor. This measure is more stringent, but reflects in our opinion best how well AF2 docks 

the peptide, as it focuses on the peptide residues, which are usually less well modeled 

compared to the receptor (and will fail in cases where the receptor structure is wrong).  

In Figure 1B we also report results for the standard CAPRI I-RMS measure, revealing a 

similar trend. Supplementary Figure S2 includes CAPRI I-RMS and L-RMS cumulative 

plots, where we have added lines indicating CAPRI thresholds for acceptable, medium and 

high quality models. This is now detailed in the Methods section. 

 

2) The authors remark that the two approaches (PFPD and AF2) show no correlation 

in performance, which opens the way to a combination of the two. In a real scenario 

however one will not know which one might give the best results. How would you 

then combine the results / select one or the other method? Some discussion about 

this should be added. 

A: We agree with the reviewers comment and now relate to this more in the Discussion. 

One possibility to identify successful predictions is to inspect pLDDT values (for AF2 

predictions), as we show in Figure 2. But this is only the beginning. The optimization of a 

protocol that combines AF2 predictions with Rosetta FlexPepDock and other approaches is 

the focus of our currently ongoing work.  

 

3) Related to 2, it would be interesting to show if a Rosetta refinement of the AF2 

models would lead to clear binding funnels. Especially for cases where one of the two 

approaches fails. Could the presence or absence of a funnel point to the correct 

model? 

A: As mentioned above, this is the matter of current in depth exploration, which we plan to 

report later, and goes beyond the focus of the present study.   

 

4) Some more info on the benchmark could be provided, especially the distribution of 

sequence lengths and also the fraction of extended vs helical conformations. 

A: For the revision, we have put great effort into generating a clean, manually curated 

dataset for validation (containing 96 complexes), and now provide a full report about this 

benchmark (termed Large Non-Redundant set, LNR), including a detailed list of the different 

datasets analyzed (Supplementary Table 1). 

We have included distribution of peptide length (Supplementary Figure 7A), alongside an 

analysis of AF2 performance dependency on peptide length (Figure 5A). Similarly, we report 



the distribution of secondary structure (Supplementary Figure 7B) as well as corresponding 

performance, highlighting best performance for helical peptides (Figure 5B).  

 

5) Related to 4), all data, notebooks, analysis scripts and generated models should be 

made freely available 

A: A table containing the datasets and all the relevant information is now included as 

Supplementary Table 1. All relevant scripts and notebooks, as well as the models are 

available at a github repository at: 

https://github.com/Furman-Lab/Peptide_docking_with_AF2_and_RosettAfold  

and linked in the Methods section.  

 

6) I would suggest to do a careful reading of the manuscript to improve readability, 

e.g. add here and there some pronouns (it does currently feel a bit as it has been very 

quickly written...) 

A: We thank the reviewer for this important notion. Together with the additional analyses 

provided in the resubmission, we have made efforts to improve readability and flow of the 

manuscript. We hope it stands up to the expectations.  

 

Reviewer #2: 

 

In this manuscript, the authors examine the possibility to use Alphafold2 to dock peptides. 

The results are quite impressive (as expected from 

 

First, it has to be mentioned that the authors seem to have rushed to submit the 

paper. They have used work by the Colab alphafold team (Ovchinnikov and 

Steinegger mainly I think) and run a preliminary version of their notebook on a 

previously published dataset. They did not even bother to read the code from 

Deepmind and realize that it is easy to perform this type of docking without using the 

Gly-linker.  

Obviously, the study should be replaced without the GLY-linker, but I do not expect 

the results to change significantly. I will assume that this is the case for the rest of my 

review. 

A: We examined the results of modeling using linkers and separate chains, as suggested. 

We found that these two implementations are rather complementary (see Supplementary 

Figure 3). Thus, we decided to incorporate both in the generation of models (i.e., 10 models 

in total, which corresponds to the number of models evaluated in CAPRI). We select the top 

model (by RMSD) for analysis. 

 

As has been reported in numerous Twitter posts AF2 can be used in many different 

ways beyond the folding of a single domain. Here, the authors show that it can dock 

and fold approximately 25% of the protein-peptide complexes. They compare this with 

state-of-the-art methods and show that the performance is better than when the motif 

is not used, but worse than when it is known. They also use the docked peptides to 

try to extract motifs. 

 

Although I think the paper is interesting, I can not help to not feel a bit disappointed - 

the paper does not really provide any information on (1) the best strategies to perform 

the docking (2) the limits (why does it not work in some cases, (3) how AF2 can 

https://github.com/Furman-Lab/Peptide_docking_with_AF2_and_RosettAfold


achieve this impressive performance (it certainly learns something about folding as 

the authors say - but what and how, (4) any novel biology, or (5) how we can achieve 

even better performance. 

 

A: We would like to thank the reviewer for thorough reading of the manuscript and all the 

points raised.  

We believe the reviewer will find the revised version of the manuscript extensive and 

insightful. We addressed all reviewers' concerns as detailed below. Briefly, we examined 

several technical modifications and their effect on performance, such as the use of linker and 

separate chains, network parameters and others. We describe the limitations of the method 

with regards to recovering interface residues, detected and missed hotspots, and false-

positive modeling of, e.g., PTM peptides. We thoroughly examine what AF2 has learned, 

and demonstrate its relationship with different data biases such as possible “memorization 

templates”, and other biological characteristics such as the amino acid sequence, secondary 

structure and peptide length.  

 

To address these questions I would suggest that the authors do (in addition to rerun 

everything without the linker) 

 

A: We have rerun everything without the linker, and as described above, now include both 

implementations, as they show complementary performance. 

 

1. Examine different strategies for docking (one obvious test is to see what happens if 

you run several recycles, or generate several models. Is it just a bit randomness when 

it works or not or if it really something that separates the failed and successful cases. 

A: Additionally to the hyperparameters used in the previous version, we introduced several 

new widely discussed ones. On the motif and non-motif sets that we used for calibration we 

evaluated the effects of: (1) polyG linker versus separate chains; (2) number of recycles (0, 3 

and 9); (3) number of seeds (1 or 5); (4) stochastic dropout (used or not used); and (5) 

inclusion of environmental sequence databases.  

 

We report the results for this calibration in Supplementary Figure 4. Based on these 

results, we conclude that the effects of dropout and varying seeds are minor. A large number 

of recycles is beneficial, and so is the inclusion of environmental databases, to a certain 

extent. Linker and separate chains work differently, some of the complexes benefitting from 

one strategy and others from the second. Hence, for the rest of the paper and the larger 

dataset, we model everything using both linker and separate chains, with one seed, 9 

recycles, including environmental databases and no random dropout. We examine the 

differences between models with and without linker in several analyses (such as hotspot 

recovery in Figure 2), and otherwise present the best model (by RMSD) out of the 10 (5 

linker + 5 separate chains) models for each complex.  

 

2. Examine what happens if the template (i.e. the structure) of the protein is used as 

input (and also the same for the peptide). How does that change things ? 

A: With respect to “assisting” AF2 with templates, we investigated 2 distinct aspects: 

1. We describe a new results chapter discussing what AF2 has learned. Specifically, we 

were interested to check if AF2 peptide-docking successes could be attributed to 

some “memorization”. In such a case, a single chain protein structure recapitulates 



the peptide protein interaction (naturally with a tail from the monomer or synthetically 

with a peptide “fused” to the monomer biochemically). We map such “memorization 

templates”, and show that such templates are available only for a few peptide-protein 

complexes in our dataset. The performance for complexes with memorization 

templates is indeed excellent for the 5 complexes (out of total 96 complexes in the 

LNR set) in which a monomer structure is available that mimics the interaction at 

atomic level (released prior to 2018). However, when the monomer template does 

not reproduce the atomic details of the interaction, performance is similar to overall 

performance in the benchmark (Figure 5C and Supplementary Table 3). Due to this 

small number of potential templates (5%) we believe AF2 impressive performance 

can not be attributed solely to memorization (when available).  

2. Additionally, we test the impact of provided templates, as suggested by the reviewer. 

For our calibration set (motif and non motif sets) we repeated predictions using the 

native structures of the complexes as templates. Theoretically, this should have 

provided the best possible option for prediction. However, we were surprised to find 

that even if the structure is provided as input, generating alignment separately for the 

2 chains, it is not necessarily helpful and does not always improve modeling 

(Supplementary Table 4). In any event, a real world scenario does not supply 

templates thus we do not report the overall performance using templates. Indeed, 

during CASP14, the authors of AF2 also discovered that forcing the use of certain 

templates is not straightforward, and requires additional manipulation of input data, 

such as down-sampling the MSA. We did not investigate these possibilities further. 

 

3. Examine what happens when you have peptides that should not bind (or try to do 

an Alanine scanning of the peptide). Does that matter etc? What happens with a poly-

A ? 

A: We thank the reviewer for this interesting suggestion. Alanine scanning and poly-A 

docking are now included and discussed in Figure 3. AF2 predictions using poly-A peptides 

fail in all but two cases, emphasizing the importance of the peptide sequence. We also 

investigated the utility of models for alanine scanning, using Rosetta alanine scanning. We 

compared the detection of interface hotspots using the native crystal structure to those 

identified using AF2 models. Our analysis shows that for accurate models (within 2.5A 

RMSD) hotspot prediction is highly correlated, with few false positive predictions, but more 

false negatives, i.e., missed interface hotspots. Moreover, we show that it is also possible to 

identify interface hotspots by less accurate models, as long as the interface is detected (as 

we have already reported in a previous study; Marcu et al., Proteins 2017).  

 

4. Run this on a much larger dataset of peptide-proteins with unknown structures (the 

SLIM database). THis might provide some really interesting biological findings. 

A: We fully agree with the reviewer that this approach can be used to improve our 

understanding of regulation via SLIMs. We have here focused on a proof of concept on a 

large, non-redundant set of peptide-protein complexes (covering a total of over 120 different 

ECOD families), to show consistent successful modeling of interactions using AF2. 

Investigation of SLIM-mediated interactions is our current next step to go, and we think that it 

is out of scope for the present study. 

 

 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have significantly improved their manuscript, both in content and english. 

I really only have one minor comment: I think that the other related work in BioRxiv should be 

already mentioned in the introduction and not has a hidden reference later on in the text. Just to put 

things in proper context as that work actually appeared first in BioRxiv. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Thanks for the greatly improved manuscript. 

 

The only thing I still miss is a study of if it is possible to separate correct from incorrect cases (i.e. 

predicting dockQ). I would assume that would be quite easy looking at the surface area (and possible 

the pLDDT scores). 



Reviewer #1 (Remarks to the Author): 
 
The authors have significantly improved their manuscript, both in content and english. 
 
We thank the reviewer for the comments regarding the overall state of the manuscript.  
 
I really only have one minor comment: I think that the other related work in BioRxiv should be already 
mentioned in the introduction and not as a hidden reference later on in the text. Just to put things in proper 
context as that work actually appeared first in BioRxiv. 

 
We now mention other work regarding peptide docking with AF2 in the Introduction (now reference #35): In 
the paragraph preceding the last paragraph therein, we have added the following (highlighted in red): 
 
“We show that by connecting the peptide to the receptor (e.g. by a poly-glycine linker), monomer folding NNs 
generate accurate peptide-protein complex structures (a similar idea was proposed in parallel by others35).” 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Thanks for the greatly improved manuscript. 
 
The only thing I still miss is a study of if it is possible to separate correct from incorrect cases (i.e. predicting 
dockQ). I would assume that would be quite easy looking at the surface area (and possibly the pLDDT 
scores). 
 
We thank the reviewer for the suggestion.  
We ran DockQ on the motif and non-motif datasets to evaluate the performance of buried surface area and 
pLDDT for differentiating between correct and incorrect predictions. This evaluation is now included in 
Supplementary Figure 7, and referred to in the main text. 
We found that when average pLDDT over the peptide residues exceeds 0.7, DockQ values are usually larger 
than 0.6 as well (representing therefore medium-to high-quality structures). In turn, for buried surface area 
(calculated with Rosetta Interface analyzer), the results were not as well correlated.  
 
In the Results section, we have added the following text: 
 
“Average pLDDT>0.7 (calculated over peptide residues) is also predominantly associated with high DockQ40  
values (>0.6) representing medium-to high quality models (This association is stronger than that of normalized 
Buried Surface Area of models; Supplementary Figure 7).” 
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