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Supplementary Notes: 

1. Design and working principle of the force sensor.  

 Supplementary Figure 1 shows the magnified view of the force sensor along the single-

crystalline silicon beam (blue area of the scanning electron microscope image in Figure 2a) and as 

shown in the image, the piezoresistive Wheatstone-bridge is integrated in the silicon beam. The 

thickness (5μm) of the silicon beam-island structure is designed as 2 to 3 times of the underneath 

poly-silicon diaphragm thickness (2μm) to achieve both high sensitivity and low nonlinearity. 

When an external force is applied to the force sensor, deflection of silicon membrane would be 

formed and then cause a change in the piezoresistive Wheatstone-bridge output value. Because of 

the design of the sensitive silicon beam and the integrated piezoresistive Wheatstone-bridge, the 

sensor is less affected by external conditions such as temperature and humidity change and can 

measure external force changes more accurately1,2. 

In detail, when the force sensor is in contact with the detected object, the membrane would 

form a certain deformation, the degree of which depends on both the stiffness of the object and the 

force applied. Then the membrane deformation would cause the changes in resistance values of 

the four piezoresistors. Thus, the voltage output value of the Wheatstone-bridge could reflect the 

change of resistance value and the degree of membrane deformation.  

2. Detection of local topography by tactile sensing arrays.  
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As shown in Supplementary Figure 8 (a), height gradient with each step around 0.1 mm could 

be built by stacking various amount of A4 paper together; the single tactile sensing array (1*14) 

is used to perceive the existence of the paper. As shown in Figure R1 (b), the minimum detectable 

height difference for our tactile sensing array is around 0.3 mm, while larger height difference (0.3 

to 1.5 mm) can be differentiated. Thus, the results of this experiment proves our tactile sensing 

array can perceive local topography with limit of detection of 0.3 mm. 

First, as shown in Supplementary Figure 8 (a), the thickness of each force sensor is around 

0.1 mm and every sensor is covered by soft silica gel to prevent them from damages caused in the 

touching process as mentioned in the experimental section. Thus, when one tactile sensor array (a 

row of 14 force sensors) is in contact with the surface of the detected object, not only the 14 sensors 

are in contact with the object, but the substrate (blue layer in Supplementary Figure 8 (a)) will also 

be in contact with the object at the same time. In this case, different contact surfaces will lead to 

different force distribution on the force sensors and the substrate below. Therefore, the 14 force 

sensors respond differently when the same overall force is applied across different step heights—

we can only quantitatively apply an overall force on the whole sensor array—because of the 

variation of force dispersion on the substrate. 

Furthermore, to prove the local topography of the more practical object can be perceived from 

a few sensors mounted at each fingertip alone, we used the tactile sensing arrays (5*14) mounted 

on the fingertips of a mechanical hand to detect the roughness of apple and orange surfaces. As 

shown in Supplementary Figure 9 (b) and (d), single tactile sensing array can accurately present 

the surface roughness differentiation between the tested objects. Thus, the local topography of 

tested objects can be obtained from the five tactile sensing arrays mounted at each fingertips of a 

mechanical hand (Supplementary Figure 9 (a) and (c)).  
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3. Detection of objects stiffness by tactile sensing arrays.  

Supplementary Figure 2 (a) shows the sensitive hexagonal silicon membrane within the force 

sensor, on which located a Wheatstone bridge made by four piezoresistors. In principle, when the 

force sensor is in contact with the detected object, the membrane would form a certain deformation, 

the degree of which depends on both the stiffness of the object and the force applied. Then the 

membrane deformation would cause the changes in resistance values of the four piezoresistors. 

Thus, the voltage output value of the Wheatstone bridge could reflect the change of resistance 

value and the degree of membrane deformation. 

Based on this working principle, when we use the mechanical hand to apply the same amount 

of force to touch the object with uniform topography, the output voltage value would be positively 

correlated to the local stiffness. As shown in Supplementary Figure 9 (b) and (d), because the 

stiffness of apple is relatively larger than orange, the average output voltage value of the sensor 

array for apple (around 5V) is larger than which for orange (around 2.5V). This result proves the 

capability of our tactile sensing arrays to distinguish the stiffness of various objects, providing 

important information for the following object recognition process. 

Moreover, as shown in Figure 2 (d), Factive represents the average applied force and Freactive 

demonstrates the reactive force from the object to the sensor. When the same force is applied to different 

objects by the mechanical hand, the deformation degree of the objects varies according to objects’ different 

elasticity moduli, which would change the local contact area and result in a different value of Freactive. For 

example, when contacting an ideal rigid object with zero deformation, Factive is the same as Freactive; when 

contacting a soft object with large deformation, the overall reactive force disperses both on the sensor 

(Freactive) and the substrate, resulting in Factive > Freactive.  

In tactile perception, we mainly focused on the detection of the local topography (roughness) 

and material stiffness of the detected objects in order to distinguish human from other objects. 
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Compared to the traditional shape-based objects recognition through tactile perception, our method 

requires a smaller tactile sensing array. Moreover, in the design of the distribution of tactile sensors, 

we located the sensing arrays on the fingertips of the mechanical hand to gain information of local 

topography (roughness) and material stiffness. According to the limited area of each fingertip, 14 

force sensors have been chosen in our design as a trade-off to form a single sensing array, which 

can acquire enough information for further objects recognition. 

4. Design and working principle of the gas sensor.  

In the design and fabrication of gas sensor, the platinum heating resistance wire is deposited 

on the insulating substrate to make sure the sensor works at an appropriate temperature, with a 

cavity below ensuring the concentration of heat. Then an insulating layer, made of silicon oxide 

and silicon nitride composite, is deposited by PECVD on top of the heating resistance. After that, 

the top layer is a pair of cross finger electrode covered with gas-sensitive material, the resistance 

change of which is an important criterion for gas detection. While the gas sensor is working under 

a specified temperature, the resistance of the cross finger electrode pair decreases as the gas 

molecules being adsorbed by the gas-sensitive materials. Thus, according to the degree of the 

resistance change, the gas sensor can measure both the types and concentration of the tested gas. 

Besides, different sensitive materials have various responses to specific gas molecules, thus by 

modifying gas sensors with different gas sensitive materials and forming a gas sensing array, the 

identification accuracy of gas type and concentration can be improved.  

The working principle of the gas sensor is similar to that of the conventional semiconductor 

resistive sensor. While placing the sensors in the certain gas environment, the detected gas 

molecules would combine to the surface of the sensitive semiconductor material and a 

corresponding chemical reaction would occur. In this process, the electron transfer produced by 
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the chemical reaction could cause the resistance changes of the semiconductor material. By 

measuring the resistance change of the material, the status of the gas detection could be known. 

However, these reactions are not absolutely specific, which means instead of responding to a 

certain type of gas molecule, one sensor could respond to multiple gases in different responding 

degree. For example, the sensor number one would react to various gases, but only has the highest 

response to ethanol. Therefore, through multiple experiments, we can know the corresponding 

reaction sensitivity of these materials to different gas molecules. The gas types, including ethanol, 

acetone, ammonia, carbon monoxide, hydrogen sulfide and methane, as we mentioned in the 

article, are the most responsive gases corresponding to the six materials according to the 

experiment results. More importantly, since the sensitivities of each material to different gas 

molecules are different, we select the complementary setup (6 gas sensors) to sense the type and 

concentration of various gases, reflecting the odor profile of the detected object. 

In olfactory perception, six gas sensors have been chosen for the detection of six specific 

gases, including ethanol, acetone, ammonia, carbon monoxide, hydrogen sulfide, and methane, 

which play an important role in object recognition. For example, ammonia and hydrogen sulfide 

are common components of biological odors, which could help to distinguish animal and human 

from other objects. Furthermore, by differentiating the concentration of these two gases, human 

can be distinguished from other animals such as mice (See confusion matrix from Figure 3c in the 

manuscript, page 31). Thus, based on this six-channel olfactory sensing array, efficient odor 

recognition of different objects can be achieved. 

5. Olfactory and tactile perception of oranges being covered with liquids like water and muddy 

water. 



6 

 

As shown in Supplementary Figure 10, we use oranges (normal, covered with water and 

muddy water) as the target objects for identification. During this process, because of the 

encapsulation, the olfactory sensing array has a certain capability to withstand water environment, 

which is sufficient to detect objects covered with water or muddy water without causing any 

damage to sensors. However, for long-term underwater immersion (≥1 day), our current sensor 

packaging method might not be sufficient and more improvements on this problem can be carried 

on in our future research. 

Compared to the dry condition, when the orange is covered with water, the response degree 

of each olfactory sensor has been reduced slightly, because the increased humidity affects the 

responsive reaction. For the situation when orange is covered with muddy water, with the 

interference of the mud odor, the responses are further affected. However, while combining 

olfactory sensing with tactile perception, the interference of olfactory perception can be alleviated 

and a relative high recognition accuracy can be maintained whether the target object is cover with 

water or muddy water, which also demonstrates the outstanding anti-interference ability of the 

tactile-olfactory sensing system in our work. 

6. Data processing 

Due to device variation, a normalization step to preprocess the signals measured by tactile 

and olfactory sensing arrays is required before implementing machine learning. We smooth the 

output values first by Savitzky Golay filter and then rescale the rest dataset to [0,1] by using min-

max normalization.  

Each force sensor is individually calibrated. Firstly, the baseline (𝑈!"#  and 𝑈!$%) of the 

useful signals of the force sensor is determined. Here, 𝑈!"#  is the median value of multiple 

measurements when the detected object is fully touched by the mechanical hand, and 𝑈!$% is the 
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median value of multiple measurements before touching. The min-max normalization of the tactile 

signals can be obtained by using the following formula: 

		𝑈!"#$%&'()* =
+!,+"#$

+"%&,+"#$
                                                       (1) 

where 𝑈& represents the measured value of the force sensor after smoothing. A similar procedure 

is followed with the olfactory signals in normalizing the dataset by using the following formula: 

		𝑅!"#$%&'()* =
-!

-'
                                                           (2) 

where 𝑅& represents the measured resistance value of the olfactory sensor after smoothing and 𝑅' 

is the initial resistance value of the olfactory sensor. 

In addition to using the fundamental sampling method, we consider another two different 

strategies for tactile signal selection (one sample contains N tactile signals, N>1, aims to 

accommodate information from different grasp configurations and provide more varied sensory 

data). The first one is a simple random choice of N signals from the recording (This is used in the 

BOT-R). The second is aimed at maximizing the variance between the N signals. For this, we use 

principal component analysis to reduce the dimensionality of the tactile signals and find N clusters 

via k-means clustering. We then select N input signals from each cluster randomly (this is used in 

the BOT-F and BOT-M). 

We also augment our training data by using several image processing techniques (rotating, 

cropping, translating and flipping) to simulate different touch gestures and reply various actual test 

data. Ensuring the consistency of sample number and the convenience of verification, we sample 

5,000 samples for every type of object from above normalized dataset. In total, our tactile-olfactory 

(TO) dataset contains 55,000 TO samples. The data throughput we used is smaller than the other 

classification methods relying on vision or tactile3-6. Finally, we split the dataset into training and 
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test subsets, out of the five sets of trials in the TO dataset, four sets of trials for training, and one 

set of trials for testing.  

7. Network design 

We use a modified version of the VGG architecture as the base of our network (Supplementary 

Figure 9a)7,8. Following the same principle, the tactile and olfactory information collected by our 

sensors is sorted into parallel tactile image and olfactory sequence after data preprocessing. We 

analyze the feature vectors extracted by CNN, fuse them by MCB, and then use a fully connected 

neural network to complete the classification. Therefore, the CNN provides key features for the 

following algorithm, as an important and effective method for information processing. Because of 

the scale and characteristic of tactile data, we remove the most convolution layer and reduce the 

filter size of the max pooling. We also replace the fully connected layer that has 4096 neurons with 

512 neurons. The new classification layer is of 11 categories instead of 1000. To reduce overfitting 

to our training set, we introduce the spatial dropout layers with 50% drop probability between the 

fully connected layers. For olfactory data, we design a fully connected neural network 

(Supplementary Figure 7b). 

Firstly, we pertain the network on the tactile dataset and olfactory dataset separately. We 

truncate the final classification layer of the above two networks, and then fuse the learned tactile 

output (512D) and the learned olfactory representation (512D) by using Multimodal Compact 

Bilinear Pooling (MCB) to form a new vector (512D)7,8. After MCB pooling, a fully connected 

neural network connects the resulting multimodal representation to the classification. 

One key point of the above network is the fusion. Approaches to multimodal pooling include 

element-wise product or sum, as well as concatenation9. Obviously, these methods are not 

expressive in dealing with complex tasks and do not reflect the basis of integration. We borrow 
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the MCB for the task of visual question answering (VQA) to efficiently and expressively combine 

multimodal features. It could realize an outer product of two vectors and reduce the amount of 

calculation. We prove that the performance of this fusion method is satisfactory in handling our 

dataset by some experiments. 

Human always identify the object accurately by touching several times. Inspired by this, we 

propose the multiple decision algorithm (Supplementary Figure 9c). Briefly, when the result of the 

classification neural network is ambiguous, our system will cumulate the results and resample a 

new input, and then repeat the neural network algorithm until output and cycle number follow the 

certain relation. Overall, our multiple decision method is functional and improves the classification 

accuracy effectively. Additionally, in order to handle different situations, we also propose a 

scenario dependent feedback mechanism. This function is mainly accomplished by adjusting the 

parameters and method of fusion algorithm.  

Finally, we implement the network in the PyTorch deep learning framework. We use Adam 

solver implemented in PyTorch to train our model and minimized the cross-entropy loss. We apply 

a learning rate of 0.001. We report the average results over 10 training runs at least. Similar 

methods are used for the training and classification tests used to evaluate in the other actual 

situations. 

8. The bioinspiration and potential impacts of our sensing arrays: 

Converging tactile and olfactory information in perceptual decision-making could improve 

the recognition accuracy compared to arbitrary single input. Meanwhile, the calculation-saving 

tactile-olfactory perception, compared to visual perception for instance, assists the mole to make 

nearly instantaneous judgment about the type of the touched objects as well as the following 

actions of the mole itself. Inspired by this characteristic of the star-nosed mole, recognition of 
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objects in various challenging environments can be achieved by integrating both tactile and 

olfactory sensing arrays on a mechanical hand with a combination of a BOT associated machine-

learning architecture. Furthermore, the multisensory fusion strategy provides robust performance 

and anti-inference capability in contrast with unisensory perception under multiple hazards. Our 

work is promising for recognition tasks in rescue, industrial production and medical treatment 

applications, and inspiring for future biomimicking engineering, advanced sensor fabrication and 

integration, as well as machine learning10-12. 
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Supplementary Figures: 

 

Supplementary Figure 1. Images of force sensors integrated on flexible PCB board. a) Photo 

of force sensors integrated on flexible PCB board after wire bonding. The blue dotted squares 

indicate the position of force sensors and the white dotted squares indicate the location of silver 

paste at the contact point. b) Photo of force sensors integrated on flexible PCB board with vinyl 

protection. The white dotted squares indicate the position of vinyl. c) Photo of force sensors 

integrated on flexible PCB board. 

 

Supplementary Figure 2. Interior structure of a single force sensor. a) SEM image showing 

the sensitive hexagonal silicon membrane within the force sensor, on which located a Wheatstone 

bridge made by four piezoresistors. b) Schematic illustration of the electronic circuit of the four 

piezoresistors. 
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Supplementary Figure 3. Scanning electron microscope (SEM) images of gas sensor. a) SEM 

image of magnified view of the part modified by gas-sensitive material. b) SEM image of gas-sensitive 

material. 

 

Supplementary Figure 4. Recognition of objects with various elastic stiffness based on force sensor. 

Photos of three testing objects including clothes (a), skin (b) and stone (c).  

  

Supplementary Figure 5. Stable performance of gas sensor in air (red line) and in 100 ppm ethanol 

(blue line).  
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Supplementary Figure 6. Characterizations of six gas sensors. (a) Normalized resistance response 

curve of the 6 gas sensors in various ethanol concentration (50ppm, 100ppm, 150ppm and 200ppm). n = 

12 for each group. The error bars denote standard deviations of the mean. (b) The response of six 

gas sensors in different gas concentration (c) The response of six gas sensors in different gas types. 

 

Supplementary Figure 7. The temperature stability of force (top) and gas sensors (bottom). 

 



14 

 

Supplementary Figure 8. Tactile perception of height gradient. a) Schematic illustration of 

using single tactile sensing array (1*14) to detect height gradient. b) Output voltage of force 

sensors while touching paper pile with thickness from 0.2mm to 1.5mm. 

 

Supplementary Figure 9. Tactile perception of different objects with various surface 

roughness. a) The tactile mapping of the local topography of an apple surface, detected by the 

tactile sensing arrays (5*14) mounted on the fingertips of a mechanical hand. b) Output voltage of 

every force sensor from a single tactile sensing array (1*14), which present the local roughness of 

the apple surface. c) The tactile mapping of the local topography of an orange surface, detected by 

the same tactile sensing arrays (5*14). d) Output voltage of every force sensor from a single tactile 

sensing array (1*14), which present the local roughness of the orange surface. 
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Supplementary Figure 10. Olfactory and tactile perception of oranges being covered with 

water and muddy water. a-c) Images of olfactory and tactile perception of orange in normal, 

covered with water, and covered with muddy water. d) The responses of six gas sensors when 

sensing orange covered with water and muddy water. e) The recognition accuracy of orange 

covered with water and muddy water using olfactory-based recognition and BOT-M associated 

learning. 

 

Supplementary Figure 11. The Visualizing of both tactile (a) and olfactory (b) information 

in the dataset using t-distributed stochastic neighbor embedding dimensionality reduction. 
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Each point represents tactile or olfactory information of one object recognition projected from the 

70D tactile data or 6D olfactory data into two dimensions. Results of each object cluster together. 

 

Supplementary Figure 12. Architectures of three recognition strategies. Unimodal strategies: 

tactile-based recognition only using force sensor data (a), and olfactory-based recognition only 

using gas sensor data (b). BOT associated learning recognition strategy using both force sensor 
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data and gas sensor data (c). CNN for tactile-based recognition, a 6-layer feedforward neural 

network for olfactory-based recognition. fc: fully connected neural network. 
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Supplementary Figure 13. Architectures of three tactile and olfactory fusion recognition 

strategies: BOT-R (a), BOT-R (b), BOT-M (c) using both force and gas sensing data. 

 

 

Supplementary Figure 14. Confusion matrices based on 4 different recognition strategies: 

olfactory, BOT, BOT-R and BOT-F. The full name of the abbreviation are: Org-Orange; Twl-

Towel; Arm-Arm; Stn-Stone; Can-Can; Hir-Hair; Leg-Leg; Ms-Mouse; Clth-Worn Clothes; Mug-

Mug; Ctn-Carton. 
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Supplementary Figure 15. Accuracy of identifying ammonia and acetone with various gas 

interference. 

 

Supplementary Figure 16. Photos of arm recognition in the debris with various burial degree. 

Photos of none finger (b), one finger (c), two fingers (d), three fingers (e) and four fingers (f) of 

mechanical hand being blocked from touching the arm. 
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Supplementary Figure 17. Target objects for building the dataset. In total, 11 objects are used 

in our dataset, whose images are shown here.  
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Supplementary Tables: 

Supplementary Table 1. The algorithm flow table showing the principle of designing our 

BOT architecture. 
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Supplementary Table 2. Comparison of different object recognition methods. 

 Sensor type Algorithm Input size Data size Computing 
resource Method Multi- 

modality Accuracy Specialty Deficiency Ref. 

Need 
Imaging 

Depth 
camera Dex-Net4.0 — Large Large Depth image No 95% — 

Need direct 
and clear 

visualization 
[14] 

GelSight & 
RGB camera ResNet50 128×128×3+

256×256×3 Medium Medium Grasp & image Yes — — 

Need direct 
and clear 

visualization 
& unsuitable 
for    varied 

grasping 

[15] 

Stretchable 
strain & 
camera 

Alex-Net 160×120+5 Light Medium Somatosensory 
& image Yes 100% 

Improved 
accuracy 

under dim 
light 

Need large 
data size and 
computing 
resource 

[4] 

Without 
Imaging 

GelSight ResNet50 — Medium Medium Dig(touch) No 99% 

Recognizing 
object 

submerged in 
sand 

Need specific 
object & 

deficient anti-
interference 

[16] 

Tactile ResNet18 32×32 Medium Medium Grasp No >90% 
Learning the 

grasping 
pattern 

Need manual 
grasping [3] 

Haptic 
stimulator CNN, SVM 16×200 Medium Light Grasp Yes 96% 

Providing 
haptic-

feedback for 
human-
machine 
interface 

Need specific 
object & 

deficient anti-
interference 

[17] 

Quadruple 
tactile MLP 4×10 Light Light Grasp Yes 94% Suitable for 

robotic hand 

Limited 
workable 

environment 
& deficient 

anti-
interference 

[18] 

Pressure&vi
bration ANN — Medium Light Touch Yes 99.1% Recognizing 

surface texture 

Need specific 
object & 
limited 

algorithm 

[19] 

Tactile & 
olfactory 

BOT 
(CNN/FCN/

MCB) 
5×14+6 Light Light Touch Yes 96.9% 

Improved 
anti-

interference 
& Suitable 
for rescue 
scenarios 

Fully 
underwater 
environment 

This 
work 
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Supplementary Table 3. Comparison of different recognition patterns of animals in the dark 

environment. 

Animal name Class Special Sensing Biological organs Suitable scenario Reference 

Bats Mammal Ultrasound Throat/Ears Location orientation [20] 

Octopus Reptile Light/Tactile  Skin Camouflage/Prey [21] 

Snakes Cephalopod Infrared Radiation Infrared receptor Prey [22,23] 

Owl Aves Light/Sound  Eyes/Ears Prey [24] 

Platypus Mammal Electroreception  Mucous glands Prey/Underwater orientation [25] 

Catfish Pisces Taste Whiskers Prey [26] 

Cavefish Pisces Sound Lateral line system Prey [27] 

Mantis Shrimp Malacostraca Visible/ultraviolet light Visual System Prey [38] 

Star-nosed mole Mammal Tactile/Olfactory Tentacles/nostrils Prey/Objects recognition [29-30] 
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