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Supplementary figures

Additional LEEM images/crops
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Supplementary Figure 1: Supplementary moiré LEEM crops. A wider range of images found in
the sample from the main text as used to determine the histograms of twist angles and strain in Figure 2
of the main text. Insets show FFT’s with the detected moiré peaks.
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Supplementary Figure 2: Crop locations. Locations of the crops in Figure 1 indicated in the full
overview (data is the same as Figure 1e of the main text).
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Supplementary Figure 3: LEEM moiré resolution. a,b, Images of 2-on-2 layer twisted graphene at
E0 = 17.0 eV, with twist angles of respectively θ ≈ 1.29◦ and θ ≈ 1.02◦ c,d, FFTs of a,b with Bragg peaks
corresponding to the moiré pattern indicated in blue. Higher order moiré peaks are also visible (indicated
in cyan), corresponding to minimum detectable wavelengths of less than 6 nm.
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Supplementary figures on dynamics
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Supplementary Figure 4: Local properties at the movie location. a, Local twist angle as extracted
with GPA of the area imaged in Supplementary Video 1. b, Local strain magnitude and direction as
extracted with GPA of the same area. Purple rectangles indicate the area depicted in Figure 4 of the main
text.

0.0 0.5 1.0 1.5 2.0 2.5
y ( m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x 
(

m
)

mean absolute displacement (nm)a

0 60 120 180 240 300
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
m

ea
n 

ab
so

lu
te

 d
isp

la
ce

m
en

t (
nm

)
b

0.0

0.5

1.0

1.5

2.0

2.5

Supplementary Figure 5: Moiré dynamics statistics. a, (Temporal) Mean absolute displacement
from mean position during Supplementary Video 1. b, Spatial mean absolute displacement from mean
position during Supplementary Video 1 as a function of time for a center area.
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Supplementary Figure 6: Dynamics of an additional area. a-c, Three images of the same area (in
the same domain as Supplementary Figure 1f), taken minutes apart at a constant temperature of 500 ◦C.
Here, θ∗ ≈ 0.26 and ε ≈ 0.08% (local values as extracted by GPA shown in Supplementary Figure 7). d,e,
Difference of respectively b and c with a, i.e. t = 0 s, highlighting the shift of the domain boundaries. f,g,
GPA extracted displacement of respectively b, and c, with respect to t = 0 s, with the arrows indicating
the direction and amplitude magnified 8 times for visibility.
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Supplementary Figure 7: Local properties. a, Local twist angle as extracted with GPA of the area
shown in Supplementary Figure 6. b, Local strain magnitude and direction as extracted with GPA of the
same area. Green rectangles indicate the area depicted in Supplementary Figure 6.
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Supplementary figures on dislocations

a b

Supplementary Figure 8: Isolated edge dislocations. a, Additional edge dislocation found on the
sample at a lower twist angle. b, Larger area around edge dislocation in the main text from the main text.
In both case GPA phases are also displayed.
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Supplementary Figure 9: Additional edge dislocations. More dislocations in the vicinity of the
dislocation shown in the main text. d, corresponds to the dislocation in the main text. θ as extracted
from the shown area here is a bit lower as unit cell area tends to be a bit larger near the dislocation.
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Supplementary Figure 10: Movement of dislocation. a, Dislocation in its original location, indicated
by red arrow. b, Image of the same area as in a,, but imaged two days later. The dislocation has moved,
as indicated by the red arrow. The former location is indicated with a blue arrow. c-e, Rendering of the
individual atomic lattices and the resulting moiré lattice from the extracted lattice parameters, showing
the atomic lattice directions.
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Supplementary Figure 11: Sample heating. Sample temperature, heating rate and chamber pressure
as measured by pyrometer and IR camera during initial heating.

Supplementary Note 1: AFM data

a

c

b

Supplementary Figure 12: AFM large area characterization. a, Atomic Force Microscopy overview
of sample area. Locations of line profiles and detailed topographies in Figure 13 are indicated. b,c, Line
cuts along the cuts indicated in a.

To further characterize the surface properties of the sample, an AFM (JPK, NanoWizard 3)
measurement was performed in AC tapping mode following the LEEM measurements. Predomi-
nantly, the results show a very flat and clean graphene surface between folds, indicating annealing
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Supplementary Figure 13: AFM at edge dislocations. a, Atomic Force Microscopy of the dislocation
area in Figure 8a. Area is indicated in red in Figure 12a. b, Atomic Force Microscopy of the dislocation
area in Figure 8b. Area is indicated in yellow in Figure 12a.

at 500 ◦C in UHV had successfully removed the polymer residue left on the surface.
In profile 1, the terrace height sees a difference of 0.3 nm, demonstrating the graphene layer

count goes down by one at this location. This corresponds to the layer counts extracted from the
LEEM spectra.

Profile 2 to 4 shows 3 different kinds of defects in the bilayer graphene region. The ridge at
location 2 seems to be a neat folding of both the bilayer graphene flake (1.5 nm in height, four layers
of graphene), whereas profile 4 shows wrinkles that are up to 120 nm tall. This is also reflected by
the distinct patterns in the LEEM bright field overview image, respectively. While the wrinkles
merely appear black, the ridge resembles more like a unique layer count domain. Profile 3 shows
two tears within the one layer of graphene, corresponding nicely to the defect region observed in
LEEM where monolayer graphene shines through.

The zoomed-in small scale measurements marked by the red and yellow box shows the topog-
raphy on top of two dislocations observed in LEEM. As shown in Figure 13, no distinctive feature
was observed at either dislocation. The topography, however, shows an exceptionally flat surface
with a height variation (peak-to-peak) of less than 1 nm.

Supplementary Note 2: On Adaptive GPA

Regular GPA is limited in the wave vector deviations (with respect to the reference wave vector) it
can measure, due to the limitations in spectral leakage. This is no problem when applied to atomic
lattices, as the expected deviations are very small there. However, due to the moiré magnification
of small lattice distortions, it does become a limiting factor when applying GPA to small twist
angle moiré lattices.

To overcome this limitation, we extended the GPA algorithm to use adaptive reference wave
vectors, based on the combination of two ideas and related to earlier work in laser fringe analysis [1]:
First, a GPA phase calculated with respect to one reference vector can always be converted to the
GPA phase with respect to another reference vector by adding a phase corresponding to the phase
difference between the reference vectors. Second, a larger lock-in amplitude corresponds to a better
fit between the reference vector and the data.

The adaptive GPA algorithm therefore works as follows: The spatial lock-in signal is calculated
for a grid of wave vectors around a base reference vector, converting the GPA phase to reference
the base reference vector every time. For each pixel, the spatial lock-in signal with the highest
amplitude is selected as the final signal.

It was realized that to deduce the deformation properties, reconstruction to a globally consistent
phase (requiring 2D phase unwrapping), as reported previously [2], is not strictly needed, making
it possible to circumvent the problems associated with 2D phase unwrapping. Instead, the gradient
of each GPA phase was calculated, requiring only local 1D phase unwrapping (i.e. assuming the
derivative of the phase in both the x and y direction will never be more than π per pixel, an
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assumption in practice always met). Subsequently, these three GPA gradients are converted to
the displacement gradient tensor (in real space coordinates), estimating the transformation via
weighted least squares, using the local spatial lock-in amplitudes as weights.

As an added benefit, this entire procedure is local, i.e. not depending on pixels beyond nearest
neighbors in any way except for the initial Gaussian convolution in determining the GPA. This
reduces the effect of artefacts in the image to a minimum local area around each artefact (where
for in the 2D phase unwrapping they have a global influence on the phases).

However, when the gradient is computed based on phase values stemming from two different
GPA reference vectors, i.e. at the edge of their valid/optimal regions, artefacts appear due to their
relatively large absolute error. To prevent this, the local gradient of the phase with the highest
lock-in magnitude is stored alongside the lock-in signal itself in the GPA algorithm. This way,
the gradient is calculated based on a single reference phase, propagating only the much smaller
relative/derivative error between the two signals instead of the absolute error.

As mentioned in the main text, even adaptive GPA has its limits. In particular, too large de-
viations from the base reference vector can not be resolved correctly, causing an erroneous, lower,
extracted deviation, as is visible in the lower right of Figure 2e in the main text). As the defor-
mation becomes too large, e.g. towards the folds in the TBG, the highest lock-in amplitude will
occur at a different moiré peak or at the near-zero components of the fourier transform, causing
an incorrect value to be extracted.

Supplementary Note 3: On the decomposition of the dis-
placement field.

Kerelsky et al. [3] use the following idea to extract twist angle θT , strain magnitude ε and strain
direction θs from reciprocal moiré lattice vectors Kis: These difference vectors of the constituting
atomic lattices are written in terms of a rotated and a strained lattice vector each:

Kis = kir − kis = R(θT )ki − S(θs, ε)ki

where ki are the original lattice vectors. Kerelsky et al. assume k0 to be along the x-axis, and get
around this by taking amplitudes, discarding any global rotation. Here, we do however introduce
that global rotation, by a multiplication with R(ξ):

Kis = (R(θT )− S(θs, ε))R(ξ)ki

Eihter of these expressions can, and indeed by Kerelsky et al. is, numerically fitted to the found
amplitudes or k-vectors for each triangle. However, from GPA analysis we most naturally obtain
a Jacobian transformation Jac of the moiré k-vectors with respect to some specific set of reference
vectors with predefined strain and rotations:

Kis = (J + I)Ki0 = JacKi0 = Jac (R(θT0)− S(θs0, ε0))R(ξ0)ki := JacA0R(ξ0)ki

Note that we can force ε0 = 0→ S(θs0, ε0) = I.
This simplifies to:

JacA0R(ξ0)ki = (R(θT )− S(θs, ε))R(ξ)ki

The linear transformation is uniquely described by its effect on two points in k-space, so their
matrix representations should be equal:

JacA0R(ξ0) = (R(θT )− S(θs, ε))R(ξ)

JacA0 = (R(θT )− S(θs, ε))R(ξ − ξ0)

The left hand side is a known quantity at each position, the right hand side remains to be nu-
merically fitted or extracted. This is implemented in pyGPA using scipy.optimize and numba to
just-in-time compile the fitting code [4, 5].
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Alternatively, we could formulate a symmetric expression with two strains, but without allowing
for further joint rotation of the lattices:

Ki0 = (R(θT0/2)−R(−θT0/2))R(ξ0)ki := B0R(ξ0)ki

JacB0R(ξ0)ki = (S(θb, εb)R(θT /2)− S(θa, εa)R(−θT /2))R(ξ0)ki

JacB0 = (S(θb, εb)R(θT /2)− S(θa, εa)R(−θT /2))

Supplementary Note 4: LEEM stitching

Supplementary Figure 14: Stitching schematic. Illustration of the sample stage scanning for stitched
overview images. Black arrows indicate the direction of stage movement. inset, Illustration of the square
overlapping regions of neighboring images used to determine relative positions.

To achieve stitching of images without inducing any additional deformation, a custom stitching
algorithm tailored towards such LEEM data, was developed, working as follows:

To compensate sample stage inaccuracy, nearest neighbor (by sample stage coordinates) images
are compared, finding their relative positions by cross-correlation. Using an iterative procedure,
calculating cross correlations of overlapping areas at each step, the absolute positions of all images
are found. Images are then combined in a weighted fashion, with the weight sloping to zero at
the edges of each image, to smooth out any mismatch due to residual image warping. The full
stitching algorithm is implemented in Python, available as a Jupyter Notebook[6].

It is designed for use with ESCHER LEEM images. For those images, their positions are known
approximately in terms of stage coordinates, i.e. the positions as reported by the sensors in the
sample stage. It should however generalize to any set of overlapping images where relative positions
of the images are known in some coordinate system which can approximately be transformed to
coordinates in terms of pixels by an affine transformation (rotation, translation, mirroring).

The algorithm consists of the following steps:

1. Using the stage coordinates for each image, obtain a nearest neighbour graph with the nearest
n neighbors neighbouring images for each image.

2. Obtain an initial guess for the transformation matrix between stage coordinates and pixel
coordinates, by one of the following options:
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1. Copying a known transformation matrix from an earlier run of a comparable dataset.

2. Manually overlaying some nearest neighbor images from the center of the dataset, either
refining the estimate, or making a new estimate for an unknown dataset

3. Calculate an initial estimate of the pixel coordinates of the images by applying the corre-
sponding transformation to the stage coordinates

4. Apply a gaussian filter with width sigma to the original dataset and apply a magnitude sobel
filter. Optionally scale down the images by an integer factor z in both directions to be able
to reduce fftsize by the same factor, without reducing the sample area compared.

5. Iterate the following steps until the calculated image positions have converged to within
sigma:

1. Obtain a nearest neighbour graph with per image the nearest n neighbors neighbouring
images from the current estimate of the pixel coordinates and calculate the difference
vectors between each pair of nearest neighbours.

2. For each pair of neighboring images:

i. Calculate the cross-correlation between areas estimated to be in the center of the
overlap of size fftsize*fftsize of the filtered data. If the estimated area is outside
the valid area of the image defined by mask/radius, take an area as close to the
intended area but still within the valid area as possible.

ii. Find the location of the maximum in the cross-correlation. This corresponds to the
correction to the estimate of the difference vector between the corresponding image
position pair.

iii. Calculate the weight of the match by dividing the maximum in the cross-correlation
by the square root of the maximum of the auto-correlations.

3. Compute a new estimate of the difference vectors by adding the found corrections.
Reconvert to a new estimate of pixel coordinates by minimizing the squared error in the
system of equations for the positions, weighing by modified weights, either:

i. wmod = w − wmin for w > wmin, w = 0 else, with wmin the maximum lower bound
such that the graph of nearest neighbours with non-zero weights is still connected

ii. Only use the ‘maximum spanning tree’ of weights, i.e. minus the minimum spanning
tree of minus the weights, such that only the n best matches are used.

6. (Optional) Refine the estimate of the transformation matrix, using all estimated difference
vectors with a weight better than wminest and restart from step 3.

7. Repeat step 4. and 5. until sigma is satisfactory small. Optional repeat a final time with
the original data if the signal to noise of the original data permits.

8. Select only the images for stitching where the average of the used weights (i.e. where w >
wmin) is larger than qthresh for an appropriate value of qthresh.

9. (Optional) For those images, match the intensities by calculating the intensity ratios between
the overlap areas of size fftsize*fftsize and perform a global optimization.

10. Define a weighting mask, 1 in the center and sloping linearly to zero at the edges of the valid
region, over a width of bandwidth pixels, as illustrated in Figure 15.

11. Per block of output blocksize*blocksize, select all images that have overlap with the par-
ticular output block, multiply each by the weighting mask and shift each image appropriately.
Divide by an equivalently shifted stack of weighting masks. As such information at the center
of images gets prioritized, and transitions get smoothed.
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Supplementary Figure 15: Weight mask used to stitch images. A linear slope of the weight towards
the edges of the round microchannel plate detector is used to smoothly merge images.

Considerations

For square grids with a decent amount of overlap, it makes sense to put n neighbors to 5 (including
the image itself), however, for larger overlaps or datasets where an extra dimension is available
(such as landing energy), it can be appropriate to increase the number of nearest neighbors to
which each image is matched.

Parameters and intermediate results of the iteration are saved in an xarray and saved to disk
for reproducibility.

Parallelization

Using dask, the following steps are parallelized:

• step 5B , where each pair of images can be treated independently. In practice parallelization
is performed over blocks of subsequent images with their nearest neighbours. This could be
improved upon in two ways: firstly by treating each pair only once, and secondly by making
a nicer selection of blocks of images located close to each other in the nearest neighbor graph.
This would most likely require another (smarter) data structure than the nearest neighbour
indexing matrix used now.

• Step 6 is quite analogous to 5B and is parallelized similarly.

• Step 11 is parallelized on a per block basis. To optimize memory usage, results are directly
streamed to a zarr array on disk.

• The minimizations are parallelized by scipy natively.
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