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1 Supplementary Note 1: Data analysis

1.1 Multi- and single-unit activity

Multi- and single-unit activity (MU and SU) detection procedures have been described in pre-
vious study [1]: The raw 40 kHz-sampled voltage trace was match-filtered and peaks were
detected. Then, a moving-threshold algorithm was employed with a very high threshold to de-
tect the largest peaks and to exclude any small spikes that occurred within the exclusion window
around these largest peaks. For MUs, progressively lower thresholds were used until approx-
imately 100 Hz of spiking activity was detected on each channel. For SUs, out of 736 total
recorded channels in the 46 sessions, we were able to isolate 285 single neurons. We use MU
activity for HMM-fitting. Attentional modulation of firing rates, Fano factor, and noise correla-
tions was similar for MU and SU activity (Supplementary Fig. 2, Supplementary Tables 1,2).
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1.2 Attentional modulation of firing rate, Fano factor and noise correla-
tions in one-phase and two-phase recordings

Layer MI p-value n

Firing rate MU Superficial 0.0225 p < 10−10 1, 752
MU Deep 0.0183 p < 10−10 2, 216
SU Superficial 0.0217 p = 1× 10−9 944
SU Deep 0.0167 p = 3× 10−6 1, 282

Fano factor MU Superficial −0.0101 p < 10−10 1, 752
MU Deep −0.0067 p < 10−10 2, 216
SU Superficial −0.0013 p = 0.30 944
SU Deep −0.0014 p = 0.26 1, 282

Noise correlation MU Superficial −0.0294 p = 9× 10−5 5, 088
MU Deep 0.0215 p = 0.004 6, 128
SU Superficial −0.0431 p = 0.1 2, 011
SU Deep 0.0768 p = 0.001 4, 112

Supplementary Table 1. Attentional modulation of firing rate, Fano factor, and noise
correlations in two-phase recordings. Modulation index (MI) is computed as the difference
between attention and control conditions divided by the sum. p-value is for two-sided Wilcoxon
rank-sum test. For firing rate and Fano factor, n is the number of units. For noise correlation, n
is the number of unit pairs. p values smaller than 10−10 are reported as p < 10−10.

We quantified attentional modulation of firing rates, Fano factor (FF) and noise correlations
in one-phase and two-phase recordings, separately for MU and SU in superficial and deep corti-
cal layers (Supplementary Tables 1,2). We calculated a standard modulation index MIrate (MIFF,
MIcorr), which was the difference between the firing rate (FF, noise correlation, respectively) in
the attention and control conditions divided by the sum.

2 Supplementary Note 2: Network model of interacting columns

2.1 On-Off dynamics in single columns

On-Off dynamics of individual units in the model describe synchronized transitions in popula-
tion neural activity within cortical columns. A group of neurons within a column (indexed by
i = 1, 2...) simultaneously switches between On and Off phases, which is characterized a binary
value S(t) = {0, 1}, where S(t) = 1 denotes On phase and S(t) = 0 denotes Off phase. The
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Layer MI p-value n

Firing rate MU Superficial 0.0241 p < 10−10 904
MU Deep 0.0307 p < 10−10 1, 016
SU Superficial 0.0204 p = 0.005 324
SU Deep 0.0448 p < 10−10 532

Fano factor MU Superficial −0.0077 p < 10−10 904
MU Deep −0.0098 p < 10−10 1, 016
SU Superficial 0.0001 p = 0.77 324
SU Deep −0.0069 p = 0.005 532

Noise correlation MU Superficial −0.0306 p = 0.1 920
MU Deep 0.0628 p = 3× 10−4 1, 448
SU Superficial −0.0208 p = 0.53 421
SU Deep −0.018 p = 0.41 901

Supplementary Table 2. Attentional modulation of firing rate, Fano factor, and noise
correlations in one-phase recordings. Same format as in Supplementary Table 1.

neurons have higher firing rates ron(i) during On phases, and lower firing rates roff(i) during
Off phases, which can be represented by the time-dependent firing-rate λ(i; t):

λ(i; t) = roff(i) + S(t)[ron(i)− roff(i)] . (1)

S(t) transitions between On and Off phases stochastically as a two-state Markov process. The
transition rate from Off to On phase is α1, and the transition rate from On to Off phase is α2.
Therefore, the mean duration of Off episode is τoff = 1/α1, and the mean duration of On episode
is τon = 1/α2. The spike counts of neurons are generated as inhomogeneous Poisson processes
with instantaneous firing rates λ(i; t).

2.1.1 Analytical prediction of Fano factor and noise correlations in single columns

In the model, columnar On-Off dynamics are the source of correlated variability within single
model units. Spike counts of each neuron within a column are generated by a doubly stochastic
process, where shared On-Off dynamics give rise to noise correlations between neurons. We
tested how accurately the model of On-Off dynamics predicted attentional modulation of FF
and noise correlations in our columnar recordings. We analytically calculated FF and noise
correlation within an arbitrary time window T as a function of the On-Off transition rates (α1

and α2) and On and Off firing rates (ron and roff) of individual neurons.
On each trial, the spike-count N(i) of a neuron i in the time-window T is described by a
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Poisson random variable with the rate given by the integral

Λ(i) =

∫ t+T

t

λ(i; t′)dt′ = roff(i)T +R∆r(i) . (2)

Here the On-Off firing-rate difference ∆r(i) is defined as

∆r(i) = ron(i)− roff(i) , (3)

and R is the normalized rate:

R =

∫ t+T

t

S(t′)dt′ . (4)

FF is defined as the ratio of the spike-count variance to the mean:

FFi =
Var[N(i)]

E[N(i)]
. (5)

Noise correlation between spike counts of neurons i and j is defined as

NCi,j =
Cov[N(i), N(j)]√
Var[N(i)]Var[N(j)]

= A(α1, α2) , (6)

where Cov[N(i), N(j)] is the covariance between spike-counts in a pair of neurons.
The mean value of the spike-count of neuron i is given by

E[N(i)] = 〈
∞∑
n=1

n
(Λ(i))n

n!
e−Λ(i)〉 = 〈Λ(i)〉 = roff(i)T + E[R]∆r(i) . (7)

The variance of spike count is

Var[N(i)] = E[N(i)2]− (E[N(i)])2 = 〈
∞∑
n=1

n2 (Λ(i))n

n!
e−Λ(i)〉 − (〈Λ(i)〉)2

= 〈[Λ(i)]2 + Λ(i)〉 − (〈Λ(i)〉)2

= (∆r(i))2Var[R] + roff(i)T + E[R]∆r(i) . (8)

The spike-count covariance Cov[N(i), N(j)] is calculated as

Cov[N(i), N(j)] = E[N(i)N(j)]− E[N(i)]E[N(j)]

= 〈
∞∑
n=1

n
(Λ(i))n

n!
e−Λ(i)

∞∑
m=1

m
(Λ(j))m

m!
e−Λ(j)〉 − 〈Λ(i)〉〈Λ(j)〉

= 〈Λ(i)Λ(j)〉 − 〈Λ(i)〉〈Λ(j)〉
= ∆r(x, i)∆r(y, j)Var[R] . (9)
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According to the statistics of a two-state Markov process, the mean and variance of the normal-
ized rate R are

E[R(x)] =
α1

α1 + α2

T, (10)

Var[R(x)] =
2α1α2

(α1 + α2)3

[
T − 1

α1 + α2

(1− exp (−(α1 + α2)T ))

]
. (11)

In terms of the mean On and Off episode durations τoff = 1/α1, τon = 1/α2, we get

E[R(x)] =
τon

τon + τoff
T , (12)

Var[R(x)] =
2τ 2

onτ
2
off

(τon + τoff)3

[
T − τonτoff

τon + τoff

(
1− exp

(
−τon + τoff

τonτoff
T

))]
. (13)

2.2 Dynamical-system model of spatiotemporal On-Off dynamics

To quantify spatiotemporal patterns of On-Off dynamics, we constructed a network model of
interacting columns. The model describes the propagation of On-Off dynamics across cortical
surface within each layer (superficial or deep). Each layer in the model consists of a two-
dimensional lattice of units. Each unit is represented by a dynamical variable v(x, t), which
represents the mean firing rate of a population of neurons within one layer of a single column.
The two-dimensional lateral coordinates are denoted as x. The dynamical equations are

ε
d

dt
v = F (v)− u+W∇2v + I ,

d

dt
u = gv − u+ f +

√
2Qξ . (14)

Here u is the adaptation variable, and ξ is Gaussian white noise of unity intensity (here we omit
the spatial index of variables u and v). The piece-wise linear function F (v) is given by

F (v) =


−1− v , v ≤ −1/2
v , −1/2 < v < 1/2
1− v , v ≥ 1/2

. (15)

The termW∇2v represents interactions among nearby units, where∇2v = ∂2
xv+∂2

yv, andW is
the interaction strength. The parameters are adaptation gain g, adaptation baseline f , and noise
intensity Q. The external current I = Istim + Iattn represents the bottom-up inputs from visual
stimuli and top-down attentional that act on a local group of units. ε � 1 is a constant that
separates the timescales of the dynamical variable v and slow adaption variable u. We chose
the parameters such that the system operated in a bistable regime [2], where the population
rate v stochastically switches between two stable fixed points, corresponding to the On and Off
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phases. Therefore, we use a binary variable λ(x, t) which segments the activity of v(x, t) into
the On and Off phase. The firing rates of neurons within a certain column of population x is
given by

r(t) = roff(x) + (ron(x)− roff(x))λ(x, t) , (16)

where ron(x) and roff(x) are firing rates of neurons during On and Off phases, respectively.

2.2.1 Simulations of the dynamical-system model

We simulated the dynamical-system model of spatiotemporal On-Off dynamics Eq. (14), and
then generated spikes from the simulated rate variable v(x, t). We performed simulations on
a square 256 × 256 grid using a discretized operator ∇2v and the explicit Euler scheme for
time-integration with a step dt = 0.005. We fixed the parameters f = 0.15, g = 0.55, ε = 0.05,
W = 0.03, Q = 0.0075. The noise intensity Q was chosen relatively low so that the On
and Off episode durations have close to exponential distributions. The external input current is
I = Iatt + Istim + f . We chose the parameter f = 0.15 so that the On and Off episode durations
were similar (τoff ≈ τon) in the control condition (Iatt = 0). To study the dependence of noise
correlations on the input current, we chose Iatt, Istim = 0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012.
For the examples in Fig. 5d and Fig. 6d, Iatt + Istim = 0.004.

We generated spike-counts of individual simulated neurons from the population rates v(x, t).
We sampled firing rates roff and ∆r = ron − roff of each neuron based on the distributions of
roff and ron of HMM parameters obtained by fitting two-phase recordings. We fitted a two-
state HMM to MU activities on 16 channels in each of 31 two-phase recordings, separately for
8 stimulus orientations and 4 attention conditions (2 attention and 2 control conditions). The
HMM fits produced a distribution of roff and ron with 31×8×16 pairs of firing rates in attention
versus control condition (we averaged firing rates of 2 attention and 2 control conditions).

We calibrated time units in the model to match the timescales of On-Off dynamics in the
data. In the calculation of noise correlations, we used the time-window T = 0.2 s in the data,
and the number of time-steps of simulated firing-rate sequence was n1 = 3480. This calibration
is based on the fact that in the control condition (I = f ) τoff = τon ≈ 1740 time-steps, which
we matched to the average On and Off episode durations in control condition that are about
100 ms. To obtain the Poisson rate, we transformed the rate to a binary variable: λ(t) = Θ[v(t)],
where Θ is the Heaviside step function. The Poisson rate of each neuron is then calculated as
r(t)∆t = [roff + λ(t)∆r]∆t, where ∆t = T/n1 = 0.0575 ms according to our time calibration.
For each combination of Iatt, Istim, we simulated 100 trials, each with the duration of 8,000
time-steps, which in our calibration is equivalent to 0.46 s.
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2.2.2 Dependence of noise correlation within and across columns on the external input

In simulations, we investigated changes in noise correlations within and across columns for
different values of Iatt and Istim (Fig. 5b). To calculate noise correlations within single columns,
we used 121 units from a local group (11×11 square on the grid) that received attentional input,
and 121 units from an equivalent local group without attentional input (i.e. control condition, as
in Fig. 2d). We simulated 100 trials to generate the sequences λ(t) of each unit for attention and
control conditions. For each unit, we then generated spike-counts of 10 simulated neurons with
the same shared On-Off sequence, using the corresponding On and Off firing rates sampled
from the distributions estimated by HMM in the V4 data. We calculated noise correlations
between all sampled pairs of simulated neurons. We repeated this sampling procedure 10 times
and averaged noise correlations over all 121× 9× 10/2× 10 pairs. To confirm that this sample
size of firing rates was sufficient, we verified that the results did not change when we further
increased the sample size.

To calculate noise correlations across columns, we generated spike-counts for one simulated
neuron per unit by sampling On and Off firing rates from the distributions estimated by HMM.
We calculated noise correlations between all sampled pairs of simulated neurons. We repeated
this sampling procedure 10 times, which results in the total of 121× 120/2× 10 neuron pairs.
We averaged noise correlations over neuron pairs for units with lateral distance d 6 3. In
analytical approximation, this averaging is equivalent to

rcontrol
sc = Actl

∫ 3

0

dxp(x) exp(−x/Lctl) , rattention
sc = Aatt

∫ 3

0

dxp(x) exp(−x/Latt) , (17)

where p(x) is the probability density of units at distance x.

2.2.3 Influence of timescale separation and noise on On-Off transitions

Timescale separation. In our dynamical system model, the time-evolution equation for the
firing-rate variable v operates on faster timescale than the slow adaptation variable u. The
separation of timescales is set by the parameter ε � 1. The timescale separation restricts the
system’s dynamics in the phase space to a narrow region around the left and right branches of
the v-nullcline and the two lines connecting them [3]. This behavior accounts for the timescale
separation in the On-Off dynamics in the monkey cortex: in the data, transitions between the
On and Off phases occur much faster than the average dwell times in these On and Off phases
[1].

To understand the effect of parameter ε on dynamics, we use a single-unit model neglecting
the interaction term W∇2v. The condition ε� 1 facilitates stochastic transitions with the fixed
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noise strength Q. The equation of dynamical variable v can be written as

d

dt
v =

1

ε
(F (v)− u+ I) . (18)

To induce a transition across branches around the fixed points, the random perturbation of δv
should be sufficiently large to approach the boundary [4]. Consider a small perturbation δv
around the fixed point. Since

δv ∝ 1

ε
δudt, (19)

the variance of Var [δv] is

Var[δv] =
1

ε2
Var[δu]dt2 ∝ Q

ε2
dt2 . (20)

If we increase ε while fixing noise strength Q, we reduce the variability of v around the fixed
point, which reduces the transition rate and the activity eventually is trapped to the single fixed
point for very long time. We performed simulations and confirmed that the transition rate
decreases with increasing ε for fixed Q (Supplementary Fig. 12). Increasing Q will increase
the transition rate.

Noise in the firing rate versus adaptation variable. In our dynamical system model, the
noise term is introduced in the adaptation variable u. If we remove the noise term in the equation
of adaptation variable, and only add noise term in the equation of firing-rate variable, On-Off
dynamics can still be generated with suitable noise strength. Simulations confirm that bistable
dynamics are preserved when noise term is added only to the equation of firing-rate variable
(Supplementary Fig. 13).

2.2.4 Analytical approximation of the dynamical system by a binary switching process

In the bistable regime and for low noise intensity, the dynamical-system units in the model
Eq. (14) can be analytically reduced to binary switching units. The derivation is based on the
timescale separation between the fast rate variable v and the slow adaptation variable u [2]. In
the limit ε → 0, the equation for the rate variable v in Eqs. (14) is reduced to a static nullcline
equation

F (v)− u+ h = 0 , (21)

where h = W∇2v + I . This piece-wise linear nullcline has an inverted N shape, with the Off
and On fixed points located on its left and right branches, respectively. Due to the timescale
separation, the Off and On phases can be reduced to dynamics along the left and right branches,
respectively, with instantaneous transitions between the branches. On the left branch, v has
lower activity and it corresponds to the Off phase Si = 0. On the right branch, v has higher
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activity and it corresponds to the On phase Si = 1. To implement the transitions between the
branches, we introduce two absorbing boundaries at the left (v− = −1/2) and right (v+ = 1/2)
branches of the nullcline, respectively. The corresponding values of u are

u+ =
1

2
+ h , u− = −1

2
+ h . (22)

Upon reaching an absorbing boundary, the dynamics are reset to the opposite branch at the
initial reset point.

Substituting the static equation Eq. (21) into the equation for the adaptation variable u in
Eqs. (14), we get two equations for the dynamics along each of the two branches:

u̇ = g(∓1− u+ h)− u+ f +
√

2Qξ . (23)

Here ∓ corresponds to the equations for the left and right branch, respectively. This system
Eq. (23) is equivalent to two one-dimensional Langevin equations with two new variables [2] :

x = u− g(h− 1) + f

1 + g
, y = −u+

g(h+ 1) + f

1 + g
. (24)

The variables x and y describe the dynamics on the left and right branch, respectively. Both x
and y are equal to zero at the On and Off fixed points of the deterministic equations Eqs. (14).
Further, we define a rescaled time and noise intensity:

t̃ = (1 + g)t , D = Q/(1 + g) . (25)

With this notation, equations Eq. (23) transform into two Langevin equations:

ẋ = −x+
√

2Dξ ,

ẏ = −y +
√

2Dξ . (26)

The absorbing boundaries (x− and y−) and reset points (x+ and y+) for these two one-dimensional
Langevin equations are given by

x− = −1

2
+ h− g(h− 1) + f

1 + g
, x+ =

1

2
+ h− g(h− 1) + f

1 + g
,

y− = −1

2
− h+

g(h+ 1) + f

1 + g
, y+ =

1

2
− h+

g(h+ 1) + f

1 + g
. (27)

This reduced system operates as a two-state switching process, where the left and right
branches correspond to the Off and On phases, respectively. The transition rates between the
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branches are defined by the inverse mean first passage times. The mean first passage time from
the left branch to the right branch defines the Off-to-On transition rate α1 = 1/τoff [2]:

τoff =
1

(1 + g)
〈Tl〉 =

1

(1 + g)r0

∫ ∞
x−

P 0
x (x) =

√
π

1 + g

∫ x+/
√

2D

x−/
√

2D

dzez
2

erfc(z) , (28)

The mean first passage time from the right branch to the left branch defines the On-to-Off
transition rate α2 = 1/τon [2]:

τon =
1

(1 + g)
〈Tr〉 =

1

(1 + g)r0

∫ ∞
y−

P 0
y (y) =

√
π

1 + g

∫ y+/
√

2D

y−/
√

2D

dzez
2

erfc(z) . (29)

The mean first passage times τon and τoff present the average durations of the Off and On
episodes, respectively.

To find an approximate analytical expression for the mean first passage time, we use the fact
that the following integral can be approximated by∫ (1/2+x)/

√
2D

(−1/2+x)/
√

2D

dzez
2

erfc(z) ≈ a+ b exp (−cx) , (30)

where a, b and c are functions ofD. We consider several noise intensitiesD = 4, 1, 0.4, 0.1, 0.04/1.55,
and for each D perform the nonlinear fitting to find the best fit parameters:

D = 4 : a = 0.13203 , b = 0.22504 , c = 0.52392 , R2 = 0.99998 ,

D = 1 : a = 0.21005 , b = 0.52762 , c = 1.14031 , R2 = 0.99998 ,

D = 0.4 : a = 0.31055 , b = 0.93641 , c = 1.79150 , R2 = 0.99986 ,

D = 0.1 : a = 0.58997 , b = 3.11843 , c = 4.16241 , R2 = 0.99810 ,

D = 0.04 : a = 1.12850 , b = 15.7413 , c = 10.6911 , R2 = 0.99660 ,

D = 0.04/1.55 : a = 2.33575 , b = 64.5058 , c = 18.8357 , R2 = 0.99877.

Using the fitting function, we obtain∫ x+/
√

2D

x−/
√

2D

dzez
2

erfc(z) = a+ b exp

(
−cx− + x+

2

)
, (31)

∫ y+/
√

2D

y−/
√

2D

dzez
2

erfc(z) = a+ b exp

(
−cy− + y+

2

)
. (32)

Substituting the absorbing and reset points x±, y± Eq. (27) into the fitting functions in Eq. (31)
and Eq. (32), we find the mean first passage time τoff:

τoff ≈
√
π

1 + g

[
a+ b exp

(
−c[ 1

1 + g
h− f − g

1 + g
]

)]
=

√
π

1 + g

[
a+ b1 exp

(
− c

1 + g
h

)]
, (33)
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where the constant b1 is defined as

b1 = b exp

(
c
f − g
1 + g

)
. (34)

Similarly, the mean first passage time τon is:

τon ≈
√
π

1 + g

[
a+ b exp

(
−c[− 1

1 + g
h+

f + g

1 + g
]

)]
=

√
π

1 + g

[
a+ b2 exp

(
c

1 + g
h

)]
, (35)

where b2 is defined as

b2 = b exp

(
−cf + g

1 + g

)
. (36)

2.2.5 Analytical reduction of the dynamical system model to a binary-unit network

Since in the bistable regime, each unit in the dynamical-system model can be approximated as
a binary unit Si = {0, 1}, we approximated the spatio-temporal dynamical system Eq. (14) by
a network of binary units. We derived analytical expressions for parameters of the binary-unit
network using parameters in the corresponding dynamical system model.

The reduced model consists of N binary units Si (i = 1, ..., N ), where Si = 1 and Si = 0

correspond to the On and Off phases, respectively. The dynamics of the binary-unit model is
described by the transition rates ω(Si = 0) = ω(0 → 1) and ω(Si = 1) = ω(1 → 0). The
transition rate w(Si) has the following properties:

1. w(Si) only depends on Si and its nearest neighbors, denoted as Si±1. According to the
corresponding dynamical system model, the index i represents indices in two-dimensions
i = (x, y), and the interaction with the nearest neighbors has a discrete Laplacian form:

Si±1 = Sx+1,y − Sx,y + Sx−1,y − Sx,y + Sx,y+1 − Sx,y + Sx,y−1 − Sx,y . (37)

2. When unit i is in the On phase Si = 1, its transition rate from 1 to 0 decreases if the
nearest neighbor units are also in the On phase, which prolongs the On phase on average.
The transition rate from 1 to 0 increases if the nearest neighbor units are in the Off phase.

3. When unit i is in the Off phase Si = 0, its transition rate from 0 to 1 increases if the
nearest neighbor units are in the On phase. The transition rate from 0 to 1 decreases if the
nearest neighbor units are in the Off phase.
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The simplest form of a transition rate with these properties is:

w(Si = 0) = α1 + β1Si±1, (38)

w(Si = 1) = α2 − β2Si±1, (39)

where α1, α2, β1, β2 are positive numbers, and Si±1 represents the nearest neighbour units of Si.
Using the property that Si = 0, 1, a universal form of the transition rate can be written as

w(Si) = w(Si = 0) + [w(Si = 1)− w(Si = 0)]Si . (40)

Explicitly, we have

w(Si) = α1 + β1Si±1 + [α2 − β2Si±1 − α1 − β1Si±1]Si

= α1 + (α2 − α1)Si + β1Si±1 − (β1 + β2)SiSi±1 . (41)

The transition rates ω(Si = 0) and ω(Si = 1) are the inverse of the mean On and Off episode
durations, respectively. Therefore, we use Eq. (33) and Eq. (35) to derive expressions for
ω(Si = 0) and ω(Si = 1) using parameters of the dynamical system model, and calculate α1,
α2, β1, β2.

The mean episode durations Eq. (33) and Eq. (35) are functions of the intercept h, which
contains the contributions from local recurrent interactions and the external input. We approx-
imate the local interaction term W∇2v as a function of binary variables Si±1 ∈ {0, 1}. In the
dynamical system model operating in the bistable regime, the average activity of a unit i can be
approximated as von and voff during the On and Off phase, respectively. Here von and voff are the
values of v at the two fixed points. Therefore, the activity of an arbitrary unit i can be estimated
as

v(i) ≈ (von − voff)Si + voff . (42)

The interaction term W∇2v in the dynamical system Eq. (14) transforms into

∇2v →
∑
i±1

v(i± 1) ≈ (von − voff)Si±1 , (43)

where Si±1 is the discrete Laplacian Eq. (37).
The values of von and voff are given by the solution of the deterministic equations:{

∓1− v − u+ h = 0 ,
gv − u+ f = 0 ,

(44)

von =
1 + h− f

1 + g
, voff =

−1 + h− f
1 + g

. (45)
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The intercept h can be estimated as

h = W∇2v + I ≈ W [(von − voff)Si±1] + I . (46)

From Eq. (45), we find (von − voff) = 2/(1 + g), so that h can be written as

h ≈ W

[
2

1 + g
Si±1

]
+ I . (47)

Substituting this expression for h into Eq. (33) and Eq. (35), we obtain τoff and τon as functions
of I and Si±1. For convenience, we define the positive constants

A1 =

√
π

1 + g
a ,

B1 =

√
π

1 + g
b1 ,

B2 =

√
π

1 + g
b2 ,

D1 =
c

1 + g
· 2W

1 + g
,

C1 =
c

1 + g
. (48)

The explicit analytical expression for the transition rate w(Si = 0) is then given by

w(Si = 0) =
1

τoff
=

1

A1 +B1 exp[−D1Si±1 − C1I]
. (49)

This equation shows that mean Off episode duration exponentially decreases with the ex-
ternal input current τoff ∼ exp[−C1I], which is confirmed by numerical simulations. The term
exp[−D1(S±1)] captures in the effect of local recurrent interactions on the transition rate. The
magnitude of this term is controlled by D1, which is proportional to the interaction strength
W . Assuming the interaction strength is relatively weak, we perform the Taylor expansion with
respect to D1 and retain the leading interaction term D1Si±1. In this first-order approximation,
the transition rate w(Si = 0) is expressed as

w(Si = 0) ≈ 1

A1 +B1 exp[−C1I][1−D1Si±1]

≈ 1

A1 +B1 exp[−C1I]
+

B1D1 exp[−C1I]

(A1 +B1 exp[−C1I])2
Si±1.

From this equation, we find the parameters α1 and β1 of the Off-to-On transition rate Eq. (38):

α1 =
1

A1 +B1 exp[−C1I]
, (50)

14



β1 =
B1D1 exp[−C1I]

(A1 +B1 exp[−C1I])2
. (51)

The values of α1 and β1 depend on the input current I and other parameters of the dynamical
system model. The baseline rate α1 is the dominant term in the expression for the Off-to-On
transition rate. In the limit of vanishing interactions τoff → 1/α1. The rate α1 is a monotonically
increasing function of input I . It has the minimum value 1/(A1 + B1) when I = 0, and it
approaches 1/A1 when I → ∞. The coupling strength β1 characterizes the leading term of
interactions between neighbouring units Si±1. It is proportional to D1, hence to the interaction
strength parameterW . Its magnitude also depends on the input I , and it is a decreasing function
of I when

I > − ln(A1/B1)

C1

= − ln(a/b1)

C1

= −1 + g

c

[
ln
(a
b

)
− cf − g

1 + g

]
. (52)

Similarly, the analytic expression for the On-to-Off transition rate w(Si = 1) is

w(Si = 1) =
1

τon
=

1

A1 +B2 exp[D1Si±1 + C1I]
. (53)

This equation shows that the mean On episode duration exponentially increases with the exter-
nal input current τon ∼ exp[C1(Istim + Iattn)], which agrees with simulations. Applying Taylor
expansion and keeping only the leading term of S±1, we find

w(Si = 1) ≈ 1

A1 +B2 exp[C1I][1 +D1Si±1]

≈ 1

A1 +B2 exp[C1I]
− B2D1 exp[−C1I]

(A1 exp[−C1I] +B2)2
Si±1.

From this equation, we find the parameters α2 and β2 of the On-to-Off transition rate Eq. (39):

α2 =
1

A1 +B2 exp[C1I]
, (54)

β2 =
B2D1 exp[−C1I]

(A1 exp[−C1I] +B2)2
, (55)

where α2 and β2 are positive. Comparing the expressions for w(Si = 0) Eq. (38) and w(Si = 1)

Eq. (39), we see that instead of a “+” sign in front of β1, we have a “−” sign in front of β2. The
“−” sign means that the recurrent interactions favor nearby units to stay in the same phases.
The transition rates reduce when two nearby units are in the same phase, whereas the transition
rates increase when nearby units are in different phases.

The values of α2, β2 depend on the input current I and other parameters of the dynamical
system model. The baseline rate α2 is the dominant term in the On-to-Off transition rate. In the
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limit of vanishing interactions, τon → 1/α2. The rate α2 is a monotonically decreasing function
of I . It has the maximum value 1/(A1 + B2) when I = 0, and it decreases exponentially and
approaches zero when I →∞:

α2 →
1

B2

exp[−C1(I)]. (56)

Thus, the average On episode duration increases with increasing external current and approaches
infinity in the large current limit. As a result, the ratio α2/α1, or approximately τoff/τon is a
monotonically decreasing function of I . Larger positive external input drives the units to stay
in the On phase longer.

The coupling strength β2 characterizes the leading term of interactions between neighbour-
ing units Si±1. It is proportional to D1, hence to the interaction strength W , and its magnitude
also depends on input I . It is a decreasing function of I when

I > − ln(B2/A1)

C1

= − ln(b2/a)

C1

= −1 + g

c

[
ln

(
b

a

)
− cf + g

1 + g

]
. (57)

In the large I limit, β1 decreases exponentially with increasing I:

β2 →
D1

B2

exp[−C1I]. (58)

Thus, we analytical reduced the dynamical system model of spatiotemporal On-Off dynam-
ics to a binary-unit network, where the rate parameters α1, α2, β1, and β2 are expressed through
the parameters of the dynamical system model. In the dynamical system model, we modeled
attention effect by changing the external input current I , which corresponds to changes of the
rate parameters α1, α2, β1 and β2 in the reduced binary-unit model.

2.2.6 Estimation of the effective interaction strength between columns

We examined how the effective strength of recurrent interactions between columns depends
on the attentional input Iatt (Fig. 5e). Analytical calculations using the reduced binary-unit
model predict that noise correlations decrease with the lateral distance d exponentially rsc =

A exp(−d/L), and the correlation length L depends on the coupling strength β as L = [β/(α1+

α2)]1/2. The dynamical system model allows us to determine how β should change with the
attentional input Iatt.

In simulations of the dynamical-system network, we can estimate the effective parameters
α1, α2 and β. For each Iatt, we estimated α1 and α2 as the inverse of the mean Off and On
episode durations, respectively. We estimated L from simulations by fitting the dependence of
noise correlations on the lateral distance with the exponential decay function. The effective
coupling strength was then calculated as β = L2(α1 + α2).
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We can also compute β as a function of Iatt using the analytical approximation. First, we
estimated α1 and α2 as the inverse of the mean Off and On episode durations, respectively.
In this way, we can calibrate the unit of time-step in the dynamical system model. From the
equations for α1 and β1 (Eqs. 50, 51), we have

β1(Iatt)

α1(Iatt)
=

B1D1 exp[−C1Iatt]

A1 +B1 exp[−C1Iatt]
,

β1(Iatt = 0)

α1(Iatt = 0)
=

B1D1

A1 +B1

. (59)

For very small noise intensity D ∼ 0.0075, the fitting formula for the mean first passage time
(Eq. 30) yields a � b and c ∼ 60. For the given parameters W = 0.03, g = 0.55 in the
dynamical system, A1 � B1, so we can neglect A1 in the denominator of the above equation

β1(Iatt = 0)

α1(Iatt = 0)
≈ B1D1

B1

= D1 =
2Wc

(1 + g)2
, (60)

where D1 is given by Eq. (48). Estimating c by fitting the mean first passage time Eq. 30 is
numerically unstable in the region D � 1. Therefore, we estimate c for a specific input Iatt = 0

using the equation β1 = L2(α1 + α2) ≈ L2(2α1), where we estimate the correlation lengths L
by fitting the exponential decay of noise correlations in the simulations. Then we compute the
input dependence of β1 analytically using Eq. 51:

β1(Iatt)

β1(I0)
≈ B1D1 exp[−C1Iatt]

B1D1 exp[−C1I0]
= exp [−C1(Iatt − I0)] = exp

[
− c

1 + g
(Iatt − I0)

]
. (61)

Here we used the approximationA1 +B1 exp[−C1Iatt] ≈ A1 in the denominator of Eq. 51 when
C1 is large and Iatt is nonzero. C1 is linked to c via Eq. (48). Fig. 5e shows the comparison of
β1 estimated from simulations and the analytical approximations (β1 = β).

For small values of Iatt, the sum α1 + α2 is approximately constant. Thus, we can estimate
the input dependence of the correlation length using L =

√
β1/(α1 + α2):

L(Iatt)

L(I0)
≈

√
β1(Iatt)

β1(I0)
= exp

[
− c

2(1 + g)
(Iatt − I0)

]
. (62)

Supplementary Fig. 11b shows the comparison of the correlation length estimated from simu-
lations and the analytical approximation Eq. 62.

2.3 Analytical calculation of noise correlations in the binary-unit network

We used the reduced binary-unit network model to analytical derive the dependence of noise
correlations on the lateral distance and attention. In this reduced model, each unit is described
by a binary variable Si = {0, 1}, (i = 1, ..., N). At time t, the probability of the network to be
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in a certain configuration {S} = {S1, S2, ..., SN} is denoted as P ({S}, t). The time evolution
of P ({S}, t) is described by the master equation:

d

dt
P ({S}, t) = −P ({S}, t)

∑
i

w(Si) +
∑
i

P ({S}i∗, t)w(1− Si). (63)

Here {S}i∗ = {S1, S2, ..., 1− Si, ..., SN}, and w(Si) are the transition rates.

2.3.1 Moment expansion

Using the master equation, we can write the equations for time evolution of arbitrary moments
of Si. For example, the average activity of units Si is defined as

〈Si〉(t) =
∑
{S}

P ({S}, t)Si , (64)

where the summation is over all configurations {S} at time t. Its time evolution is given by

d

dt
〈Si〉(t) =

d

dt

∑
{S}

P ({S}, t)Si

 =
∑
{S}

(
d

dt
P ({S}, t)

)
Si . (65)

Substituting the master equation, we find

d

dt
〈Si〉(t) =

∑
{S}

P ({S}, t)[w(Si)(1− 2Si)] . (66)

Similarly, the rate of change of average activity of a pair of units is

d

dt
〈SiSj〉(t) =

∑
{S}

P ({S}, t)[w(Si)(1− 2Si)Sj + w(Sj)(1− 2Sj)Si] . (67)

Substituting the transition rates in Eq. (41) and summing over all configurations, we get the
coupled equations for moments [5]:

d

dt
〈Si〉(t) = α1 − (α1 + α2)〈Si〉+ β1〈Si±1〉+ (β2 − β1)〈SiSi±1〉 , (68)

and

d

dt
〈SiSj〉(t) = α1(〈Si〉+ 〈Sj〉)− 2(α1 + α2)〈SiSj〉+ β1(〈Si±1Sj〉+ 〈Sj±1Si〉)

+ (β2 − β1)(〈SiSi±1Sj〉+ 〈SjSj±1Si〉) , (i 6= j) . (69)
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Here we used the property of binary variables Si = S2
i to simplify the equations. The system of

equations Eq. (68) and Eq. (69) is not closed since it involve moments of cubic order(〈SSS〉),
therefore, it cannot be solved in general. However, since the fluctuation of activity δS � 1,
the higher order moments are suppressed. Therefore, as an approximation, we neglect the cubic
and higher moments to simplify the equations:

d

dt
〈Si〉(t) = α1 − (α1 + α2)〈Si〉+ β1〈Si±1〉 ,

d

dt
〈SiSj〉(t) = α1(〈Si〉+ 〈Sj〉)− 2(α1 + α2)〈SiSj〉+ β1(〈Si±1Sj〉+ 〈Sj±1Si〉) . (70)

Since we are interested in the population average of the first moment 〈S〉 = (
∑

i〈Si〉)/N ,
we sum over the index i and take the average of the first equation in Eqs. (70):

d

dt
〈S〉(t) = α1 − (α1 + α2)〈S〉 . (71)

The solution of this equation is given by

〈S〉(t) = [S(0)− S(∞)] exp(−λ0t) + S(∞) , (72)

where λ0 is
λ0 = α1 + α2 , (73)

and the steady state at infinite time is

〈S〉(t→∞) = S(∞) =
α1

α1 + α2

. (74)

2.3.2 Time-delayed correlation functions

To calculate noise correlation rsc, we need explicit expressions for time-delayed correlation
functions. The time evolution of the time-delayed quadratic moment is defined as [5]

d

dτ
〈Si(t)Sj(t+ τ)〉 =

∑
{S}

P ({S}, t)Si
d

dτ

∑
{σ}

P ({σ}, t+ τ |{S}, t)σj

 . (75)

Here P ({σ}, t+ τ |{S}, t) is the conditional probability, which is the probability of finding the
system in the configuration {σ} at time t+ τ , given that it was in the configuration {S} at time
t. Since the conditional probability obeys the same master equation as in Eq. (63), we have

d

dτ
〈Si(t)Sj(t+ τ)〉 = 〈Si(t)(1− 2Sj(t+ τ))w(Sj(t+ τ))〉

= α1〈Si(t)〉 − (α1 + α2)〈Si(t)Sj(t+ τ)〉+ β1〈Si(t)Sj±1(t+ τ) .(76)
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In our analysis, we are interested in the equilibrium value of the time-delayed quadratic moment,
which amounts to taking the limit t→∞while keeping τ finite. We define limt→∞〈Si(t)Sj(t+
τ)〉 = Gij(τ) and obtain

d

dτ
Gij(τ) = α1〈Si(∞)〉 − (α1 + α2)Gij(τ) + β1Gij±1(τ) . (77)

In the continuum limit, Eq. (77) becomes

d

dτ
Gij(τ) = α1〈Si(∞)〉 − (α1 + α2)Gij(τ) + β1[(∆d)2∇2Gij(τ)] . (78)

To evaluate the distance-dependence of noise correlations, we need to compute the averaged
quantity G(d, τ) = 1/Nd

∑
|i−j|=dGij(τ), where Nd is the number of unit pairs with the dis-

tance d. This quantity only depends on the absolute values |i−j| = d and |τ |, so it is symmetric
under the exchange of indices i and j. For the equal-time quadratic moment 〈Si(t)Sj(t)〉, this
averaging is straightforward. However, for the time-delayed quadratic moment 〈Si(t)Sj(t+τ)〉,
the indices i and j are not symmetric, which needs to be taken into account in averaging. First,
on the left-hand side of Eq. (78), the operator d/dτ only acts on the variable with the index j,
Sj(t + τ). Averaging both sides of Eq. (78) results in G(d, τ) that is symmetric in i ↔ j, so
that the variable with index i also has the same τ dependence as that with j. Since the operator
d/dτ in Eq. (78) is asymmetric and only acts on j, when it acts on G(d, τ), it only contains
half of the action of time derivative. Therefore, we need to add a factor 1/2 in the replacement
d
dτ
Gij(τ)→ 1

2
d
dτ
G(d, τ). Second, on the right-hand side of Eq. (78), we use the continuum limit

approximation Gij±1(τ) ≈ (∆d)2∇2Gij(τ). In this expression, the term∇2Gij(τ) accounts for
changing the index j, namely, ∆d ∝ |j ± 1 − i|. Again, since after averaging G(d, τ) is sym-
metric in i and j, the operator ∇2G(d, τ) contains terms induced by changing indices of both i
and j, therefore we need to include a factor 1/2 in the replacement ∇2Gij(τ) → 1

2
∇2G(d, τ).

Taking these factors into account, we obtain the equation for time evolution of the averaged
time-delayed quadratic moment G(d, τ):

1

2

d

dτ
G(d, τ) = α1S(∞)− (α1 + α2)G(d, τ) +

1

2
β1(∆d)2∇2G(d, τ) . (79)

The physical solution of this equation is given by

G(d, τ) = [S(∞)]2 + [1− S(∞)]S(∞) exp

(
− d
L
− |τ |
τc

)
, d = |i− j| , (80)

where the correlation length L is

L =

√
β1

α1 + α2

, (81)
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and the time constant τc is given by

τc =
1

λ0

=
1

α1 + α2

. (82)

In this derivation of the correlation function and correlation length, we used the continuum
limit approximation. To confirm that the continuum limit is valid, we compared the analytical
prediction of the correlation length with the simulation results (Supplementary Fig. 11a). In
simulations, we computed the average noise correlations at each distance and fitted them with
an exponential decay function a exp(−bx) (where x is the distance between a pair of units).
The correlation length is then estimated as 1/b. The simulation results are overall consistent
with the analytical prediction, which validates the continuum limit approximation.

In the limit d→ 0, G(d, τ) reduces to the auto-correlation function:

G(0, τ) = [S(∞)]2 + [1− S(∞)]S(∞) exp

(
−|τ |
τc

)
. (83)

In the limit of no interactions β1 → 0, G(0, τ) reduces to

G(0, τ |β1 → 0) =

(
α1

α1 + α2

)2

+
α1α2

(α1 + α2)2
exp (−(α1 + α2)|τ |) . (84)

If we use the notation
α1 =

1

τoff
, α2 =

1

τon
, (β1 = 0) , (85)

we obtain the following expression for the auto-correlation:

G(0, τ |β1 → 0) =

(
τon

τoff + τon

)2

+
τonτoff

(τon + τoff)2
exp

(
−τon + τoff

τonτoff
|τ |
)
, (86)

which correctly matches the steady-state value of the time-delayed quadratic moment in single-
column On-Off dynamics without lateral interactions.

2.3.3 Noise correlations

We derived analytical expressions for noise correlations rsc in the binary-unit network model.
We label neurons with indices (x, i), where x is the index of 2-dimensional lateral position along
cortical surface and i indexes neurons within the same column (i.e. along laminar direction
perpendicular to cortical surface). All neurons (x, i)(i = 1, 2...) with the shared lateral index
x switch between the On and Off phases via a Markov process, which is described by a single
binary variable S(x, t) = {0, 1}, where S(x, t) = 1 and S(x, t) = 0 denote the On and Off
phases, respectively. In particular, S(x, t) is independent of index i. In other words, the On-
Off dynamics of all neurons are synchronous within a cortical column with index x. The mean
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firing rate during the On and Off phases are ron(x, i) and roff(x, i), respectively. The mean firing
rates also depend on the neuron index i within a column.

With this notation, the mean firing rate as a function of time t is

λ(x, i; t) = roff(x, i) + S(x, t)[ron(x, i)− roff(x, i)] . (87)

The time-integral of this firing rate over the measurement time-window T is

Λ(x, i) =

∫ t+T

t

λ(x, i; t′)dt′ = roff(x, i)T +R(x)∆r(x, i) . (88)

Here ∆r(x, i) is defined as

∆r(x, i) = ron(x, i)− roff(x, i) , (89)

and the normalized rate R(x) is

R(x) =

∫ t+T

t

S(x, t′)dt′ . (90)

We assume that neurons emit spikes as inhomogeneous Poisson processes, so the number
of spike N(x, i) produced on each trial obeys the Poisson distribution:

P (N(x, i) = n) =
(Λ(x, i))n

n!
e−Λ(x,i) . (91)

The spike count N(x, i) depends on the binary variable S(x, t) via the normalized rate R(x, t),
which fluctuates from trial to trial. To calculate the spike-count correlations, we need to calcu-
late moments of the spike-count averaged over trials. For sufficient number of trials, the trial-
average includes the average of binary variable S(x, t) according to the probability defined in
the master equation, P ({S}, t). Here we use the symbol 〈 〉 to represent this average.

The mean value of spike-count N(x, i) is given by the double average over trials and the
Poisson distribution:

E[N(x, i)] = 〈
∞∑
n=1

n
(Λ(x, i))n

n!
e−Λ(x,i)〉 = 〈Λ(x, i)〉 = roff(x, i)T + E[R(x)]∆r(x, i) . (92)

Similarly, the variance of the spike-count N(x, i) is given by

Var[N(x, i)] = E[N(x, i)2]− (E[N(x, i)])2 = 〈
∞∑
n=1

n2 (Λ(x, i))n

n!
e−Λ(x,i)〉 − (〈Λ(x, i)〉)2

= 〈[Λ(x, i)]2 + Λ(x, i)〉 − (〈Λ(x, i)〉)2

= (∆r(x, i))2Var[R(x)] + roff(x, i)T + E[R(x)]∆r(x, i) . (93)
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The covariance of spike-counts of a pair of neurons Cov[N(x, i), N(y, j)] is

Cov[N(x, i), N(y, j)] = E[N(x, i)N(y, j)]− E[N(x, i)]E[N(y, j)]

= 〈
∞∑
n=1

n
(Λ(x, i))n

n!
e−Λ(x,i)

∞∑
m=1

m
(Λ(y, j))m

m!
e−Λ(y,j)〉 − 〈Λ(x, i)〉〈Λ(y, j)〉

= 〈Λ(x, i)Λ(y, j)〉 − 〈Λ(x, i)〉〈Λ(y, j)〉
= ∆r(x, i)∆r(y, j)Cov[R(x), R(y)] . (94)

In this equation, we notice that if x = y, we obtain

Cov[N(x, i), N(x, j)] = ∆r(x, i)∆r(x, j)Var[R(x)] , (95)

which is the same as Eq. (9) we obtained earlier for a single column.
Using these expressions for Var[N(x, i)] and Cov[N(x, i), N(y, j)], we can calculate the

noise correlation rsc. For a pair of neurons with indices (x, i) and (y, j), the noise correlation is

rsc =
Cov[N(x, i), N(y, j)]√
Var[N(x, i)]Var[N(y, j)]

=
∆r(x, i)∆r(y, j)Cov[R(x), R(y)]√

Var[N(x, i)]Var[N(y, j)]
. (96)

In the special case where two neurons are in the same column, namely x = y, this expression
reduces to

rsc =
∆r(x, i)∆r(x, j)Var[R(x)]√

Var[N(x, i)]Var[N(x, j)]
, (97)

which is the same as the expression for noise correlations within a single column derived in
section 2.1.1.

Noise correlations depend on two sets of parameters. The first set is directly extracted
from the data: time window T and mean firing rates during the On and Off phases roff(x, i),
ron(x, i). We estimate these parameters from HMM fitting of local columnar On-Off dynamics.
The second set contains statistical quantities of On-Off dynamics, namely, E[R(x)], Var[R(x)]

and Cov[R(x), R(y)]. These statistical quantities are calculated based on the model of On-Off
dynamics and expressed as functions of the model parameters, whcih are also estimated by
HMM. In the calculation, we used the steady-state solution of the model (t =∞).

The mean of the normalized rate E[R(x)] is a time integral of the mean of the binary variable
S(x, t), which is

E[R(x)] =

∫ t+T

t

〈S(x, t′)〉dt′ =
∫ t+T

t

〈S(x, t′ →∞)〉dt′ = S(∞)T =
α1

α1 + α2

T . (98)

In the limit of no interactions between nearby units β1 → 0, we obtain

E[R(x)] =
α1

α1 + α2

T =
τon

τon + τoff
T ,

(
α1 =

1

τoff
, α2 =

1

τon

)
, (99)
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which is the same as Eq. (10) derived earlier for single columns.
The covariance of normalized rates Cov[R(x),R(y)] is

Cov[R(x), R(y)] = 〈
∫ T

0

S(x, t1)dt1

∫ T

0

S(y, t2)dt2〉 − E[R(x)] · E[R(y)] , (100)

where, for convenience, we shifted the limits of time integral from [t, t + T ] to [0, T ]. The
first term in the covariance involves a double integral of the quadratic moment of the binary
variable, which we convert to a double integral of the averaged time-delayed quadratic moment
G(|x− y|, τ):

〈
∫ T

0

S(x, t1)dt1

∫ T

0

S(y, t2)dt2〉 =

∫ T

0

dt1

∫ T

0

dt2〈S(x, t1)S(y, t2)〉

= 2

∫ T

0

dt1

∫ t1

0

dt2〈S(x, t1)S(y, t2)〉

= 2

∫ T

0

dt1

∫ t1

0

dτ〈S(x, t1)S(y, t1 − τ)〉

= 2

∫ T

0

dt1

∫ t1

0

dτG(|x− y|, τ) . (101)

On the second line of Eq. (101), we used the property that the integrand 〈S(x, t1)S(y, t2)〉 is
symmetric about the line t1 = t2, so the double integral

∫ T
0
dt1
∫ T

0
dt2 is just twice the integral∫ T

0
dt1
∫ t1

0
dt2, resulting in the factor of 2. On the fourth line of Eq. (101), we used the fact that

in the steady-state, 〈S(x, t)S(y, t + τ)〉 only depends on τ and |x − y|, and G(|x − y|, τ) is
an even function of τ . Here the trial-average 〈S(x, t)S(y, t + τ)〉 also includes the average of
pairs of neurons with the same spatial separation |x − y|, so we have 〈S(x, t)S(y, t − τ)〉 →
G(|x− y|, τ).

With these transformations, we formally express the covariance as

Cov[R(x), R(y)] = 2

[∫ T

0

dt1

∫ t1

0

G(|x− y|, τ)dτ

]
− [S(∞)]2T 2 , (102)

and the variance as

Var[R(x)] = 2

[∫ T

0

dt1

∫ t1

0

G(0, τ)dτ

]
− [S(∞)]2T 2 . (103)

These expressions for Cov[R(x), R(y)] and Var[R(x)] are general and do not depend on a
specific model of On-Off dynamics. Therefore, we can use Eq. (98), Eq. (102) and Eq. (103)
to obtain an explicit expression of noise correlations for binary-unit network models with any
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types of interactions, once we calculate the time-delayed correlation G(|x − y|, τ) and the
steady-state mean activity S(∞).

We apply Eq. (102) and Eq. (103) to our binary-unit network model. Performing the double
time integrals, we get

Cov[R(x), R(y)] = 2

∫ T

0

dt1

∫ t1

0

[
[S(∞)]2 + [1− S(∞)]S(∞) exp(−|x− y|

L
− |τ |
τc

)

]
dτ

− [S(∞)]2T 2

= 2[1− S(∞)]S(∞) exp(−|x− y|
L

)τc

[
T − τc

(
1− exp

(
−T
τc

))]
,

(104)

and

Var[R(x)] = 2[1− S(∞)]S(∞)τc

[
T − τc

(
1− exp

(
−T
τc

))]
. (105)

Substituting the explicit expressions in terms of the model parameters α1, α2 and β1, we have

Cov[R(x), R(y)] =

2α1α2

(α1 + α2)3
exp

(
−|x− y|

L

)[
T − 1

α1 + α2

(1− exp (−(α1 + α2)T ))

]
, (106)

and

Var[R(x)] =
2α1α2

(α1 + α2)3

[
T − 1

α1 + α2

(1− exp (−(α1 + α2)T ))

]
. (107)

In summary, we derived a general analytical expression Eq. (96) for the noise correlation
rsc based on spatiotemporal On-Off dynamics. This equation describes noise correlations for
pairs of neurons within the same column and in different columns. When two neurons are in
different columns with lateral separation |x − y|, we find that the noise correlation is propor-
tional to Cov[R(x), R(y)], which decays exponentially as a function of lateral distance, with
the correlation length L:

rsc ∝ Cov[R(x), R(y)] = A(α1, α2) exp

(
−|x− y|

L

)
. (108)

HereA(α1, α2) describes noise correlations of two neurons within a single column, Eq. (6). The
covariance Cov[R(x), R(y)] quantifies the coherence of On-Off dynamics for pairs of neurons
located in different columns x and y. The covariance vanishes when two neurons are far away
from each other |x − y| � L. The exponential decay factor exp(−|x − y|/L) agrees with
experimental observations that the average noise correlations decrease with lateral separation.
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2.4 Comparison between binary-unit network and 2-D Ising model

In the binary-unit model, we describe the transitions of binary units using the formalism of
Glauber dynamics [6]. In statistical physics, Glauber dynamics are used to simulate the dynam-
ics of the Ising model, which describe the spin system not just at equilibrium but also during
transitional stages.

For Ising model, the binary units are usually defined as ±1. We use this convention for the
description of the Ising model and later link it to the 0, 1 states of our binary-unit model. For the
Ising model, the dynamics are described by the transition rates in the following form [6] (here
we generalized it to the 2-D Ising model):

w(Si = −1) =
1

2
α[1 +

1

2
γ(∆S)], (109)

w(Si = 1) =
1

2
α[1− 1

2
γ(∆S)], (110)

where
∆S = Sx+1,y + Sx−1,y + Sx,y+1 + Sx,y−1 . (111)

The detailed balance condition of thermodynamics [6] requires

w(Si = −1)

w(Si = 1)
=

p(Si = 1)

p(Si = −1)
=

exp(J/(kT )∆S)

exp(−J/(kT )∆S)
, (112)

where J is the interaction strength in the Hamiltonian of the 2-D Ising model. Therefore,

1 + 1
2
γ(∆S)

1− 1
2
γ(∆S)

=
1 + tanh [J/(kT )(∆S)]

1− tanh [J/(kT )(∆S)]
. (113)

∆S can take five possible values: 4, 2, 0, −2, −4. Accordingly, 1 + tanh [J/(kT )(∆S)] can
take five corresponding values: 1 + tanh[4J/(kT )], 1 + tanh[2J/(kT )], 1, 1− tanh[2J/(kT )],
and 1− tanh[4J/(kT )], respectively. If J/(kT )� 1, we can use the approximation

tanh[4J/(kT )] =
2 tanh[2J/(kT )]

1 + tanh2[2J/(kT )]
≈ 2 tanh[2J/(kT )] . (114)

Then for five possible values of ∆S, we find that 1 ± tanh [J/(kT )(∆S)] = 1 ± (1/2) ∗
(∆S) tanh(2J/(kT )). In this case, we have

γ = tanh

(
2J

kT

)
. (115)

In our binary-unit model, the transition rate is expressed in terms of 0, 1 units, and the
interaction term is Si± = ∆S − 4Sx,y (Eq. 37). We can transform the transition rates of the
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binary-unit model (Eqs. 38, 39) into the same form as in 2-D Ising model using the relation
∆SBU = (∆S + 4)/2 (“BU” refers to the binary 0, 1 units):

w(Si = 0) = α1 + β1S
BU
i± = α1 + β1(∆SBU − 4SBU

i ) = α1 + 2β1 + β1(∆S)/2 , (116)

w(Si = 1) = α2 − β2S
BU
i± = α2 − β2(∆SBU − 4SBU

i ) = α2 + 2β2 − β2(∆S)/2 . (117)

Comparing with the transition rates of 2-D Ising model, we find

α1 = α2 =
α(1− 2γ)

2
, β1 = β2 =

αγ

2
. (118)

So the Glauber dynamics of the 2-D Ising model approximately correspond to a specific set of
parameters α1,2 and β1,2, under the condition γ � 1. In general, the detailed balanced condition
is not satisfied in the binary-unit model, so the dynamics of the binary-unit model are different
from 2-D Ising model.

3 Supplementary Note 3: Spatial patterns of correlations in
alternative models of network dynamics

We analyzed the spatial patterns of neural correlations arising from different types of network
dynamics, which included a network model with local metastability (similar to our binary-unit
network), the network with chaotic instability [7], and the network with fluctuations around
a single stable fixed point induced by external noise [8]. We studied the spatial profile of
noise correlations and its dependence on inputs, which can characterize patterns of correlations
at different behavioral states, such as spontaneous activity or evoked activity during stimulus
onset and attention. The spatial patterns of noise correlations provide us a window to infer the
underlying dynamical mechanism.

3.1 General propriety of neural correlations

We consider a firing rate model of a group of units vi (i = 1....N ) with the dynamical equations
given by

d

dt
vi(t) = −vi + f(Wijvj + I) + ηi(t) . (119)

Here ηi(t) is a correlated external noisy input, which satisfies 〈ηk(t)ηj(t+τ)〉 = [Σ0]ij exp(−τ/τ0).
The activity of units is assumed to fluctuate around a fixed point:

v̄i = f(Wij v̄j + I) . (120)
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We define the fluctuation δvi = vi− v̄i and study the linearized dynamics around the fixed point

d

dt
δvi(t) = −δvi + [f ′(Wij v̄j + I)Wij]δvj + ηi(t)

= −δvi + [W eff
ij ]δvj + ηi(t) . (121)

Here we defined the effective interaction strength to be the product of the first-order derivative
f ′ and the connectivity Wij , i.e. W eff

ij = f ′(Wij v̄j + I)Wij , which is a function of the external
current I . In the matrix form, we have

˙δv = −(I−Weff)δv + η(t) . (122)

We can then derive the evolution equation of the time-delay correlation function:

d

dτ
〈δvi(t)δvj(t+ τ)〉 = −〈δvi(I−Weff)jkδvk〉+ 〈δvi(t)ηj(t+ τ)〉 . (123)

If we separate the autocorrelation 〈δvi(t)δvi(t + τ)〉 = A(τ) from covariance 〈δvi(t)δvj(t +

τ)〉 = C(τ), we obtain

d

dτ
C(τ) = −C(I−Weff)T +A(τ)(Weff)T + 〈δvi(t)ηj(t+ τ)〉 . (124)

This equation shows that the shared external noise generates the term 〈δvi(t)ηj(t+ τ)〉 and thus
provides the source of noise correlations in the model Eq. (119). In contrast, the network of
binary units has no shared external noise, and the dynamics of correlations based on the master
equation are:

d

dτ
C(τ) = −C(I−Weff)T +A(τ)(Weff)T . (125)

As an approximation, we assume that the response of the rate variable vi to noise is quasi-
static, so that 〈δvi(t)ηj(t+ τ)〉 can be estimated as

〈δvi(t)ηj(t+ τ)〉 = 〈[ d
dt

+ I−Weff]−1
ik ηk(t)ηj(t+ τ)〉

=

∫
dw[iw + I−Weff]−1

ik 〈η̃k(w) η̃j(−w)〉 exp(iwτ)

≈ [I−Weff]−1
ik 〈ηk(t)ηj(t+ τ)〉

≈
(
[I−Weff]−1Σ0

)
ij

exp(− τ
τ0

) . (126)

We can also derive the equal-time correlation:

〈δvi(t)ηj(t)〉 ≈
(
[I−Weff]−1Σ0

)
ij
. (127)
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〈ηi(t)δvj(t)〉 ≈
(
Σ0

(
[I−Weff]−1

)T
)
ij
. (128)

The time-evolution of equal-time correlation function 〈δvi(t)δvj(t)〉 is given by

d

dt
〈δvi(t)δvj(t)〉 = −〈δvi(I−Weff)jkδvk〉− 〈δvk(I−Weff)ikδvj〉+ 〈δviηj〉+ 〈ηiδvj〉 . (129)

In the matrix form, it can be written as

d

dt
C(t) = −C(I−Weff)T−(I−Weff)C+A(0)(Weff)T+WeffA(0)+〈δviηj〉+〈ηiδvj〉 , (130)

where for convenience we separated the variance 〈δvi(0)δvi(0)〉 = A(0) from the covariance
C. Substituting Eq. (127) and Eq. (128) into Eq. (130), we obtain

d

dt
C(t) ≈ −C(I−Weff)T − (I−Weff)C +A(0)(Weff)T + WeffA(0)

+ [I−Weff]−1Σ0 + Σ0

(
[I−Weff]−1

)T
. (131)

The steady state solution of this equation is given by

0 = −C(I−Weff)T − (I−Weff)C +A(0)(Weff)T

+ WeffA(0) + [I−Weff]−1Σ0 + Σ0

(
[I−Weff]−1

)T
. (132)

For the binary-unit model, we can use the master equation formalism to derive the correla-
tion matrix [5], which is the same as Eq. (132) but without the input noise Σ0:

0 = −C(I−Weff)T − (I−Weff)C +A(0)(Weff)T + WeffA(0) . (133)

The equivalence of two forms of equations was derived in [9].
In the next subsections, we demonstrate that in the model with bistability and in the firing-

rate model with a single fixed point and external noise [8], an attentional input, modeled as an
input current I , changes the effective interaction strength leading to changes in correlations.
In the network model with chaotic instability, an attentional input quenches the instability at
specific spatial frequencies and thereby suppresses correlations by reducing the internal source
of variability.

3.2 Structure of neural correlations in the network with bistability

In the firing-rate model with bistability, the correlation of firing rates is proportional to the
correlation of binary states:

ri = ∆riSi + roff,i , cov(ri, rj) = ∆ri∆rjCij ∝ Cij , (134)
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where Cij = cov(Si, Sj). The steady-state solution for the correlation function is described by
Eq. (133), which yields an approximate relation for the average C:

C ∼ W eff

1− (
∑

)W effA(0) . (135)

Here (
∑

)W eff is the local interaction term, which only involves summation of nearby units,
and therefore there is no scaling of 1/N in the interaction strength W eff. Eq. (135) shows that
C is positively correlated with W eff. In our model, W eff = β1/(α1 + α2).

In the continuum limit, the interaction term becomes

(
∑

)W eff =
β1

α1 + α2

(Sx,y+1+Sx,y−1+Sx+1,y+Sx−1,y−4Sx,y)→
β1

α1 + α2

(∆d)2 ·∇2 , (136)

In this case, the solution of Eq. (135) can be written as

C(d) = exp

(
−d/∆d

ξ

)
A(0) , (137)

where the correlation length ξ =
√
β1/(α1 + α2). In this model, A(0) describes local bistable

state transitions induced by independent noise in each unit, which is defined by intrinsic transi-
tion rates α1 and α2. The local metastability generates the source of variability, which propa-
gates through the network via local spatial interactions.

In the network model with bistability, attentional input is modeled as a constant input cur-
rent, which mainly changes the interaction strength β1. The underlying mechanism for the
attention-induced change in noise correlations is related to the non-linearity of the transition
rate:

w(0→ 1) =
1

τoff
=

1

A1 +B1 exp[−C1(2W
∑
Si + I)]

≈ α1 + β1(
∑

Si) . (138)

The interaction strength β1 is the first-order derivative of the transition rate w(0 → 1) with
linearized approximation. In the relevant parameter region, w(0 → 1) is a monotonically in-
creasing and sub-linear function of the total input (which includes recurrent input (

∑
Si) and

external input I):

β1 =
∂w(0→ 1)

∂(
∑
Si)
|I > 0 ,

∂β1

∂I
∝ ∂β1

∂(
∑
Si)

=
∂2w(0→ 1)

∂2(
∑
Si)

< 0 . (139)

This fact implies that with increasing external input I , w(0 → 1) is closer to the saturation
regime, where the dependence of w(0 → 1) on the input current (

∑
Si) is weaker. In other

words, the second derivative of w(0 → 1) with respect to (
∑
Si) is less than zero, hence the
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interaction strength β1 decreases with increasing external input current I . Therefore, the transi-
tion from Off to On states is less influenced by the recurrent inputs (

∑
Si), which underlies the

reduction of correlations with increasing external input.
With increasing input current ∆I > 0, the change in effective interaction strength ∆W eff is

approximately proportional to changes in β1 (neglecting changes in α1 and α2, which are only
moderate in the relevant parameter region):

∆W eff ≈ ∆β1

α1 + α2

=
1

α1 + α2

[
∂w(0→ 1)

∂(
∑
Si)
|I+∆I −

∂w(0→ 1)

∂(
∑
Si)
|I
]

∝ 1

α1 + α2

[
∂2w(0→ 1)

∂2(
∑
Si)

]
∆I < 0 , (if ∆I > 0) . (140)

Therefore, our model predicts the decrease of W eff with positive ∆I . Since C is an increasing
function of W eff, we expect a reduction of noise correlations:

∆C ∼ ∆

[(
W eff

1− (
∑

)W eff

)
A(0)

]
=

(
∆

W eff

1− (
∑

)W eff

)
A(0) . (141)

Notice that the autocorrelation A(0), which is the source of variability, does not change signif-
icantly, since A(0) only dependents on α1 and α2. The changes in correlation ∆C are mainly
induced byW eff. This mechanism is different from the model with chaotic instability [7], where
suppression of variability A(0) at particular spatial frequencies underlies the reduction of cor-
relations ∆C (see section 3.3).

In the Fourier space, the change of correlations can be written as

∆C(k) ∝ 1

∆(1/Weff) + (∆d)2k2
A(0) =

1

∆(1/ξ2) + (∆d)2k2
A(0) . (142)

Here we see that changes of the interaction strength W eff are equivalent to changes of the cor-
relation length ξ, which affect different Fourier modes in a hierarchical manner. The amplitude
changes decrease with increasing wave-number k and vanish in the large k limit. Summing
these changes and performing the inverse Fourier transform, we find

ξ → ξ −∆ξ , ∆C(d) =

[
exp

(
− d

ξ −∆ξ

)
− exp

(
−d
ξ

)]
A(0) . (143)

This result shows that the change in correlations is a non-monotonical function of distance d
that peaks at a finite distance.

3.3 Structure of neural correlations in the network with chaotic instabil-
ity

The spiking network model with internally generated variability [7] has no shared external input
noise, so that Σ0 = 0 and the steady-state solution for the correlation function is described by
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Eq. (133). Here the variability of spiking is contained in the term A(0), which effectively pro-
vides the source of variability in corresponding firing-rate model. Considering one dimension
in Eq. (133), which can be thought of as one Fourier mode, we find approximately

C ∼ W eff

1− (
∑

)W effA(0) . (144)

For the spiking network with random spare connectivity [10, 5],Weff = 1
N
W̃eff, and (

∑
)Weff =

W̃eff, so that

C ∼ W̃ eff

1− W̃ eff

1

N
A(0) . (145)

When the global activity reaches a fixed point, in the weak interaction limit or the E-I balanced
regime, W̃eff � 1, the correlation C ∼ A(0)/N [10, 5], i.e. it vanishes at the large N limit.
On the other hand, in the spiking network with spatially local connectivity [7], at small wave-
number Fourier modes, the mean activity stays in the unstable regime, which amplifies the
variability A(0) and creates large correlations in these Fourier modes. The visual attention
signal is modeled as a static depolarizing current to inhibitory neurons, which stabilizes activity
at zero frequency Fourier mode. Therefore, for this mode

∆C ∼ W eff

1− (
∑

)W eff ∆A(0) , (146)

where ∆A(0) formally describes the reduction of variability from instability regime to a stable
fixed point. So the reduction of noise correlation is mainly spatially homogeneous, correspond-
ing to zero frequency Fourier mode.

3.4 Structure of neural correlations in the network with externally driven
fluctuation around a stable fixed point

The firing rate model with a single stable fixed point [8] has no internal source of variability
A(0). To generate variability, the model assumes a correlated external input noise Σ0, so that
the network operates just as a spatial filter of the external noise. The spatiotemporal pattern of
input noise Σ0, shaped by the network filter, produces observed patterns of correlations. In this
case, the dynamical equation is analogous to Langevin equation, and interaction terms acts as
viscous force.

The steady-state correlation is given by Eq. (132) after absorbing A(0) into C:

0 = −C(I−Weff)T − (I−Weff)C + [I−Weff]−1Σ0 + Σ0

(
[I−Weff]−1

)T
. (147)

The solution of this equation is

C = (I−Weff)−1Σ0

(
[I−Weff]−1

)T
. (148)
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The equation of the same form has been derived in different ways [11, 12, 13, 14]. This equation
shows that the interaction term (I−Weff) acts as a viscous force that suppresses the transforma-
tion of the input noise structure. Without interactions, the network becomes an ideal filter that
inherits original patterns of shared input: C → Σ0. With the interaction term, the correlation
involves a sum of inverse of λ2, where λ are eigenvalues of the matrix (I−Weff) [8]:

C ≈
(

1

|λ|2
+ . . .

)
Σ0 , (149)

In this model, a large attentional input current I increase the effective interaction strength
Weff, which leads to larger absolute eigenvalues |λ| in the E-I network, hence larger suppression
of the input noise Σ0 [8]. Therefore, the correlation C is reduced with large attentional input
current I . According to this analysis [8], when the external current is large, |λ| ∼

√
I , therefore

C ∼ (1/|λ|2)Σ0 ∝ 1/I . The spatial structure of the changes in correlations depends on the
combination of the spatial profile of 1/|λ|2 and the spatial pattern of shared input fluctuations
Σ0:

∆C ≈ −
(

2∆|λ|
|λ|3

)
Σ0 . (150)

The mechanisms are fundamentally different between this model and the model with bista-
bility. In the model with a single fixed point, an increasing input current increases the effective
interaction strength and hence increases |λ|, which is analogous to increasing the viscous force
that suppresses transmission of the external noise, Eq. (149). In contrast, in the model with
bistability, an increasing input current reduces the effective interaction strength. According to
Eq. (135), the effective interaction strength directly connects the internal local variability to cor-
relations, so the reduction of effective interaction strength results in the decrease of correlations.

4 Supplementary Note 4: Connection between information-
limiting correlations and noise correlations induced by On-
Off dynamics

Noise correlations can limit stimulus information encoded in the neural population, meaning
that information saturates to finite values with increasing population size [15]. Previous theoret-
ical work showed that information saturation is caused only by a specific pattern of correlations,
known as differential correlations, which are proportional to the product of the derivatives of
the tuning curves [16, 17]. Since On-Off dynamics are a major source of noise correlations in
the visual cortex, an important question is how correlations induced by the On-Off dynamics
affect encoded information.
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To address this question, we need to consider stimulus tuning of neurons in our model of
On-Off dynamics. In our model, the firing rate of neuron (x, i) at location (column) x is written
as (Supplementary Note 2.3.3)

fi(t) = roff(x, i) + ∆r(x, i)S(x, t) . (151)

The fluctuations in firing rate are due to stochastic transitions of the binary variable S(x, t).
Given a stimulus s, the tuning curve can be defined as

fi(s) = roff(x, i; s) + ∆r(x, i; s)〈S(x, t)〉 . (152)

We assume that each column contains an ensemble of neurons with different stimulus prefer-
ences. In general, roff(x, i; s) and ∆r(x, i; s) can have different tuning profiles with respect
to stimulus s. As a result, modulations of the On-Off dynamics, i.e. changes of 〈S(x, t)〉, can
change the stimulus tuning of the neuron i. For simplicity, here we only consider the case where
roff(x, i; s) and ∆r(x, i; s) have the same shape of tuning:

roff(x, i; s) ∝ ∆r(x, i; s), (153)

and 〈S(x, t)〉 is independent of the direction of stimulus in the space of population activity. We
also assume that the distribution of tuning curves is the same in all spatial locations (columns).
We consider correlations between a group of neurons at location x (indexed by i) and another
group of neurons at location y (indexed by j).

In this scenario, we can rewrite the covariance between the activity of neurons i and j (Eq.
94)

Σij = Cov[N(x, i), N(y, j)] = ∆r(x, i)∆r(y, j)Cov[R(x), R(y)] (154)

in terms of f and roff (to simplify notation we only keep indices i, j for firing rates):

Σij = [(fi − roff,i)(fj − roff,j)] ·
Cov[R(x), R(y)]

〈S(x)〉〈S(y)〉
. (155)

In this expression, we separated the stimulus-tuning term [(fi−roff,i)(fj−roff,j)] and the On-Off
dynamics term Cov[R(x), R(y)]/[〈S(x)〉〈S(y)〉]. Since we assumed that On-Off dynamics do
not depend on stimulus s, the correlation pattern is defined by the stimulus-tuning term, and the
On-Off dynamics term only scales this correlation pattern.

Now by decomposing (f−roff) into the part along the f ′ and the part orthogonal to f ′, we can
separate differential correlations εf ′f ′T and the residual non-information-limiting correlations
Σ0 [16]:

Σ = εf ′f ′
T

+ Σ0 . (156)
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Since the On-Off dynamics term acts just as a scaling factor, both parts are proportional to
Cov[R(x), R(y)]:

Σ0,ij ∝ Cov[R(x), R(y)] , ε ∝ Cov[R(x), R(y)] . (157)

In this case, the modulation of On-Off dynamics equally affects differential correlations and
non-information-limiting correlations Σ0. Thus, although On-Off fluctuations do not necessar-
ily induce differential correlations, they control the saturation level of information defined by
1/ε when the differential correlations are present [17]. Specifically, the linear Fisher informa-
tion I is proportional to the inverse of Cov[R(x), R(y)] [16]:

I = f ′
T
Σ−1f ′ ∝ 1

Cov[R(x), R(y)]
∝ 1

Var(R(x))
exp

(
|x− y|
L

)
. (158)

In this expression, we find that Fisher information I is a monotonically decreasing function of
the correlation length L. During attention, the variability of local On-Off dynamics Var(R(x))

and average value 〈S(x)〉, 〈S(y)〉 change only little in our data. If we neglect these changes,
Fisher information I is mainly influenced by changes in the correlation length L. If correlation
length decreases, I will increase.

This analysis under simplified assumptions suggests that a reduction of the correlation
length leads to an increase in stimulus information, as we observed in superficial cortical layers
during attention. However, the actual dependence of the On-Off dynamics and firing rates on
stimulus may be complex. For example, if roff,i(s) and ∆ri(s) have different shapes of stimulus
tuning, then changes in On-Off dynamics will be bound with tuning changes. This interdepen-
dence is not accounted for by previous theories which assumed parametric structures for tuning
and variability [15, 16]. To fully understand how On-Off fluctuations impact sensory coding, the
model of On-Off dynamics needs to be extended to include connectivity that supports stimulus
tuning in addition to spatial receptive fields (as in Ref. [18]) in future work.
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5 Supplementary figures

Supplementary Figure 1. The behavioral task. In the attention task, monkeys reported
orientation changes with an antisaccade. A cue indicated which stimulus was likely to change.
Monkeys initiated a trial by fixating a central dot (Fixation). After a brief delay (333 ms and
170 ms in monkeys G and B, respectively), four peripheral oriented-grating stimuli appeared,
one in each of the screen’s quadrants (Stimulus). After a variable delay (200 to 2700 ms),
stimuli briefly disappeared (Blank, < 270 ms) then reappeared either with or without one of
them changing orientation. Monkeys reported an orientation change by executing a saccade to
the stimulus diametrically opposite to the change location (Antisaccade; arrow indicates saccade
direction). If no change happened, monkeys had to maintain fixation (No saccade). A small,
central cue (white line; illustrated larger than actual size) appeared shortly (200 to 500 ms) after
stimulus onset (Cue), pointing toward the stimulus that was most likely to change. See Ref. [1]
for details.
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Supplementary Figure 2. Changes in noise correlations during attention as a function
of cortical depth. Average change in noise correlations during attention as a function of the
relative cortical depth (n=26,040 MU pairs from 31 recording sessions). The relative cortical
depth is defined to be zero at the boundary between the deep and superficial layers in the current
source density measured in response to the full-field flash stimulus [19]. Roman numerals show
probable locations of the anatomical layers. For each recording, we computed the average
noise correlations for all possible ensembles of 6 nearby channels. For each ensemble, the
average relative cortical depth was defined as the average of the 6 channels. We then grouped
noise correlations based on the average relative cortical depth across all recordings. Error bars
represent SEM.
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Supplementary Figure 3. Dependence of noise correlations between single units (SUs) on
the cortical layer, lateral distance, and attention. (a) Average noise correlations in superficial
and deep layers in two-phase (upper panel, superficial layers n=2,074 SU pairs for each atten-
tion condition; deep layers n=1,016) and one-phase recordings (lower panel, superficial layers
n=1,020 SU pairs for each attention condition; deep layers n=495), separately for control (grey)
and attention (red) conditions (left panels). Error bars represent SEM. Histograms show the cor-
responding distributions of noise correlations in each condition (right panels). (b) In two-phase
recordings, noise correlations decrease with the RF-center distance in both superficial (crim-
son) and deep (green) layers (dots - data points, lines - linear regression, one-sided t-test, slope
−0.07 ± 0.02, p = 0.00007, n=2,074 SU pairs in superficial layers and slope −0.02 ± 0.01,
p = 0.04, n=1,016 SU pairs in deep layers). Orange background highlights the range of short
lateral distances within single or nearby columns. Purple background highlights longer lateral
distances between distant columns, such as distances covered by a Utah array, which are out-
side the range of our laminar recordings. Error bars represent the standard error of the mean
(SEM). (c) Same as b for one-phase recordings. In one-phase recordings, noise correlations do
not consistently decrease with the RF-center distance (linear regression, one-sided t-test, slope
−0.03± 0.01, p = 0.01, n=1,020 SU pairs in superficial layers and slope 0.01± 0.02, p = 0.7,
n=495 SU pairs in deep layers).
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Supplementary Figure 4. The distribution of On and Off episode durations. In an example
recording session, the distributions (black lines) of On (right) and Off (left) episode durations
overlaid by exponential distributions (green and pink lines) with the decay time-constants set
by HMM transition probabilities [1]. Across recordings, the relationship between the mean
and variance of On and Off durations was consistent with the exponential distribution, see
Supplementary Fig. S6 in Ref. [1].
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Supplementary Figure 5. Changes in average durations of On (right) and Off (left)
episodes during attention. Distribution across recordings of the difference in average dura-
tions of On (right) and Off (left) episodes between covert attention and control (blue), and overt
attention and control (orange) conditions. Triangles indicate medians of the distributions; p val-
ues are for two-sided Wilcoxon signed rank test [1]. Off episode duration: p = 0.652 for overt
attention, p = 0.004 for covert attention; On episode duration: p = 2× 10−5 for overt attention,
p = 8× 10−4 for covert attention, n=31 recording sessions.
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Supplementary Figure 6. Distributions of Fano factor and On-Off firing rate differences in
V4 columnar recordings. (a) The distribution of Fano factor of multi-unit activity. Triangle
indicates the median value. n=15,872 MU from 31 recording sessions. (b) The distribution
of On-Off firing rate differences in multi-unit activity. Triangle indicates the median value.
n=15,872 MU from 31 recording sessions.

41



-0.6 -0.3 0 0.3 0.6
Predicted  FF

-0.6

-0.3

0

0.3

0.6

M
ea

su
re

d 
 F

F

-15

-10

-5

0

5

10

15

C
ha

ng
e 

in
 O

n-
O

ff 
fir

in
g 

ra
te

 d
iff

er
en

ce
 (H

z)

-0.1 -0.05 0 0.05 0.1
Predicted  NC

-0.1

-0.05

0

0.05

0.1

M
ea

su
re

d 
 N

C

-15

-10

-5

0

5

10

15

C
ha

ng
e 

in
 p

ai
r’s

 O
n-

O
ff 

fir
in

g 
ra

te
   

   
   

   
   

di
ffe

re
nc

e 
(H

z)

Covert

Overt

Covert

Overt

1 2 3 4 5
Predicted FF

1

2

3

4

5

M
ea

su
re

d 
 F

F

20

40

60

80

100

O
n-

O
ff 

fir
in

g 
ra

te
 d

iff
er

en
ce

 (H
z)

0 0.2 0.4 0.6
Predicted NC

0

0.2

0.4

0.6

M
ea

su
re

d 
 N

C

10

20

30

40

50

60

70

80

Pa
ir’

s 
O

n-
O

ff 
fir

in
g 

ra
te

 d
iff

er
en

ce
 (H

z)

a b

c d

Supplementary Figure 7. On-Off dynamics predict noise correlations within single
columns. (a) Comparison between covert (circles) and overt (triangles) attention-related
changes in Fano factor (∆FF = FFatt − FFctl) predicted by the On-Off model (x-axis) and
measured from the data (y-axis). All neurons are divided in 10 equally-sized groups based on
the change (∆ratt − ∆rctl) in their On-Off firing-rate difference (∆r = ron − roff) between
attention and control conditions. (b) Comparison between covert (circles) and overt (triangles)
attention-related changes in noise correlations (∆NC = NCatt−NCctl) predicted by the On-Off
model (x-axis) and measured from the data (y-axis). In this case, the pair’s On-Off firing-rate
difference is defined as

√
∆ratti∆rattj −

√
∆rctli∆rctlj . (c) Comparison between Fano factor

predicted by the On-Off model (x-axis) and measured from the data (y-axis). All neurons are
divided in 10 equally-sized groups based on the On-Off firing rate difference. (d) Comparison
between noise correlations (NC) predicted by the On-Off model (x-axis) and measured from
the data (y-axis). All neurons are divided in 10 equally-sized groups based on the pair’s On-Off
firing rate difference.

42



-0.5 0 0.5
 NC

0

1000

2000

3000

4000
N

um
be

r o
f p

ai
rs

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Changes in NC

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f p
ai

rs

a b

Supplementary Figure 8. The average change in noise correlations within single columns
during attention is very small. (a) The distribution of noise correlations across MU pairs
in control condition. n=22,680 MU pairs from 31 recording sessions. (b) The distribution
of changes in noise correlations across MU pairs during attention. For each pair of units, we
computed change in noise correlation as ∆NC = NCatt − NCctl. Triangles indicate medians of
the distributions. The median change in noise correlations 0.0024 is close to zero. n=22,680
MU pairs from 31 recording sessions.
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Supplementary Figure 9. Average noise correlations decrease with the estimated cortical
distance. (a) Average noise correlations decrease with the estimated cortical distance, where
cortical distance is estimated from the RF-center distance (dva) based on the cortical magnifi-
cation factor (n=53,536 MU pairs from 46 recording sessions). Error bars represent SEM. (b)
Distribution of cortical magnification factors across all recording channels.
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Supplementary Figure 10. On-Off dynamics in an example recording with large shifts of
receptive fields between channels. (a) We obtained five recording sessions in one monkey
during a fixation task (no visual stimulus), where we inserted the linear probe at a slight angle,
so that neurons show larger lateral shifts between their receptive fields (larger lateral separa-
tion). The receptive fields are shown for one example recording session (lines - RF contours,
dots - RF centers, dva - degrees of visual angle). (b) The correlations between receptive fields
for the example recording confirm a gradual lateral shift between channels. (c) Multi-unit ac-
tivity across 16 channels is shown for three example trials from the recording in a. Spikes are
marked by vertical ticks. On-Off phases occur synchronously on subsets of adjacent channels
and propagate across channels over time, suggesting that neurons in different columns follow
their respective On-Off sequences.
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Supplementary Figure 11. Correlation length in the binary-unit network and dynamical
system network. (a) Comparison of the correlation length between simulations of the binary-
unit network (dots) and analytical prediction L =

√
β/(α1 + α2) (line) (n=10 simulation sets).

The parameters are α1 = α2 = 6 (Hz), and β ranges from 0.1 to 4 (Hz). In simulations, we
computed the average noise correlations at each distance and fitted them with an exponential
function a exp(−x/L) (x is the distance between a pair of units, L is the correlation length).
The error bar shows 95% confidence interval of the fitted parameter L. (b) Comparison of
the correlation length as a function of attentional input between simulations of the dynamical
system network (dots) and the analytical prediction (line). In simulations, the parameters are
chosen as described in Supplementary Note 2.2. In the analytical prediction, the correlation
length is computed based on the approximation in Eq. 62.

45



Time Adaptation variable: u

Fi
rin

g-
ra

te
 v

ar
ia

bl
e:

 v

Fi
rin

g-
ra

te
 v

ar
ia

bl
e:

 v

0 0.5 1 1.5 2
105

-2

-1

0

1

2

-0.4 -0.2 0 0.2 0.4 0.6 0.8

-2

-1

0

1

2

= 0.2

= 0.4

= 0.8

= 0.1

0 0.5 1 1.5 2
105

-2

-1

0

1

2

-0.4 -0.2 0 0.2 0.4 0.6 0.8

-2

-1

0

1

2

0 0.5 1 1.5 2
105

-2

-1

0

1

2

-0.4 -0.2 0 0.2 0.4 0.6 0.8

-2

-1

0

1

2

0 0.5 1 1.5 2
105

-2

-1

0

1

2

-0.4 -0.2 0 0.2 0.4 0.6 0.8

-2

-1

0

1

2

Supplementary Figure 12. Simulations of the single-unit dynamical system model with
the fixed noise magnitude and different values of parameter ε. In simulations of the single-
unit dynamical system model, we fix the noise strength Q and change the parameter ε, which
controls the timescale separation between the firing-rate and adaptation variables. Left column
shows the time series of firing-rate variable v. Right column shows the phase space trajectories.
For fixed noise strength, the transition rate between fixed points decreases with ε.
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Supplementary Figure 13. Simulation of single-unit dynamical system model with noise
in the equation for the firing-rate variable. In the simulation of the single-unit dynamical
system model, we add a noise term only in the equation for the firing-rate variable with strength
Q2 = 2 · 10−4. We do not include a noise term in the adaptation equation. Left column shows
the time series of the dynamical variable v. Right column shows the phase space trajectories.
Noise in the firing-rate equation can drive stochastic On-Off transitions.

47


