Supplementary material

Rapid syndromic PCR testing in patients with respiratory tract infections reduces time to results and improves microbial yield

S. Serigstad^{1,2,3}, D. Markussen¹#, H.M.S. Grewal^{* 3,4}, M. Ebbesen⁴#, Ø. Kommedal^{3,4}, L. Heggelund^{3,5}, C.H. van Werkhoven⁶, D. Faurholt-Jepsen^{3,7}, T.W. Clark⁸, C. Ritz^{3,9}, E. Ulvestad^{3,4}, R. Bjørneklett^{1,2}, S.T. Knoop^{1,4} and the CAPNOR study group[§]

Authors affiliations:

¹ Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway

² Department of Clinical Medicine, University of Bergen, Bergen, Norway

³ Department of Clinical Science, Bergen Integrated Diagnostic Stewardship cluster, University of Bergen, Bergen, Norway

⁴ Department of Microbiology, Haukeland University Hospital, Bergen, Norway

⁵ Department of Internal Medicine, Vestre Viken Hospital Trust, Drammen, Norway.

⁶ Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

⁷ Department of Infectious Diseases, Rigshospitalet, Denmark.

⁸ School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK

⁹ National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark # Equal contribution

[§] A complete list of the CAPNOR study group is listed under Consortium.

*Corresponding author:

Harleen M.S. Grewal MD, PhD, Professor Department of Clinical Science, Bergen Integrated Diagnostic Stewardship cluster, University of Bergen, Bergen, Norway Department of Microbiology, Haukeland University Hospital, Bergen, Norway Email address: harleen.grewal@uib.no Phone number: +47 99450554

Postal address:

University of Bergen Department of Clinical Science, Faculty of Medicine and Dentistry The New Lab. Building 5021 Bergen, Norway

Table of contents (page number)

S1: BioFire® FilmArray® Pneumonia panel plus (FAP plus) targets	3
S2: Inclusion-/exclusion criteria, and definitions and diagnostic clinical criteria for community acquired pneumonia (CAP)	. 4
S3: Procedures for sputum induction and endotracheal aspiration	. 5
S4: Determining the clinical relevance of microbiological detections	. 8
References	10

Supplementary material section one (S1)

Supplementary table 1. BioFire	[®] FilmArray [®] Pneumonia panel <i>plus</i> (FAP <i>plus</i>) targets
--------------------------------	--

<u>Bacteria (semi-quantitative)</u>	<u>Atypical bacteria (qualitative)</u>
Acinetobacter calcoaceticus-baumannii complex	Legionella pneumophila
Enterobacter cloacae	Mycoplasma pneumoniae
Escherichia coli	Chlamydia pneumoniae
Haemophilus influenzae	
Klebsiella aerogenes	<u>Viruses (qualitative)</u>
Klebsiella oxytoca	Influenza A virus
Klebsiella pneumoniae group	Influenza B virus
Moraxella catarrhalis	Adenovirus
Proteus spp.	Coronavirus
Pseudomonas aeruginosa	Parainfluenza virus 1-4
Serratia marcescens	Respiratory syncytial virus
Staphylococcus aureus	Human rhinovirus/enterovirus
Streptococcus agalactiae	Human metapneumovirus
Streptococcus pneumoniae	Middle East respiratory syndrome coronavirus
Streptococcus pyogenes	
Antibiotic resistance genes	
ESBL:	
- CTX-M	
Carbapenemases:	
- KPC	
- NDM	
- OXA-48-like	
- VIM	
- IMP	
Methicilin Resistance:	
 mecA/mecC and MREJ 	

Supplementary material section two (S2)

Inclusion- and exclusion criteria

Inclusion criteria:

- Adult aged ≥ 18 years
- Admitted to the emergency department (ED) with suspicion of community acquired pneumonia (CAP)
- Fulfilling at least two of the following criteria: new or worsening cough; new or worsening expectoration of sputum; new or worsening dyspnea; hemoptysis; pleuritic chest pain; radiological evidence of CAP; abnormalities on chest auscultation and/or percussion; fever (≥38.0 °C).

Exclusion criteria:

- Hospitalization (>48 hours) within the last 14 days prior to admission
- Cystic fibrosis
- Severe bronchiectasis
- A palliative approach (defined as life expectancy below two weeks)
- Patient not willing or able to provide a lower respiratory tract sample

Definitions and diagnostic clinical criteria for CAP. Adapted from Postma D.F. et al.¹

Clinical CAP:

- Patients with the presence of at least two diagnostic criteria* and in-hospital treatment and/or diagnosis of clinically suspected CAP documented by the treating physician and in agreement with the assessment by a study investigator. In case of disagreement, an additional study investigator will arbitrate.
- Patients with two or more diagnostic criteria and an obvious non-respiratory source of infection are not considered to have a clinical diagnosis of CAP.

Radiologically confirmed CAP:

- Clinical CAP
- The presence of a new or increased infiltrate on chest radiography or computer tomography (CT).

* Diagnostic criteria:

- Cough: recent or worsening
- Production of purulent sputum or a change in the character of sputum
- Temperature >38.0°C or <36.1°C
- Auscultatory findings consistent with pneumonia, including rales, evidence of pulmonary consolidation (dullness on percussion, bronchial breath sounds, or egophony), or both
- Leukocytosis (>11.0 × 10⁹ white cells per liter or > 8.2 x 10⁹ neutrophils)
- C-reactive protein (CRP) level > 50 mg/L
- Dyspnea, tachypnea, or hypoxemia: recent or worsening

Supplementary material section three (S3) ²⁻⁵

Sputum induction by isotonic and/or hypertonic saline

Contraindications

Known airway obstruction due to high humidity or previous serious side effects due to inhalation with saline

Isotonic NaCl (0.9%)

- Patients with spontaneous production and expectoration of sputum
- Always the primary choice in patients with asthma, severe chronic obstructive pulmonary disease (COPD), obstructive airways (prolonged expirium, wheezing sounds), hypoxemia (SpO2< 92 %) or other known condition with hyper reactive airways
- Contact a physician for evaluation if:
 - Severe COPD (GOLD 3-4) with history of CO2-retension
- If salbutamol (Ventoline)/ipratropiumbromid (Atrovent) is considered, a physician should be contacted if the patient is:
 - Pregnant
 - Has tachycardia/atrial fibrillation (persistent pulse > 120)

Hypertonic NaCl (1mmol/ml - 5.8 %)

- Patients with little sputum production and little cough
- Contact a physician for evaluation if:
 - Pregnant (shall not be given to pregnant women)
 - Obstructive airways (prolonged expirium, wheezing sounds)
 - Known asthma, severe COPD (GOLD 3-4) or other known condition with hyper reactive airways
 - SpO2 < 92 %</p>
 - Tachycardia/atrial fibrillation (persistent pulse > 120)

Implementation

Use hand disinfection and gloves when handling medications and equipment

- Use droplet precautions
- Only use sterile saline in the nebulizer and check the expiration date
- 5 ml NaCl (either isotonic or hypertonic) is put in the nebulization chamber

- If known asthma, severe COPD (GOLD 3-4), obstructive airways (prolonged expirium, wheezing sounds) or other known condition with hyper reactive airways:
 Use 2.5 ml NaCl and 2.5 ml salbutamol (Ventoline) (2 mg/ml)
- Mouthpiece is the first choice, but masks can also be used. Use nose clip if mouthpiece is used
- Adjust the airflow to 8 liters/minute. Check that the nebulizer is working and producing fine mist
- Observe the patients with regard to worsened respiratory symptoms. If this happens, abort the procedure, contact a physician and start salbutamol (5 mg) and ipratropiumbromid (0.5 mg) in the nebulizer
- If the patients do not provide sputum after the first round of nebulizing, and no side effects are reported, the preceding steps can be repeated by using hypertonic NaCl 1 mmol/ml (5.8%). If hypertonic NaCl was given without any bronchodilator in the first round, please ad salbutamol (Ventoline) in the second round
- Avoid spills or soiling the outside of the container
- Inspect the volume, color and consistence of the material to decide if the test is of good quality
- Clean/disinfect contact points after the procedure

Procedure diagnostic endotracheal aspiration

Equipment

- Face mask with visor/glasses
- Clean gloves
- Wall mounted suction with hose
- Suction catheter with bent tip 14 Ch (green)
- Tracheal mucus extractor
- Lidocain gel
- Sterile container
- 10 mL sterile isotonic saline

Procedure

- The patient should be positioned upright with the head slightly tilted backwards and the chin forwards
- Test the suction
- Connect the tracheal mucus extractor
- Use lidocaine gel at the tip of the catheter and in the patient's nose
- Do not touch the distal 15 cm of the catheter
- The catheter is inserted through the nose and down to the hypopharynx without suction, until respiratory sounds are audible through the catheter end
- The patient is then instructed to cough or take a deep breath, while the catheter is lead 3-5 cm further down into the trachea
- The catheter is then connected to the tracheal mucus extractor
- Start suction, but no more than 15 seconds at a time and without moving the catheter
- The catheter is retracted slowly with a rotating movement, without suction
- After the procedure, if necessary, the catheter can be flushed with 1-2 mL sterile isotonic saline to collect any remaining respiratory specimens into the sample container

Supplementary material section four (S4)

Determining the clinical relevance of microbiological detections ⁶⁻²³

1. Clinically relevant

A. Proven etiology

Diagnosis of CAP AND

- i. Detection of the same bacteria in the respiratory tract specimen and blood culture
- ii. *Streptococcus pneumoniae* detected in respiratory tract specimen and positive pneumococcal urine antigen test
- iii. Detection of *C. pneumoniae*, *B. pertussis*, *L. pneumophilia* or *M. pneumoniae* in respiratory tract specimen
- iv. Positive urine antigen test for *L. pneumophilia*
- v. Growth of category B- or C-bacteria (Supplementary table 2) in blood culture and no other detectable focus of infection

B. Probable etiology

Diagnosis of CAP AND

- i. Detection of category B-bacteria in a respiratory tract specimen
- Detection of category C-bacteria in respiratory tract specimens in a patient with chronic underlying disease^a and/or patients with a recent history of antibiotic use^b
- Detection of a single species of category D-bacteria in a respiratory tract specimen in immunocompromised patients^c and/or patients with a recent history of antibiotic use or other known risk of infections due to certain bacteria^d
- iv. Detection of category D-bacteria in blood culture and no other detectable focus of infection
- v. Positive pneumococcal urine antigen test

2. Uncertain relevance

i. All detections not defined by the above criteria.

^a Such as chronic lung disease, diabetes mellitus, chronic kidney disease, immunosuppression

^b Two courses of antibiotics in the last 6 months

^c Chronic lung disease, except for asthma, acquired or congenital immunodeficiency, including HIV-infection, chronic use of corticosteroids > 7,5 mg prednisolone or equipotent dosage, use of immunosuppressants (ATC L04), ongoing treatment with cytostatic (ATC L01).

^d >Prior infection with resistant microbes (e.g., extended spectrum beta-lactamase (ESBL), Methicillin-resistant Staphylococcus aureus (MRSA).

Supplementary table 2. Respiratory tract microbes divided in different categories according to their potential clinical relevance		
Category	Microbe	
A: Always pathogens	Adenovirus ^{9,11,15,17}	
Always considered relevant in a patient with	Coronavirus ^{11,15,17}	
respiratory tract infection	Human metapneumovirus ^{9,15,17}	
	Influenza virus ^{9,11,15,17}	
	MERS ¹²	
	Parainfluenza virus ^{11,15,17}	
	Rhinovirus ^{9,15,17}	
	RS-virus ^{9,11,15,17}	
	Bordetella pertussis ⁹	
	Chlamydia pneumoniae ^{6,9,11,15,17}	
	Legionella pneumophila ^{6,9,17}	
	Mycoplasma pneumoniae ^{6,9,11,15,17}	
B: Usually pathogens	Haemophilus influenzae ^{6,9,11,15,17}	
Can be colonizers, but are usually considered	Streptococcus pneumoniae ^{6,9,11,15,17,23}	
relevant in a patient with pneumonia	Streptococcus pyogenes 14,21,23	
C: Usually not pathogens	Klebsiella pneumoniae ^{10,17,23}	
Usually colonizers, but can cause pneumonia, especially in patient with chronic diseases	Moraxella catarrhalis ^{6,8,15,17}	
	Staphylococcus aureus ^{6,15,17,18,23}	
D: Usually not pathogens	Acinetobacter calcoaceticus-baumannii-	
A seldom cause of pheumonia in otherwise healthy patients. May be considered relevant if	Enterobacter cloacae ^{9,15,22}	
detected as the only bacterial species in a patient	Eccharishia coli ^{9,15,17,22,23}	
with immunosuppression and/or several previous	Klehsiella gerogenes ^{9,15}	
courses of antibiotics	Klebsiella oxytoca ^{9,15}	
	Proteus species ^{9,15,22}	
	Pseudomonas geruginosa ^{15-17,22,23}	
	Correction marcoscope 9.15,22	
	Strontococcus application 19	
	Streptococcus agaiactiae	

References

- 1 Postma, D. F. *et al.* Antibiotic treatment strategies for community-acquired pneumonia in adults. *N Engl J Med* **372**, 1312-1323, doi:10.1056/NEJMoa1406330 (2015).
- 2 Paggiaro, P. L. *et al.* Sputum induction. *Eur Respir J Suppl* **37**, 3s-8s, doi:10.1183/09031936.02.00000302 (2002).
- 3 Cataldo, D. *et al.* Induced sputum: comparison between isotonic and hypertonic saline solution inhalation in patients with asthma. *Chest* **120**, 1815-1821, doi:10.1378/chest.120.6.1815 (2001).
- 4 *Tuberculosis guidelines from the Norwegian Institute of Public Health,* <<u>http://www.fhi.no/artikler/?id=83629</u>> (last accessed 21st October 2021)
- 5 National evidence based guidelines database by the Norwegian Institute of Public Health, <<u>https://www.helsebiblioteket.no/fagprosedyrer/ferdige/indusert-sputum</u>> (last accessed 21st October 2021)
- 6 Apisarnthanarak, A. & Mundy, L. M. Etiology of community-acquired pneumonia. *Clin Chest Med* **26**, 47-55, doi:10.1016/j.ccm.2004.10.016 (2005).
- 7 Asai, N. *et al.* Clinical manifestations and risk factors of community-onset Acinetobacter species pneumonia in Japan; case control study in a single institute in Japan. *J Infect Chemother* **25**, 639-642, doi:10.1016/j.jiac.2019.03.016 (2019).
- 8 Hirai, J. *et al.* Clinical characteristics of community-acquired pneumonia due to Moraxella catarrhalis in adults: a retrospective single-centre study. *BMC Infect Dis* **20**, 821, doi:10.1186/s12879-020-05564-9 (2020).
- 9 Holter, J. C. *et al.* Etiology of community-acquired pneumonia and diagnostic yields of microbiological methods: a 3-year prospective study in Norway. *BMC Infect Dis* **15**, 64, doi:10.1186/s12879-015-0803-5 (2015).
- 10 Lin, Y. T., Jeng, Y. Y., Chen, T. L. & Fung, C. P. Bacteremic community-acquired pneumonia due to Klebsiella pneumoniae: clinical and microbiological characteristics in Taiwan, 2001-2008. *BMC Infect Dis* **10**, 307, doi:10.1186/1471-2334-10-307 (2010).
- 11 Mandell, L. A. Community-acquired pneumonia: An overview. *Postgrad Med* **127**, 607-615, doi:10.1080/00325481.2015.1074030 (2015).
- 12 Memish, Z. A., Perlman, S., Van Kerkhove, M. D. & Zumla, A. Middle East respiratory syndrome. *Lancet* **395**, 1063-1077, doi:10.1016/S0140-6736(19)33221-0 (2020).
- 13 Metlay, J. P. *et al.* Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. *American Journal of Respiratory and Critical Care Medicine* **200**, e45-e67, doi:10.1164/rccm.201908-1581ST (2019).
- 14 Muller, M. P. *et al.* Clinical and epidemiologic features of group a streptococcal pneumonia in Ontario, Canada. *Arch Intern Med* **163**, 467-472, doi:10.1001/archinte.163.4.467 (2003).
- 15 Musher, D. M. & Thorner, A. R. Community-Acquired Pneumonia. *New England Journal of Medicine* **371**, 1619-1628, doi:10.1056/NEJMra1312885 (2014).
- 16 Restrepo, M. I. *et al.* Burden and risk factors for Pseudomonas aeruginosa communityacquired pneumonia: a multinational point prevalence study of hospitalised patients. *Eur Respir J* 52, doi:10.1183/13993003.01190-2017 (2018).
- 17 Rider, A. C. & Frazee, B. W. Community-Acquired Pneumonia. *Emerg Med Clin North Am* **36**, 665-683, doi:10.1016/j.emc.2018.07.001 (2018).
- 18 Self, W. H. *et al.* Staphylococcus aureus Community-acquired Pneumonia: Prevalence, Clinical Characteristics, and Outcomes. *Clin Infect Dis* **63**, 300-309, doi:10.1093/cid/ciw300 (2016).
- 19 Skolnik, K. *et al.* Group B streptococcus (GBS) is an important pathogen in human diseasebut what about in cystic fibrosis? *BMC Infect Dis* **17**, 660, doi:10.1186/s12879-017-2729-6 (2017).

- 20 Stralin, K., Olcen, P., Tornqvist, E. & Holmberg, H. Definite, probable, and possible bacterial aetiologies of community-acquired pneumonia at different CRB-65 scores. *Scand J Infect Dis* **42**, 426-434, doi:10.3109/00365540903552353 (2010).
- 21 Tamayo, E., Montes, M., Vicente, D. & Pérez-Trallero, E. Streptococcus pyogenes Pneumonia in Adults: Clinical Presentation and Molecular Characterization of Isolates 2006-2015. *PLoS One* **11**, e0152640, doi:10.1371/journal.pone.0152640 (2016).
- 22 von Baum, H., Welte, T., Marre, R., Suttorp, N. & Ewig, S. Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: Diagnosis, incidence and predictors. *Eur Respir J* **35**, 598-605, doi:10.1183/09031936.00091809 (2010).
- 23 Wongsurakiat, P. & Chitwarakorn, N. Severe community-acquired pneumonia in general medical wards: outcomes and impact of initial antibiotic selection. *BMC Pulm Med* **19**, 179, doi:10.1186/s12890-019-0944-1 (2019).