
 
 

1 

 

Supplementary Information  

 

 Reciprocity of thermal diffusion in time-modulated systems 

Li et al. 

 

 

 

 

 

This PDF file includes: 

Supplementary Notes 1 to 5  

Supplementary References  

Supplementary Figures 1 to 6 

  



 
 

2 

 

Supplementary Note 1: Derivation of Eq. (2)  

The first law of thermodynamics0 requires that for a control volume V 

 E Q Q Q W   cond conv inter
 (S1) 

where the rate of energy accumulation E is 

  
V

cT
E dV

t




  (S2) 

the net heat transfer by conduction Qcond is 

  cond
A V V

Q dA dV T dV            q n q  (S3) 

the net transfer of energy by fluid flow Qconv is 

  conv
A V

Q cT dA cT dV        v n v  (S4) 

and we assume that there is no rate of internal heat generation (Qinter = 0) or net work transfer from 

the control volume to its environment (W = 0). Assembling expressions Eq.(S2)-(S4) into Eq.(S1), 

we obtain 

  
   

cT
cT T

t


 


   


v  (S5) 

which can be reformulated as 

    
T

c c T cT T
t t


   

  
         

v v  (S6) 

Considering the conservation of mass, we have the continuity equation 

  
t





 


v 0  (S7) 

Then Eq.(S6) becomes 

  
T

c c T T
t

  


    


v  (S8) 

Hence, Eq.(2) in the main text is obtained, which can also be written in the form as 

  
DT

c T
Dt

     (S9) 

where D/Dt represents the “material derivative” operator 

 j

j

D
v

Dt t x

 
 
 

 (S10) 
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Supplementary Note 2: Analytical model and solution of Eq. (5)  

1D analytical model 

A mass-conserving diffusive 1D heat transfer system under time modulation is governed by 

the convection-diffusion equation 

      , , ,
T T T

x t c x t cv x t
t x x x

  
    

       
 (S11) 

where the density  and thermal conductivity  of the material are d-periodic functions of  = x – 

v0t. Based on the periodicity of () and (), we write their expanded Fourier series as 

   il

l

l

e     (S12) 

   il

l

l

e     (S13) 

where the integer index l takes 0, ±1, ±2, … and  = 2/d. The coefficients satisfy l = −l
* and l 

= −l
* for the reality of the parameters, where the superscript star means complex conjugation.  

By substituting () into the continuity equation ∂/∂t + ∂(v)/∂x = 0, we obtain 

 
 

0

il

l

l

v
ilv e

x





   (S14) 

    0 0

il

l

l

v v e g t v g t       (S15) 

where g(t) is d/v0-periodic in order to reach stable state. Without loss of generality, we neglect this 

additional time dependence and simply let g(t) = −0v0 + C, which does not affect any of the 

conclusions. Then 

  0 0v v C      (S16) 

If we require that there is no accumulated net mass flux through the system, the average of v over 

a period of time should be 0, which gives C = 0. Otherwise, C ≠ 0 means there exists a directional 

mass flux through the system. 

Substituting Eq. (S16) into Eq. (S11) gives the general 1D convection-diffusion equation 

       0 0

T T T
c v C c

t x x x
      

    
           

 (S17) 

When C = 0, it is the case we discussed in the main text. When C ≠ 0, there is additional constant 

mass flux C passing through the system, which could induce non-reciprocity. 

Analytical solution of the general 1D convection-diffusion equation 
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After a variable change (x,t) to ( = x − v0t,  = t), it is easy to see that Eq. (S17) is periodic 

on , so Floquet-Bloch theorem applies and gives a solution 

        0ΩΩ,
i kv tiK i iKxT e e f e e f    

    (S18) 

where  is the frequency and K is the Bloch wavenumber. Eq. (S18) describes a temperature 

profile characterized by  and K, and modulated by a d-periodic function f(). For time-harmonic 

solutions, the temperature profile should not vary with time, so  + Kv0 = 0. Then the solution at 

harmonic steady state becomes 

      , iKx xT x t e f e f    (S19) 

where we rewrite the Bloch wavenumber as K = −i for the convenience of following calculations. 

f() is a d-periodic function that can be expanded as 

   im

m

m

f F e    (S20) 

where the integer index m takes 0, ±1, ±2, … and F0 = 1.  

Substituting Eq. (S19) into Eq. (S17), we have 

    0 0 0 0 02 0f v C c f v v C c f                            (S21) 

Combined with Eqs. (S12), (S13) and (S20), we further deal with this simplified equation by 

Fourier series expansion, and write the nth order of Eq. (S21) as 

      0 , 0 0 0n m n m n m m

m

i n i m cv i n v C c F          
          (S22) 

where n =0, ±1, ±2, … and nm is the Kronecker delta. For n ≠ 0 and m ≠ 0, Fm can be solved as  

  , 0 0

0

m m n n n

n

F A i n cv F    


       (S23) 

where Am,n is the m-row, n-column element of a matrix [Am,n], which is defined as 

      
1

, 0 , 0 0m n n m n m n mA i n i m cv i n v C c         


 
            

 (S24) 

Substituting Eq. (S23) into the 0th order of Eq. (S22) (n = 0) gives 

      2

0 , 0 0

0 0

m m m n n n

m n

i m cv A i n cv Cc           

 

              (S25) 

Then  can be solved numerically from Eq. (S25) with enough accuracy by cutting to the Nth 

order (we take N = 4 in this work, i.e. m and n both take ±1, ±2, ±3, ±4). With each solution of  

known, we then have Fm from Eq. (S23) and obtain the corresponding f(). 

Then the temperature solution should be a linear combination of Eq. (S19) 
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    
,

, k kx x imk

k k k m

k k m

T x t C e f C F e
   

    (S26) 

where k represents the kth particular solution, and Ck is the corresponding coefficient determined 

by the boundary conditions at two ends. During the calculation, it can be found that  has two real 

solutions, which mainly contribute to the profile of temperature distribution. (Other complex 

solutions can be neglected, for they vanishes as →∞.) 

The case that there exists a net mass flux (C ≠ 0) 

Following the above steps, we have the analytical solution of the general 1D convection-

diffusion equation. It can be found during the solving process that when C ≠ 0,  has a nonzero 

real solution, which indicates a concave/convex temperature profile. Next we perform COMSOL 

simulations to verify the accuracy of the 4-order analytic solution. We adopt the distributions of  

and  as  

  0 1( s) co         (S27) 

  0 1( s) co         (S28) 

The parameters are set as 0 = 2000 kg m−3, c = 1000 J kg−1 K−1,  0 = 100 W m−1 K−1 and d = 1 

cm. There are two typical values of C, namely 0 and 0v0 that correspond to cyclic mass movement 

and uniform motion at constant speed v0, respectively. Therefore, we calculate solutions for C/0v0 

= 0, 0.1, 0.2, 0.5, and 1 to cover different levels of average mass flux through the system 

(Supplementary Figure 1a). The backward (Supplementary Figure 1b) and forward (c) temperature 

distributions are obtained with  = 0.3,  = 0.9, and  = 0v0/0 = 1/d. All the lines in 

Supplementary Figure 1 are analytical solutions, while the scatters are the results of COMSOL 

simulations. We see that the analytical solutions are in good agreement with the simulation results, 

which confirms that the 4-order analytical solution is accurate enough. To illustrate the nature of 

the non-reciprocity for C ≠ 0, we plot the dependence of  on the modulating speed , amplitudes 

of modulation  and  in Supplementary Figure 1d, e, and f, respectively. For C ≠ 0, it is easy 

to see that the non-reciprocity is not generated by time modulation, because  is nonzero at  = 0, 

 = 0, and  = 0. On the contrary,  is actually maximized at  = 0 and  = 0 (Supplementary 

Figure 1d and f).  

The case that no net mass flux exists (C = 0) 

When C = 0 (the case discussed in the main text), Eq. (S25) becomes 
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    2 2

0 , 0 0m m m n n n

m n

i m cv A i n cv                        (S29) 

It is easy to find that  has two repeated roots at 0 (and the real solution to  is only 0). So we 

need to find another particular solution, which is supposed to have the form as 

     #

# #, im

m

m

T x t x f x F e      (S30) 

The details of f#() can be solved by substituting Eq. (S30) into Eq. (S17) (C = 0) and performing 

similar process as above.  

Thus the temperature solution should be 

      # #, k x

k k

k

T x t C e f C x f
        (S31) 

where Ck and C# are coefficients determined by the boundary conditions. 

Recalling the formula to calculate the heat flux 

    
 

   0 0 ref

,
, , , ,

T x t
q x t x t x t v c T x t T

x
  


          

 (S32) 

we have the analytical heat flux 

     

   

0 0 ref , 0

, ,

#

# .0 0 . 0

, 1

1 1

k x inin k

n k k n m n m n m m

n k n m

in

n n n n m n m n m m

n m

q x t e v cT C i m v c F e

C x v c im v c F e

 



      

     



 

 

 
          

 

 
        

 

 

 

 (S33) 

Then we obtain the time-averaged heat flux by letting n = 0, that is 

 

     

 

0, 0

,

#

# 0 0. 0

1

1

k xk

k k m m m m

k m

m m m m

m

q x C i m v c F e

C im v c F

    

   

 

 

      

 
      

 




 (S34) 

Recalling the 0th order of Eq.(S22) (n = 0) 

   0, 0 0 0 0m m m m

m

i m v c v c F       
       (S35) 

It is easy to find that for all k ≠ 0, there exists 

    0, 01 0k

k m m m m

m

i m v c F     
       (S36) 

Besides, considering Eq.(S23), it is easy to find that for k = 0, the corresponding k

mF  = 0 (m ≠ 0), 

thus Eq.(S36) also holds for k = 0. Therefore, the time-averaged heat flux becomes  



 
 

7 

 

     #

# 0 0. 01m m m m

m

q x C im v c F    

 
       

 
  (S37) 

Noting that 〈q(x)〉 is a constant independent of x, indicating that the heat flux through the system 

is a conserved quantity.  

The solid lines in Supplementary Figure 2a and b are plotted using Eq. (S33), while the dash 

lines are plotted using Eq. (S37). For  = 1/d, the backward and forward time-averaged heat flux 

〈qb(x)〉 and 〈qf(x)〉 are calculated as −2.54 × 104 W m−2 and 2.54 × 104 W m−2, respectively. For  

= 4/d, 〈qb(x)〉 and 〈qf(x)〉 are −4.26 × 104 W m−2 and 4.26 × 104 W m−2, respectively. Clearly, the 

condition for thermal reciprocity (Eq. (4) in the main text) is satisfied. Therefore, the heat transfer 

in materials with the first type of density modulation and without net directional flow of mass is 

reciprocal. 
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Supplementary Note 3: Analytical solution of Eq. (8)  

We also use the temperature distribution in the form as Eq. (S19) to solve the 1D hypothetical 

diffusion equation2 

    
T T

c
t x x

   
   

     
 (S38) 

Substituting Eq. (S19) into (S38) gives 

    02 0f cv f f               (S39) 

Using the Fourier expansions of the periodic functions ,  and f in Eqs. (S12), (S13) and (S20), 

we can write the nth order of Eq. (S39) as 

    0 0n m n m m

m

i n i m i cv Fm              (S40) 

where n = 0, ±1, ±2, … Then the solutions to Eq. (S39) is equivalent to that of the matrix equation 

as following 

    , 0n m mG F     (S41) 

where [Gn,m] is defined as 

    0,n m n m n mG i n i m i cvm           (S42) 

By numerically solving  and Fm up to the fourth order (n, m = ±1, ±2, ±3, ±4) from Eq. (S41), we 

can obtain the temperature solution (the same form as Eq. (S26)). The results are in good 

agreement with numerical simulations as shown in the main text.  

For the conductive heat flux is the only constituent of energy flux in the system, we have the 

total heat flux q(x,t) as following based on the analytical temperature solution 

  
, ,

( , ) k

n

x ink

k m

k n m

mk iq C m ex t F
    

    (S43) 

Clearly, the average of heat flux over time is the 0th order of Eq. (S43), that is 

  
,

( ) k xk

k k

m

m m

k

q x C i m F e
      (S44) 

The solid lines in Supplementary Figure 2c and d are plotted using Eq. (S43), while the dash lines 

are plotted using Eq. (S44). It is noted that at the two ends of the system, the average heat fluxes 

〈q(0)〉 and 〈q(L)〉 are obviously not equal. The difference clearly shows that additional energy input 

or extraction is required to compensate it, which is also hard to implement in practice. 
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Supplementary Note 4: Analytical model and solution of Eq. (9)  

For the second type of modulation, we consider mass motion along y with speed vy(x,y,t) to 

modulate the density locally. The 2D convection-diffusion satisfies 

        x y

y

T T T T
c cv

t y x x y y
       

       
             

 (S45) 

where  = x + y − v0t. According to the continuity equation ∂()/∂t + ∂[()vy]/∂y = 0, we find 

vy = ( − 0)v0y + C, where v0y = v0/. Substituting it into Eq. (S45), we have the general 2D 

convection-diffusion equation 

         0 0

x y

y

T T T T
c v C c

t y x x y y
        

       
                  

 (S46) 

Consider the general form of the solution 

    , , xT x y t e f   (S47) 

Substituting Eq. (S47) into (S46) gives 

      2 2

0 02 0x y x x y x xf v C c f f                      
 

  (S48) 

The nth order of its Fourier expansion is 

     2

, 0 0

2 0n m m

m

x y

n m n mi n i m i n vnm C c F                (S49) 

For n ≠ 0 and m ≠ 0, Fm can be solved as  

  , 0

0

x

m n m n

n

F B i n F  


    (S50) 

where Bm,n is the m-row, n-column element of a matrix [Bm,n], which is defined as 

     
1

2 2

, , 0 0

x y

n m n m n m n mB i n i m nm i n v C c           


 
           

 (S51) 

Substituting Eq. (S50) into the 0th order of Eq. (S49) (n = 0) gives 

    2 2

, 0

0 0

x x x

m n m n

m n

i m B i n        

 

     (S52) 

It is easy to find that  has two repeated roots at zero. So we need to find another particular 

solution, which is supposed to have the form as 

    # #, ,T x y t x f    (S53) 

Thus the temperature solution should be (similar to the 1D case) 

      # #, , k x

k k

k

T x y t C e f C x f
        (S54) 
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If  and  are specified and boundary conditions are given, it can be solved to get more detailed 

results with the same technique as above. For = 0 is the only real solution and independent of C, 

it implies that the general 2D convection-diffusion system is reciprocal, including the case in the 

main text (C = 0v0y). In addition, with the property of Eq.(S54): v0y∂/∂y = −∂/∂t, Eq. (S46) can 

be transformed to 

     0x yT T

x x y y
   

     
         

 (S55) 

Since the density disappears in Eq. (S55), the modulation of thermal conductivity alone is 

insufficient to generate thermal non-reciprocity. This analysis also clearly demonstrates how this 

class of density modulation cannot break reciprocity.  

The parameters for the results in Fig. 3c and d (lines) of the main text are set as Eq. (S60)-

(S62). Note that many orders of the Fourier series are required to accurately describe a square 

wave, so we directly performed numerical simulations of the 2D model instead of calculating the 

analytical solutions. 
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Supplementary Note 5: Analytical model of the 3D implementation  

For convenience, we assume that the 3D setup (density A = 8390 kg m−3, heat capacity cA = 

375 J kg−1 K−1, and thermal conductivityA = 123 W m−1 K−1) is put in air (density B = 1.3 kg 

m−3, heat capacity cB = 1016 J kg−1 K−1, and thermal conductivity B = 0.025 W m−1 K−1). By 

projecting the side surface r = R2 of the 3D model onto a plane (x, y), we obtain the 2D thermal 

conductivity distribution on a slice 2n ≤ x ≤ 2(n + 1) , −R2/4 ≤ y ≤ R2/4 containing a fixed 

plate and its adjacent region, where n = 0, 1, … The product of density and heat capacity and the 

thermal conductivity of the fixed plate are always  

   A Afix , ,c x y t c   (S56) 

  fix A, ,x y t   (S57) 

For the adjacent region where the moving plates could enter and leave, the material parameters are 

square wave distributions 

      mov B B A A B B, , rectc x y t c c c        (S58) 

      mov B A B, , rectx y t        (S59) 

where rect() is a square wave with wavelength d,  = x + y − v0t, = d/(R2), and v0 = R2. 

To simplify the distributions, we propose that the effective material parameters of two adjacent 

slices can be estimated as 

    fix mov / 2c c c      (S60) 

    
1

1 1

fix mov2x   


    (S61) 

    fix mov / 2y      (S62) 

Assuming d/ → ∞, the governing equation should be written as 

        mov 0

1

2

x y

y

T T T T
c c v

t y x x y y
       

       
             

 (S63) 

where v0y  = R2. We can also prove the thermal reciprocity of this model by analyzing the time-

averaged heat fluxes along x direction in forward and backward regimes, i.e., 〈qf〉 + 〈qb〉 = −x∂(Tf 

+ Tb)/∂x = −x∂(Thot + Tcold)/∂x = 0, as confirmed in Supplementary Figure 3a. 
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Supplementary Figure 1 Heat transfer under 1D density modulation with nonzero average 

mass flux. a For C ≠ 0, there is an additional mass flux through the system. b-c Backward (b) and 

forward (c) temperature distributions. The scatters are results of numerical simulations. d-f The 

asymmetry of temperature distributions (characterized by ) for different modulation speed  (d), 

and amplitudes of modulation  (e) and density  (f).  
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Supplementary Figure 2 Heat flux under 1D density modulation. a-b Backward (a) and 

forward (b) heat flux distributions of the system described by Eq. (5). The time-averaged heat flux 

is a constant quantity independent of x. For  = 1/d, the analytical value of time-averaged heat 

flux density is 〈qb〉 = −2.54 × 104 W m−2 (backward) and 〈qf〉 = 2.54 × 104 W m−2 (forward), while 

for  = 4/d, 〈qb〉 = −4.26 × 104 W m−2 (backward) and 〈qf〉 = 4.26 × 104 W m−2 (forward). It is 

easy to find that 〈qb〉 = −〈qf〉, satisfying Eq. (4) in the main text and demonstrating reciprocity in 

heat transfer. c-d Backward (c) and forward (d) heat flux distributions of the virtual system 

described by Eq. (8), discussed in an insightful work2 that indicates thermal non-reciprocity at a 

mathematical level. Although the heat flux distributions show nonreciprocal heat transfer, 

however, it is hypothetical because density modulation cannot be achieved at no cost, and the 

implementation of modulation will inevitably change the governing equation. The heat flux is 

obviously not a conserved quantity under this circumstance since its time-averaged profile is not 

constant, implying that additional energy input or extraction is required to compensate it. The 

results are plotted at t = Nd/v0 (N is a large enough integer to achieve time-harmonic steady state). 
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Scatter points are simulated results, lines are analytical results, and dashed lines are analytical 

solutions of time-averaged heat flux.  

 

 

Supplementary Figure 3 Heat flow under 3D density modulation. a Backward and forward 

heat flow (Qb and Qf) at two ends (represented by 1 and 2) of the system. The average heat flow 

into one port of the system equals to that out of the other port. According to the numerical results, 

the average heat flow is 〈Qb,1〉 = 〈Qb,2〉 = −2.47 W and 〈Qf,1〉 = 〈Qf,2〉 = 2.47 W, which meets the 

condition for thermal reciprocity (Eq. (4) in the main text). b Backward and forward heat flow at 

both ends of the hypothetical system where the moving plates have time-varying masses, violating 

the law of mass conservation. Numerical results give that 〈Qb,1〉 = −0.37 W, 〈Qb,2〉 = −7.15 W, 

〈Qf,1〉 = 0.37 W, 〈Qf,2〉 = 7.15 W. The figures are plotted with numerical results by COMSOL 

simulation after achieving the time-harmonic steady state. The heat flow is obtained by calculating 

a surface integral over the fan-shaped region at the ends of the system. and subscripted 1 and 2 

represent the position x = 0 and x = L, respectively. 
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Supplementary Figure 4 Structural design of the vacuum chamber. 1. The experimental 

system is set inside the vacuum chamber (430×285×260 mm3), and the lining of the vacuum 

chamber is coated to reduce the reflectivity. 2. Two observation windows are fabricated to 

measure the temperature profiles of the whole system. The size of arms is 270×175×240 mm3 and 

the diameter of the circular germanium glass windows is 82 mm. 3. The rotator driving the system 

is set outside the vacuum chamber for better heat dissipation. 4. Supporting platform. 5. Molecular 

pump LF-110 and mechanical pump BSV-16 are employed to reduce the density of air in the 

vacuum chamber as low as 10−3 Pa.  
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Supplementary Figure 5 Verification of reciprocal heat flow in the experiment. a-b Backward 

and forward heat flow (Qb and Qf) at two ports (represented by 1 and 2) for angular velocity  = 

0.075 rad s−1 (a) and 0.14 rad s−1 (b). According to the numerical results, for  = 0.075 rad 

s−1, the average heat flow is 〈Qb,1〉 = −0.178 W, 〈Qb,2〉 = −0.210 W, 〈Qf,1〉 = 0.210 W, 〈Qf,2〉 = 

0.178 W. For  = 0.14 rad s−1, the average heat flow is 〈Qb,1〉 = −0.180 W, 〈Qb,2〉 = −0.213 W, 

〈Qf,1〉 = 0.213 W, 〈Qf,2〉 = 0.180 W. It is easy to check that 〈Qb,1〉 = −〈Qf,2〉 and 〈Qb,2〉 = −〈Qf,1〉, 

which meets the condition for thermal reciprocity (Eq. (4) in the main text). The figures are plotted 

with numerical results by COMSOL simulation using the same parameter settings as in the 

experiment. The heat flow is obtained by calculating a surface integral over the fan-shaped region 

in contact with the two heat sources, and subscripted 1 and 2 represent the left and right ends, 

respectively.  
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Supplementary Figure 6 Heat transfer under time modulation of a parity asymmetric system. 

a Density  and thermal conductivity  distributions of the system at t = Nd/v0 (N is an integer). 

b Backward and forward temperature distributions of the system. c Backward and forward heat 

flux at both ends of the system. The average heat fluxes at two ports 1 and 2 are equal: 〈qb,1〉 = 

〈qb,2〉 = −5.41 × 104 W m−2 (backward) and 〈qf,1〉 = 〈qf,2〉 = 5.41 × 104 W m−2 (forward). Although 

the temperature distributions are asymmetric, this system is thermal reciprocal, for the forward 

and backward average heat fluxes meet the condition for thermal reciprocity (Eq. (4) in the main 

text). The results are numerical results by COMSOL simulation after achieving the time-harmonic 

steady state. The parameters are set as follows: (x,t) = 0[x/L + 1 + Δcos()] and (x,t) = 0[x/L 

+1 + Δcos()], where  = 2/d, 0 = 2000 kg m−3,  = 0.3, 0 = 100 W m−1 K−1,  = 0.9. d = 

1 cm and L = 10d. The specific heat capacity is c = 1000 J kg−1 K−1. The modulation speed is v0 = 

0/0c with  = 1/d. Constant temperatures at two boundaries are set as Tcold = 273 K and Thot = 

323 K. 1 and 2 represent the position x = 0 and x = L, respectively. 

  



 
 

18 

 

Supplementary References 

1. Bejan, A, Convection Heat Transfer (John wiley & sons, 2013). 

2. Torrent, D., Poncelet, O. & Batsale, J.-C. Nonreciprocal Thermal Material by Spatiotemporal 

Modulation. Phys. Rev. Lett. 120, 125501 (2018). 

 

 


