Supplementary Information

The catalytic activity of TCPTP is auto-regulated by its intrinsically disordered tail and activated by Integrin alpha-1

Jai Prakash Singh^{1,2,3,#}, Yang Li^{4,#}, Yi-Yun Chen^{1,5}, Shang-Te Danny Hsu^{1,2,6}, Rebecca Page⁷, Wolfgang Peti^{4,*} & Tzu-Ching Meng^{1,2,6,*}

¹Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; ²Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; ³Department of Chemistry, National Tsing-Hua University, 101 Kuang-Fu Road Sec. 2, Hsinchu 300, Taiwan; ⁴Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA; ⁵Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; ⁶Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan; ⁷Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.

Supplementary Figure 1: TCPTP_{CAT} **secondary structure.** Secondary-structure propensity (SSP) data plotted vs. TCPTP_{CAT} residue numbers. (SSP > 0, α helix; SSP < 0, β strand). Above: secondary structure from the crystal structure of TCPTP_{CAT} (PDB: 1L8K).

Supplementary Figure 2: Characterization of TCPTP and TCPTP_{CAT} by SAXS. a Comparison of SAXS scattering data and their Guinier plot ($q_{max} \times R_g < 1.3$) for TCPTP (blue) and TCPTP_{CAT} (residues 1-314, red). b R_g distribution of TCPTP across the total SAXS frames for which data were collected and Guinier plotted ($q_{max} \times R_g < 1.3$) from three individual frames to show consistent R_g value. c R_g distribution of TCPTP_{CAT} across the total SAXS frames for which data were collected and Guinier plotted ($q_{max} \times R_g < 1.3$) from three individual frames to show consistent R_g value. c R_g distribution of TCPTP_{CAT} across the total SAXS frames for which data were collected and Guinier plotted ($q_{max} \times R_g < 1.3$) from three individual frames to show consistent R_g value. Source data are provided as a Source Data file.

Supplementary Figure 3: Comparison of the catalytic activity for TCPTP and PTP1B. a Catalytic activity of TCPTP and TCPTP_{CAT} (residues 1-314) against pEGFR peptide-2, derived from the EGFR's kinase domain activation loop. Data are presented as the mean of nine independent reactions (n = 9; mean \pm SE). **b** Catalytic activity comparison of PTP1B and PTP1B_{CAT} using DiFMUP. Schematic representation of PTP1B (PTP1B) and catalytic domain (PTP1B_{CAT}) constructs used in the assay are shown. Data are presented as the mean of six independent reactions (n = 6; mean \pm SE). Source data are provided as a Source Data file.

Supplementary Figure 4: Intermolecular interaction between TCPTP_{CAT} and TCPTP_{Tail} by NMR spectroscopy. a SSP vs TCPTP_{Tail} residue numbers. Data indicate regions with transient secondary structures (SSP > 0, α helix; SSP < 0, β strand). b Overlay of the 2D [¹H,¹⁵N] HQSC spectra of ¹⁵N-labeled TCPTP_{Tail} (black) and TCPTP_{CAT}-bound (1:20 ratio; navy). Residues that experience cross peaks intensity reduction upon addition of TCPTP_{CAT} are annotated. c Cross peak intensity comparison between free TCPTP_{Tail} (black) and TCPTP_{CAT}-bound (navy). d Overlay of the 2D [¹H,¹⁵N] TROSY spectra of (²H,¹⁵N)-labeled TCPTP_{CAT} (black) and TCPTP_{Tail}-bound (green).

Supplementary Figure 5: Intermolecular interaction between TCPTP_{CAT} and TCPTP_{Tail} detected by CX-MS. a Intermolecular chemical cross-linking between TCPTP_{CAT} (residues 1-288) and TCPTP_{Tail} (residues 289-387) by DSSO (left; SDS-PAGE) and BS3 (right; SDS-PAGE). Each lane on SDS-PAGE is from independent reaction mixture at the indicated concentration of cross-linker, labeled on top in μ M unit. The cross-linked product of complex (TCPTP_{CAT} + TCPTP_{Tail}) appeared at the position corresponding to molecular weight of TCPTP. Red box indicates excised cross-linked product of complex from SDS-PAGE for MS analysis. b Cross-linking map of inter molecular interaction showing lysine residues cross-linked between TCPTP_{CAT} and TCPTP_{Tail}. c Comprehensive view shows all lysine residues identified from inter- or intramolecular crosslinking experiment by DSSO and BS3. Maps were generated by CX-Circos (left, Intermolecular CX-MS map; right, Intramolecular CX-MS map). Source data are provided as a Source Data file.

Supplementary Figure 6: 'Fuzzy' charge:charge interactions are critical for the interaction of TCPTP_{CAT} and TCPTP_{Tail}. a Peak intensity comparison between TCPTP_{CAT}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L6_T106A/K107A}-bound TCPTP_{TailRK} (blue); no difference. Peak intensity comparison between TCPTP_{CAT}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L6_T106A/K107E}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L6_T106A/K107E}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L6_T106A/K107E}-bound TCPTP_{TailRK} (purple); charge reversal of K107E leads to expected stronger binding, highlighting the importance of charge in L6. **b** Peak intensity comparison between TCPTP_{CAT}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L1_H30A/D31A/Y32A}-bound TCPTP_{TailRK} (turquoise); minor differences. Peak intensity comparison between TCPTP_{CAT_}bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L1_H30A/D31A/Y32A}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L1_H30A/D31A/Y32A}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_}bound TCPTP_{TailRK} (red) and TCPTP_{CAT_}bound TCPTP_{TailRK} (red) and TCPTP_{CAT_}bound TCPTP_{TailRK} (red) and TCPTP_{CAT_L1_H30A/D31A/Y32A}-bound TCPTP_{TailRK} (red) and TCPTP_{CAT_}bound tCPTP_{TailRK} (

а

Supplementary Figure 7: Molecular basis for ITGA1 mediated activation of TCPTP activity. a Overlay of the 2D [¹H,¹⁵N] TROSY spectra of (²H,¹⁵N)-labeled TCPTP_{CAT} (black) and in complex with Integrin α 1 peptide ITGA1_TR (navy). Residues with CSPs upon ITGA1_TR addition are annotated. Residues that changed upon IGTA1 interaction are located in the TCPTP loop L1 (green), L2 (navy), L6 (purple) and L14 (orange). b Catalytic activity of TCPTP and TCPTP_{CAT} (residue: 1-314) in the presence or absence of synthetic ITGA1 (ITGA1_FCT or ITGA1_TR) peptides at saturation against pEGFR peptide-2, derived from the EGFR's kinase domain activation loop. c Catalytic activity of TCPTP and TCPTP_{CAT} (residue: 1-314) in the presence or absence of synthetic ITGA1_ITR) peptides at saturation against pEGFR peptide-2, derived from the EGFR's kinase domain activation loop. c Catalytic activity of TCPTP and TCPTP_{CAT} (residue: 1-314) in the presence or absence of synthetic ITGA1(ITGA1_FCT or ITGA1_TR) peptides at saturation against DiFMUP. Data shown in (b) and (c) are presented as the mean of nine independent reactions (*n* = 9; mean \pm SE). Source data are provided as a Source Data file.

а	
ITGA1	KIGFFKRPLKKKMEK
ITGA2	KLGFFKRKYEKMTKNPDEIDETTELSS
ITGA10	KLGFF <u>AHKKIPE</u> EEKREEKLEQ
ITGA11	KLGFFRSARRREPGLDPTPKVLE
ITGAE	KCGFFKRKYQQLNLESIRKAQLKS-ENLLEEEN
ITGAL	KVGFFKRNLKEKMEAGRGVPNGIPAEDSEQLASGQEAGDPGCLKPLHEKDSESGGGKD
ITGAM	KLGFFKRQYKDMMSEGGPPGAEPQ
ITGAD	KLGFFKRHYKEMLEDKPEDTATFSGDDFSCVAPNVPLSSCVAPNVPLS
ITGAX	KVGFFKRQYKEMMEEANGQIAPENGTQTPSPSPSEK
ITGA3	KCGFFKRARTRALYEAKRQKAEMKSQPSETERLTDDYYYY
ITGA6	KCGFFKRSRY-DDSVPRYHAVRIRKEEREIKDEKYIDNLEKKQWITKWNENESYS
ITGA7	KMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILRNNWGSPRREGPDAHPILAADGHPELGPDGHPGPGTA
ITGA4	KAGFFKRQYKSILQEENRRDSWSYINSKSNDD
ITGA9	KMGFFRRRYKEIIEAEKNRKENEDSWDWVQKNQWVQKNQ
ITGA2B	KVGFFKRNRPPLEEDDEEGE
ITGAV	RMGFFKRVRPPQEEQEREQ-LQPHENGEGNSET
ITGA5	KLGFFKRSLPYGTAMEKAQ-LKPPATSDADA
TTGAS	

b

ITGA1 : KIGFFKRPLKKKMEK ITGA10 : KLGFFAHKKIPEEEKREEKLEQ ITGA11 : KLGFFRSARRREPGLDPTPKVLE

Supplementary Figure 8: TCPTP is distinctively activated by Integrin cytoplasmic tail with positive charge residue clusters. a Sequence alignment of the cytoplasmic tail for the human Integrin family. Positive charge residues are highlighted in blue, while negative charge residues are red; a black box highlights large clusters of positive charge residue. **b** Effect of ITGA1, ITGA10 & ITGA11 on the catalytic activity of TCPTP, measured against pEGFR peptide-2, derived from the EGFR's kinase domain activation loop. Data are presented as the mean of nine independent reactions (n = 9; mean \pm SD). **** indicates *p*-value of <0.0001, obtained from one-way ANOVA analysis with Tukey's multiple comparison test, 'ns' indicates non-significant (*p*-value = 0.0743). Peptides derived from ITGA1, ITGA10 and ITGA11 used in the assays are shown. Source data are provided as a Source Data file.

Supplementary Table 1: SAXS data collection and scattering derived parameter for TCPTP and TCPTP_{CAT}. Source data are provided as a Source Data file.

	ТСРТР	ТСРТРсат
Sample details		
Organism	Homo sapience	Homo sapience
Source	E. coli expressed	E. coli expressed
Sample Injection volume (µI)	100	100
Sample concentration (mg.ml ⁻¹)	~15	~15
Flow rate (ml.min ⁻¹)	0.035	0.035
Data collection parameter		
Beamline	BL23A1, NSRRC Taiwan	BL23A1, NSRRC Taiwan
Detector	Pilatus 1M-F	Pilatus 1M-F
Sample to detector distance (mm)	2524	2561
Column for SEC-SAXS	GE Healthcare Superdex 200 Increase 5/150 GL	Agilent Bio SEC-3, 300 Å, 4.6 X 300 mm
Wavelength (Å)	0.8266	0.8266
<i>q</i> range (Å ⁻¹)	0.0005 - 0.44	0.0005 - 0.43
Absolute scaling method	Comparison with scattering	Comparison with scattering
Exposure time per frame (sec)	20	20
Temperature (K)	20	20
	200	200
Structural parameter		
<i>I</i> ₍₀₎ (cm ⁻¹) (from Guinier)	0.16 ± 4.3 x 10 ⁻⁴	0.18 ± 2.1 x 10 ⁻⁴
Rg (Å) (from Guinier)	37.3 ± 0.1	27.2 ± 0.1
$I_{(0)}$ (cm ⁻¹) [from P _(r)]	0.15 ± 1.9 x 10 ⁻³	0.17 ± 1.6 x 10 ⁻³
Rq (Å) [from P _(r)]	38.5 ± 0.9	26.6 ± 0.4
D_{max} (Å)	165	105
Porod Volume (Å ³)	98700	69900
Volume of correlation (V _c)	475	364
Molecular mass Mr from (Vc) (Da)	49176	39576
Calculated <i>M</i> _r from sequence (Da)	45440	36881
· _ ` ` ` ` ` `		
Software employed		
Primary data reduction	NSRRC 23A SWAXS data	NSRRC 23A SWAXS data
Data processing	PRIMUS GNOM Scåtter	PRIMUS GNOM Schtter
Homology modeling	Phyre2	N A
Ensemble conformation modeling	MultiFoXS	ΝΔ
Three-dimensional graphic		ΝΔ
representation		

Supplementary Table 2: Enzymatic activity assay (Michaelis-Menten analysis); substrate pEGFR peptide-2, derived from the EGFR's kinase domain activation loop. Calculated kinetic parameter are presented as the mean of nine independent reactions (n=9; mean \pm SE). Source data are provided as a Source Data file.

	<i>k</i> _{cat} (s ⁻¹)	K _m (μΜ)	<i>k</i> _{cat} /K _m (μM ⁻¹ s ⁻¹)
ТСРТР			
TCPTP _{CAT}	36.3 ± 0.9	34.0 ± 2.2	1.1 ± 0.1
ТСРТР	13.8 ± 0.5	21.2 ± 2.6	0.6 ± 0.1
ITGA1 (saturated)			
TCPTP _{CAT} + ITGA1_TR	35.6 ± 0.6	28.3 ± 1.3	1.2 ± 0.1
TCPTP + ITGA1_FCT	30.2 ± 1.2	32.8 ± 3.7	0.9 ± 0.1
TCPTP + ITGA1 TR	34.7 ± 2.3	40.9 ± 6.8	0.8 ± 0.1

Supplementary Table 3: TCPTP cross-linking analysis (intramolecular): cross-linked residues by DSSO or BS3 cross-linkers. Source data are provided as a Source Data file.

Sample	Position A	Position B	Score
	Lysine Residue in TCPTP	Lysine Residue in TCPTP	(XLinkX)
TCPTP-DSSO Cross-linker			
TCPTP-DSSO-Band	38	312	142.9
TCPTP-DSSO-Band	38	324	290.5
TCPTP-DSSO-Band	38	336	68.5
TCPTP-DSSO-Band	38	358	41.1
TCPTP-DSSO-Band	107	364	81.9
TCPTP-DSSO-Band	107	369	141.2
TCPTP-DSSO-Band	118	312	154.9
TCPTP-DSSO-Band	118	324	211.6
TCPTP-DSSO-Band	118	358	216.1
TCPTP-DSSO-Band	118	369	87.3
TCPTP-DSSO-Band	280	369	107.7
TCPTP-DSSO-Band	287	294	34.8
TCPTP-DSSO-Band	287	364	17.3
TCPTP-DSSO-Band	287	290	117.8
TCPTP-DSSO-Band	290	369	21.0
TCPTP-DSSO-Band	312	324	214.8
TCPTP-DSSO-Band	312	369	137.0
TCPTP-DSSO-Band	324	369	136.9
TCPTP-DSSO-Band	358	369	97.9
TCPTP-BS3 Cross-linker			
TCPTP-BS3-Band	38	307	81.3
TCPTP-BS3-Band	38	312	77.9
TCPTP-BS3-Band	38	324	101.7
TCPTP-BS3-Band	38	336	72.0
TCPTP-BS3-Band	38	358	44.8
TCPTP-BS3-Band	38	364	50.9
TCPTP-BS3-Band	38	369	113.9
TCPTP-BS3-Band	60	358	67.7
TCPTP-BS3-Band	60	364	41.9
TCPTP-BS3-Band	60	369	44.1
TCPTP-BS3-Band	107	358	78.0
TCPTP-BS3-Band	107	364	51.7
TCPTP-BS3-Band	107	369	113.9
TCPTP-BS3-Band	107	380	42.8
TCPTP-BS3-Band	118	324	101.7
TCPTP-BS3-Band	118	358	93.6
TCPTP-BS3-Band	118	369	50.3
TCPTP-BS3-Band	287	290	49.5
TCPTP-BS3-Band	287	358	110.4
TCPTP-BS3-Band	287	369	56.1
TCPTP-BS3-Band	287	380	52.8
TCPTP-BS3-Band	290	307	41.9
TCPTP-BS3-Band	290	358	87.7
TCPTP-BS3-Band	290	380	41.0
TCPTP-BS3-Band	294	312	42.3
TCPTP-BS3-Band	294	358	67.7

TCPTP-BS3-Band	294	380	42.6
TCPTP-BS3-Band	307	358	52.5
TCPTP-BS3-Band	312	358	85.0
TCPTP-BS3-Band	312	380	42.8
TCPTP-BS3-Band	324	312	101.5
TCPTP-BS3-Band	324	336	80.7
TCPTP-BS3-Band	324	358	104.6
TCPTP-BS3-Band	324	364	43.2
TCPTP-BS3-Band	324	369	70.4
TCPTP-BS3-Band	324	380	58.9
TCPTP-BS3-Band	336	358	67.3
TCPTP-BS3-Band	358	369	100.9
TCPTP-BS3-Band	369	380	55.3
TCPTP-BS3-Band	378	369	53.4
TCPTP-BS3-Band	378	380	55.3

Supplementary Table 4: Intermolecular cross-linking analysis between TCPTP_{CAT} and **TCPTP**_{Tail}: cross-linked residue by either DSSO or BS3 cross-linker. Source data are provided as a Source Data file.

Sample	Position A	Position B	Score
	Lysine Residue	Lysine Residue	(XLINKX)
TCPTPcat +TCPTPtail-DSSO Cross-linker			
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	38	312	163.3
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	38	358	129.5
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	38	380	125.5
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	107	358	129.4
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	107	364	239.6
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	107	369	194.2
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	118	290	175.1
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	118	294	201.2
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	118	312	243.3
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	118	324	259.7
TCPTP _{CAT} +TCPTP _{Tail} -DSSO_Band	118	358	194.0
TCPTP _{CAT} +TCPTP _{Tail} -DSSO Band	118	364	305.1
TCPTP _{CAT} +TCPTP _{Tail} -DSSO_Band	118	369	154.7
TCPTP _{CAT} +TCPTP _{Tail} -DSSO_Band	118	380	164.7
TCPTP _{CAT} +TCPTP _{Tail} -DSSO_Band	287	358	139.6
TCPTP _{CAT} +TCPTP _{Tail} -DSSO_Band	287	369	122.5
TCPTPCAT +TCPTPTail-DSSO_Band	312	369	154.9
TCPTPCAT +TCPTPTail-DSSO_Band	324	364	150.2
TCPTPCAT +TCPTPTail-DSSO_Band	358	369	183.9
TCPTPCAT +TCPTPTail-DSSO_Band	358	380	227.4
TCPTPCAT +TCPTPTail-DSSO_Band	364	369	171.8
TCPTPCAT +TCPTPTail-DSSO_Band	364	380	245.5
TCPTPCAT +TCPTPTail-DSSO_Band	369	380	142.0
TCPTPCAT +TCPTPTail-BS3 Cross-linker			
TCPTPCAT+TCPTPTail-BS3_Band	38	290	84.6
TCPTPCAT+TCPTPTail-BS3_Band	38	294	81.6
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	307	119.2
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	312	101.7
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	324	118.1
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	336	77.9
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	358	93.0
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	364	71.7
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	369	124.3
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	38	380	52.8
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	107	358	44.8
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	107	369	72.0
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	118	294	49.3
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	118	358	78.0
<u> </u>	294	312	72.2
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	294	358	72.0
ICPIPcat+TCPTPTail-BS3_Band	294	364	67.7
<u> </u>	294	369	72.3
<u> </u>	307	358	93.6
<u> </u>	307	364	56.2
TCPTPCAT+TCPTPTail-BS3_Band	307	369	78.0

TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	312	324	40.4
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	312	358	107.5
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	312	364	58.6
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	312	369	83.7
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	324	369	72.0
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	351	358	84.1
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	351	369	64.4
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	358	364	125.4
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	358	369	106.6
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	364	369	101.6
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	369	378	47.8
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	369	380	41.0
TCPTP _{CAT} +TCPTP _{Tail} -BS3_Band	378	380	77.1

TCPTP construct variants	ct Primer sequence $(5' \rightarrow 3')$		SOURCE
Mutation Primer	1		1
TCPTP _{TailRK}	Forward-1	5'- GCAGATGAAACAGAGGCTAAATGAGAGGAAACG AAAAAGAAAAAGGCCAAGATTGACA-3'	This paper
	Reverse-1	5'- TGTCAATCTTGGCCTTTTTCTTTTCGTTTCCTCT CATTTAGCCTCTGTTTCATCTGC-3'	This paper
	Forward-2	5'- GCAGATGAAACAGAGGCTAAGGAAAAGGAAACG AAAAAGAAAAAGGCCAAGATTGACA-3'	This paper
	Reverse-2	5'- TGTCAATCTTGGCCTTTTTCTTTTCGTTTCCTTTT CCTTAGCCTCTGTTTCATCTGC-3'	This paper
TCPTP_C- terminal mutant	Forward	5' (P)-GGCGGCGCCAAGATTGACAGACACC-3'	This paper
	Reverse	5' (P)-GCCGCCGCTTCATTCTCATTTAGCCTC -3'	This paper
TCPTP_L1 loop mutant	Forward	5' (P)-CCGGCGGCGGTGGCCAAGTTTCCAGAA - 3'	This paper
	Reverse	5' (P)-CGCCGCCGCGGACTCATTTCGAATTTCC -3'	This paper
TCPTP_L1_loop_ H30A/D31D/Y32A mutant	Forward	5'- TGTACTTGGAAATTCGAAATGAGTCCGCTGCCGC TCCTCATAGAGTGGCCAAGTTTCCAG-3'	This paper
	Reverse	5'- CTGGAAACTTGGCCACTCTATGAGGAGCGGCAG CGGACTCATTTCGAATTTCCAAGTACA-3'	This paper
TCPTP_L6 loop_T106A/K107 A mutant	Forward	5'- TTATGGTTTGGCAGCAGAAGGCCGCAGCAGTTG TCATGCTGAACC-3'	This paper
	Reverse	5'- GGTTCAGCATGACAACTGCTGCGGCCTTCTGCT GCCAAACCATAA-3'	This paper
TCPTP_L6 loop_T106A/K107 E mutant	Forward	5'- TATGGTTTGGCAGCAGAAGGCCGAGGCAGTTGT CATGCTGAACC-3'	This paper
	Reverse	5'- GGTTCAGCATGACAACTGCCTCGGCCTTCTGCT GCCAAACCATA-3'	This paper
Cloning Primer			
TCPTP (1-387)- pMCSG7 Vector	Forward	5'- TACTTCCAATCCAATGCGATGCCCACCACCATCG AG -3'	This paper
	Reverse	5'-	This naner

Supplementary Table 5: Primers and recombinant DNA

pMCSG7 Vector	Forward	5 - TACTTCCAATCCAATGCGATGCCCACCACCATCG AG -3'	rnis paper
	Reverse	5'- TTATCCACTTCCAATGTTATTAGGTGTCTGTCAAT CTTGG -3'	This paper
TCPTP _{CAT} (1- 314)-pMCSG7 Vector	Reverse	5'- TTATCCACTTCCAATGTTATTAATTGTATTTTCAG TCATT -3'	This paper

TCPTP _{CAT} (1-	Reverse	5'-	This paper
288)-pMCSG7		TTATCCACTTCCAATGTTATTATCGTTTCTGTATA	
Vector		CTAGAATC -3'	
TCPTP _{Tail} (289-	Forward	5'-	This paper
387)-pMCSG7		TACTTCCAATCCAATGCGTGGAAAGAACTTTCTA	
Vector		AGGAAG -3'	
TCPTP (1-387)-	Forward	5'- GAATTTCGGATCCATGCCCACCACCATC -3'	This paper
pRP1B Vector			
	Reverse	5'- GAAATTCCCTCGAGTTAGGTGTCTGTCAATC -	This paper
		3'	
TCPTPCAT (1-	Forward	5'-	This paper
302)-pRP1B		GGAAGACTTATCTCCTGCCTTTGATTAGTCACCA	
Vector		AACAAAATAATGACT -3'	
	Reverse	5'-	This paper
		AGTCATTATTTGTTTGGTGACTAATCAAAGGCA	
		GGAGATAAGTCTTCC -3'	
TCPTP _{Tail} (303-	Forward	5'-	This paper
387)-pRP1B		ATTCGCGGATCCCATTCACCAAACAAAATAATG	
Vector		ACT -3'	
	Reverse	5'- GTGGTGCTCGAGTTAGGTGTCTGTCAATC -3'	This paper

Note: 5'(P)- indicate phosphorylated primer at 5' end.