
Supplementary Document 1: Databases Construction

1. Download of reference genomes and databases

1.1. NCBI NT database
NCBI BLAST Command-Line Applications tool was used to download this database. The
corresponding FASTA and sequence accession to taxID relationship (seq2taxid) files were
obtained in a format compatible with Kraken2. These files were examined to filter sequences in
the FASTA file without relationships in the seq2taxid file and vice versa using self-made scripts
(check_seq2taxid_accession.py).

Launch the following single commands in the bash shell:

#Download NT BLAST database
update_blastdb.pl --decompress nt [*]
#Get multi-FASTA file
blastdbcmd -entry all -db nt -out nt.fa
#Get seqs2taxids relationships in Kraken2 format
blastdbcmd -db nt -entry all -outfmt "%a %T" | awk -v OFS='\t' '{print "TAXID", $1,
$2}' >> nt_seq2taxid_raw.txt
#Remove empty seq2taxid relationships
##Get FASTA file sequence accessions
cat nt.fa | grep '>' | sed 's/>//g' | awk '{print $1}'> nt_accessions.txt
##Run check_seq2taxid_accession.py(script)
python3 check_seq2taxid_accession.py -c nt_accessions.txt -r nt_seq2taxid_raw.txt -o
nt -f kraken2

The "check_seq2taxid_accession.py" script will generate 3 result files: raw+cab file (common
relationships), raw_only file (relationships found only in the raw seqs2taxids file) and cab_only
file (with sequences accessions found only in the cab file). In this case, the raw+cab resulting file
is used as seq2taxid file.

1.2. Microbiome enrichment studies

1.2.1. NCBI GenBank studies

Download process

In the case of studies from NCBI GenBank, all available genomes at any assembly level related
to each microbiome study were downloaded through the NCBI Website
(https://www.ncbi.nlm.nih.gov/). Flags “Latest GenBank” and “Exclude anomalous” were used
to obtain the corresponding assembly FASTA files. These FASTA files were decompressed and
combined (using the cat command), generating a multiFASTA file for each microbiome study.
Studies HMP, FDA_ARGOS, CGR, BIO-ML and Almeida were downloaded in this manner.

https://www.ncbi.nlm.nih.gov/

Generating seq2taxid files

The taxonomizr package (version0.5.3; https://CRAN.R-project.org/package=taxonomizr) was
used to obtain the corresponding seq2taxid relationships. The NCBI’s Taxonomy Database was
downloaded in April 2020, which was used to create an SQLite database following taxonomizr’s
documentation. The seq2taxid files were created using self-made scripts and transformed to
Kraken2 format.

Launch the following single commands in the bash shell:

#Get FASTA file sequence accessions
cat study_multiFASTA.fa | grep '>' | sed 's/>//g' | awk '{print $1}'>
study_accessions.txt
#Get seqs2taxids relationships with Rscript
Rscript accession2taxid.R study_seq_accessions_file[with extension] out_name[with out
extension]
#Convert to Kraken2 format
cat out_file.txt | awk -v OFS='\t' '{print "TAXID", $1, $2}' >
seq2taxid_study_kraken2.txt

Repeat this for each NCBI study's multiFASTA file. The "accession2taxid.R" script will generate
2 result files: out file (seq2taxid relationships) and a NA file (with the accessions that were with-
out seq2taxid information, that is an empty relationship). The resulting out file can be used as
seq2taxid file (after conversion to Kraken2 format), if no empty relationships are found.

BIO-ML exception

No study returned empty relationships except for BIO-ML. In this particular case, the remaining
empty relationships were obtained with the Esearch tool from Entrez Programming Utilities tool.
This is the workaround that we came up with at the time. We exploited the fact that in this
particular case, the remaining sequence accessions were related to their WGS Project (which
were the 6 first letters of every sequence accession). First, all remaining accessions were
processed to obtain only one accession per assembly. Then Esearch was used to obtain their
taxIDs. Some empty results were returned, and so these few exceptions were searched through
the NCBI Website (https://www.ncbi.nlm.nih.gov/) and manually corrected. Then this
information was used to relate the project taxID of the assemblies with their accessions. Finally,
Seq2taxid files were merged and transformed to Kraken2 format.

Launch the following single command in the bash shell:

#Get one accession per project
cut -c-6 seq2taxid_BIO-ML_NA.txt | sort | uniq | sed 's/$/000001/' >
accessions_project_BIO-ML_NA.txt

https://www.ncbi.nlm.nih.gov/
https://CRAN.R-project.org/package=taxonomizr

Run the following bash code to get the remaining project taxIDs with Esearch:

#!/bin/bash
NAS_FILE='accessions_project_BIO-ML_NA.txt'
OUT_FILE='proyect2taxid_BIO-ML_NA.txt'
for acc in $(cat $NAS_FILE)
do
 project=$(echo $acc | cut -c-6)
 taxid=$(esearch -db nuccore -query $acc | \
 elink -target taxonomy | esummary | \
 xtract -pattern DocumentSummary -element TaxId)

 printf "$project\t$taxid\n" >> $OUT_FILE
done

Run the following Python3 code to relate project taxIDs with their accessions:

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import pandas as pd
##Open output file
out_put_rel=open('seq2taxid_BIO-ML_NA_corrected.txt', 'w')
##Open input files and process lines
tabla_rel=pd.read_csv('proyect2taxid_BIO-ML_NA.txt', sep='\t',header=None)
with open('seq2taxid_BIO-ML_NA.txt', 'r') as input_lines:
 lines=input_lines.readlines()
 for line in lines:
 project=line[0:6]
 index=tabla_rel.index.get_indexer_for((tabla_rel[tabla_rel[0]==project].index))[0]
 taxId=int(tabla_rel[1][index])
 frase=line.replace('\n','')+'\t'+str(taxId)+'\n'
 out_put_rel.write(frase)
out_put_rel.close()

Launch the following single command in the bash shell:

Combine seq2taxid files and transform to Kraken2 format
cat seq2taxid_BIO-ML.txt seq2taxid_BIO-ML_NA_corrected.txt | awk -v OFS='\t' '{print
"TAXID", $1, $2}' > seq2taxid_BIO-ML_kraken2.txt

1.2.2. HBC study

Download process

Assemblies for the HBC study were downloaded from the European Bioinformatics Institute
(EMBL-EBI) server, obtaining the corresponding FASTA files (http://ftp.ebi.ac.uk/pub/
databases/metagenomics/genome_sets/hbc_genomes.tar.gz). These files were decompressed and
combined (using the cat command), generating a multiFASTA file for the study.

Generating seq2taxid files

For the original FASTQ files, technical information (study_accession, tax_id, run_accession,
secondary_sample_accession, and submitted_ftp) from which the assemblies were generated,
was retrieved through the ENA Browser. We were able to relate “submitted_ftp” with the
FASTA files names. In the case of FASTA file “12718_7_11.fa” there wasn’t any “tax_id”
value, but this could be obtained from ENA’s Mgnify Genomes Metadata
(http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/2019_09/

http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/2019_09/genomes_metadata.tsv
http://ftp.ebi.ac.uk/pub/databases/
http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/hbc_genomes.tar.gz
http://ftp.ebi.ac.uk/pub/

genomes_metadata.tsv). Eighty-four assemblies under NCBI’s taxID 77133 (uncultured
bacterium) were found. Inspecting the supplementary information of the original publication, we
saw that these assemblies had another taxonomy information. We processed this information to
obtain a list of their taxonomy names at the species level and used the NCBI’s Taxonomy
Name/ID Status Report Page (https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/
tax_identifier.cgi) to procure their taxIDs and correct their values. Finally, this information is
used to create the seq2taxid file relating sequence accessions with the values of their FASTA
files names in Kraken2 format. We exploited the fact that in this particular case, sequence
accessions were related to their FASTA file names.

Launch the following single command in the bash shell:

#Get FASTA file sequence accessions
cat hbc_genomes.fa | grep '>' | awk '{print $1}' | cut -f2 -d '>' > accessions_HBC.txt

Run the following Python3 code to relate project taxIDs with sequence accessions, generating
seq2taxid in Kraken2 format:

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import pandas as pd
#Open output file
out_put_rel=open('seq2taxid_HBC_kraken2.txt', 'w')
#Open input files and process lines
tabla=pd.read_csv('hbc_sample_taxID_corrected.csv', sep=',')
with open('accessions_HBC.txt', 'r') as input_lines:
 lines=input_lines.readlines()
 for line in lines:
 cab_sample_accession=line.split('.')[1]
 index=tabla.index.get_indexer_for((tabla[tabla['id_fasta']==cab_sample_accession].index))[0]
 taxId=tabla['tax_id'][index]
 frase='TAXID\t'+line.replace('\n','').replace('>','')+'\t'+str(taxId)+'\n'
 out_put_rel.write(frase)
out_put_rel.close()

1.2.3. Nayfach study

Download process

For the Nayfach study, through the ENA Browser (https://www.ebi.ac.uk/ena/browser/home),
the related metadata of the "Genome assembly contig sets" was downloaded, then processed to
generate the download URLs for the FASTA files. The different FASTA files were then
combined generating a unique multiFASTA file for the study (using the cat command).

Launch the following single command in the bash shell:

#Get FASTA file names from ENA metadata file
cat ena.xml | grep 'entry accession' | awk ' {print $2} ' | cut -f2 -d "=" | cut -f2 -
d'"' > Nayfach_accesion.txt

Run the following Python3 code to get download URLs for FASTA files and FASTA file names
with-out extension (names_cut, for generating seq2taxid files later):

https://www.ebi.ac.uk/ena/browser/home
https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/2019_09/genomes_metadata.tsv

#!/usr/bin/env python3
-*- coding: utf-8 -*-
##Open output files
out_put_url=open('Nayfach_urls.txt', 'w')
out_put_cut=open('Nayfach_accession_cut.txt', 'w')
##Open input file and process lines
with open('Nayfach_accesion.txt', 'r') as input_lines:
 lines=input_lines.readlines()
 for line in lines:
 cut_code=line[0:8]
 url='ftp://ftp.ebi.ac.uk/pub/databases/ena/wgs/public/ca/'+cut_code+'.fasta.gz\n'
 out_put_url.write(url)
 out_put_cut.write(cut_code+'\n')
out_put_url.close()
out_put_cut.close()

Run the following bash code to download the FASTA files with wget command:

#!/bin/bash
urls=/path/to/Nayfach_urls.txt
cat $urls | xargs -n 1 -P 11 wget -q

Generating seq2taxid files

The related ENA metadata included the taxIDs of each FASTA file. This information was used
to relate this taxIDs with the different sequence accessions, generating the corresponding
seq2taxid file in Kraken2 format. We exploited the fact that in this particular case, sequence
accessions were related to their FASTA file names.

Launch the following single commands in the bash shell:

#Get FASTA file taxIDs from ENA metadata
cat ena.xml | grep 'taxId' | cut -f3 -d "=" | cut -f1 -d '>' | cut -f2 -d '"' >
Nayfach_taxIds.txt
#Get sequence accessions
cat Nayfach.fa | grep '>' | awk '{print $1}' | cut -f2 -d '>' >
seq_accessions_Nayfach_2019.txt

Run the following Python3 code to create seq2taxid file in Kraken2 format:

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import pandas as pd
##Open output file
out_put_rel=open('Nayfach_2019_seq2taxId.txt', 'w')
##Read input files and process lines
names_cut=pd.read_csv('Nayfach_accession_cut.txt', header=None)
taxIds=pd.read_csv('Nayfach_taxIds.txt',header=None)
with open('seq_accessions_Nayfach_2019.txt', 'r') as input_lines:
 lines=input_lines.readlines()
 for line in lines:
 acc_cut=line.split('|')[1][0:8]
 index=names_cut.index.get_indexer_for((names_cut[names_cut[0]==acc_cut].index))[0]
 taxId=taxIds[0][index]
 frase='TAXID\t'+line.replace('\n','')+'\t'+str(taxId)+'\n'
 out_put_rel.write(frase)
out_put_rel.close()

Status update

As of today, this form of downloading and processing would not be necessary, as the Nayfach
study has been incorporated into the NCBI. The download and processing procedure described in
section "1.2.1. NCBI GenBank studies" would be recommended instead.

1.3. Generating the Microbiome Studies Genomes Dataset
The different studies of interest (FASTA and seq2taxid files) were combined, obtaining a dataset
of Microbiome Studies Genomes (MSG) that was further processed.

Launch the following single commands in the bash shell:

#Generate multiFASTA file
cat /path/to/HMP.fa /path/to/FDA_ARGOS.fa /path/to/CGR.fa /path/to/BIO-ML.fa
/path/to/hbc_genomes.fa /path/to/Almeida.fa /path/to/Nayfach.fa > MSG.fa

#Generate seq2taxid file
cat /path/to/seq2taxid_HMP_kraken2.txt /path/to/seq2taxid_FDA_ARGOS_kraken2.txt
/path/to/seq2taxid_CGR_kraken2.txt /path/to/seq2taxid_BIO-ML_kraken2.txt
/path/to/seq2taxid_HBC_kraken2.txt /path/to/seq2taxid_Almeida_kraken2.txt
/path/to/seq2taxid_Nayfach_kraken2.txt > seq2taxid_MSG_kraken2.txt

1.4. FASTA Extensions-Explanatory note
The various FASTA files were obtained from different sources. Therefore, we found examples
with different FASTA file extensions (.fasta, .fa, .fna), the extension can be changed in the code
without problems according to our needs.

2. Processing and construction of databases

2.1. MAG filter
In MAG studies, it is not unusual to find genomes with incomplete taxonomies that, although are
resolved as species at the assembly level (usually under the 95% average nucleotide identity
criterion), are not resolved as species at the taxonomic level. In this situation, artefactual species
may appear, namely a species-level taxID that presents an incomplete taxonomy and could act as
a catch-all taxon comprising assemblies of different species. Therefore, we examined the effects
of incomplete-taxonomy MAGs on genome database enrichment. With that purpose, we filtered
these genomes, retaining those that reached a genus level or were Candidatus genomes (the
provisional name for well-characterized but as-yet uncultured organisms).

In these particular case, both Almeida and Nayfach studies were composed entirely by
artefactual species. Therefore, an assembly genome was considered to have reached the genus
level if its name contained the term " sp.", and was considered Candidatus if its name contained
the term "Candidatus".

2.1.1. Filtering Almeida study
The Almeida study consisted of 1952 genome assemblies, of which 1179 reached the genus
level, and 10 were Candidatus genomes. We obtained the corresponding "Assembly Details"
from the NCBI Website (https://www.ncbi.nlm.nih.gov/bioproject/PRJEB26432) and filtered the
undesired assemblies.

Launch the following single commands in the bash shell:

#Filter AssemblyDetails to get a list with the assemblies that we want to filter out
cat PRJEB26432_AssemblyDetails.txt | grep -v ' sp.' |grep -v 'Candidatus' | grep -v
'#'| awk '{print $1}' >> assemblies_noiselist_Almeida.txt

Run the following bash code in the directory where the assemblies FASTA files are located to
generate a multiFASTA file with all the MAGs of interest:

#!/bin/bash
INPUT_DIR='path/to/FASTAS/directory'
NOISE_LIST='assemblies_noiselist_Almeida.txt'
cd $INPUT_DIR
for file in $(cat $NOISE_LIST)
do
 rm $file*
done
cat *.fna > Almeida_MAGs-filtered.fa

Launch the following single commands in the bash shell:

#Filter seq2taxid relationships
##Get filtered-FASTA file sequence accessions
cat Almeida_MAGs-filtered.fa | grep '>' | sed 's/>//g' | awk '{print $1}' >
Almeida_MAGs-filtered_accessions.txt
##Run check_seq2taxid_accession.py(script)
python3 check_seq2taxid_accession.py -c Almeida_MAGs-filtered_accessions.txt -r
seq2taxid_Almeida_kraken2.txt -o Almeida_MAGs-filtered -f kraken2

The seq2taxid file generated in the "1.2.1. NCBI GenBank studies" section for the Almeida study
is used as raw file (-r). The "check_seq2taxid_accession.py" script will generate 3 result files:
raw+cab file (common relationships), raw_only file (relationships found only in the raw
seqs2taxids file) and cab_only file (with sequences accessions found only in the cab file). In this
case, the raw+cab resulting file is used as seq2taxid file.

2.1.2. Filtering Nayfach
On the other hand, the Nayfach study consisted of 2058 genome assemblies, of which 707
reached the genus level, and 36 were Candidatus genomes. We used the NCBI's Taxonomy
Name/ID Status Report Page (https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/
tax_identifier.cgi) to procure their taxonomy names based on their taxIDs. This information is
combined in a 3 column table, including their 1) FASTA name, 2) taxID and 3) taxonomy name
(Nayfach_metadata.csv) that is used to filter the undesired assemblies (the first column must be
the FASTA names).

https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB26432

Launch the following single commands in the bash shell:

#Filter metadata to get a list with the assemblies that we want to filter out
cat Nayfach_metadata.csv | grep -v ' sp.' | grep -v 'Candidatus' | awk '{print $1}' >>
assemblies_noiselist_Nayfach.txt

Run the following bash code in the directory where the assemblies FASTA files are located to
generate a multiFASTA file with all the MAGs of interest:

#!/bin/bash
INPUT_DIR='path/to/FASTAS/directory'
NOISE_LIST='assemblies_noiselist_Nayfach.txt'
cd $INPUT_DIR
for file in $(cat $NOISE_LIST)
do
 rm $file*
done
cat *.fasta > Nayfach_filter_MAGs.fa

Launch the following single commands in the bash shell:

#Filter seq2taxid relationships
##Get filtered-FASTA file sequence accessions
cat Nayfach_filter_MAGs.fa | grep '>' | sed 's/>//g' | awk '{print $1}' >
Nayfach_MAGs-filtered_accessions.txt
##Run check_seq2taxid_accession.py(script)
python3 check_seq2taxid_accession.py -c Nayfach_MAGs-filtered_accessions.txt -r
seq2taxid_Nayfach_kraken2.txt -o Nayfach_MAGs-filtered -f kraken2

The seq2taxid file generated in the "1.2.3. Nayfach study" section is used as raw file (-r). The
"check_seq2taxid_accession.py" script will generate 3 result files: raw+cab file (common
relationships), raw_only file (relationships found only in the raw seqs2taxids file) and cab_only
file (with sequences accessions found only in the cab file). In this case, the raw+cab resulting file
is used as seq2taxid file.

Status update

As of today, this form of downloading and processing would not be necessary, as the Nayfach
study has been incorporated into the NCBI. The filtering procedure described in section "2.1.1.
Filtering Almeida study" would be recommended instead.

2.1.3. Generate the Microbiome Studies fMAG Genomes dataset
At the end of this process, we combined the rest of the microbiome studies genomes with the
MAG-filtered studies (FASTA and seq2taxid files), thus generating an alternative dataset for
enrichment of Microbiome Studies fMAG Genomes (MSG-fMAG) that was further processed.

Launch the following single commands in the bash shell:

#Generate multiFASTA file
cat /path/to/HMP.fa /path/to/FDA_ARGOS.fa /path/to/CGR.fa /path/to/BIO-ML.fa
/path/to/hbc_genomes.fa /path/to/Almeida_MAGs-filtered.fa
/path/to/Nayfach_filter_MAGs.fa > MSG-fMAG.fa

#Generate seq2taxid file
cat /path/to/seq2taxid_HMP_kraken2.txt /path/to/seq2taxid_FDA_ARGOS_kraken2.txt
/path/to/seq2taxid_CGR_kraken2.txt /path/to/seq2taxid_BIO-ML_kraken2.txt
/path/to/seq2taxid_HBC_kraken2.txt /path/to/seq2taxid_Almeida-fMAG_kraken2.txt
/path/to/seq2taxid_Nayfach-fMAG_kraken2.txt > seq2taxid_MSG-fMAG_kraken2.txt

2.2. Dustmasker and Nfilter
Low-complexity sequences are common features shared by different organisms’ genomes, and
thus less informative for their use in alignments and classification tools. So to deal with this issue
and prevent false positives, many classifications tools such as BLAST programs, Centrifuge, or
Kraken2 often mask these sequences by default. These classifiers use the NCBI's DustMasker
program to perform the low-complexity masking. We used DustMasker (version 1.0.0; Package
public 22.0.0) with default parameters on the NCBI NT database, the MSG dataset and the MSG-
fMAG dataset. All the masked nucleotides from the DustMasker output were masked as N using
the sed command. All completely masked sequences (100%N) were filtered using the
"filterN_seqs.sh" script (which uses the "reformat.sh" script of the BBTools suite). At this point,
we obtained the NT_DB database used in the comparative, the MS Set and MS-fMAG Set for
enrichment.

Launch the following single commands in the bash shell:

#Mask sequences with dustmasker
dustmasker -infmt fasta -in unmasked.fa -outfmt fasta | sed '/^>/! s/[^AGCT]/N/g' >
masked.fa
#Filter completely masked sequences (100%N) with script
filterN_seqs.sh -p /path/to/bbmap/reformat.sh -i masked.fa -o masked_Nfiltered.fa
#Filter seqs2taxids relationships
##Get FASTA file sequence accessions
cat masked_Nfiltered.fa | grep '>' | sed 's/>//g' | awk '{print $1}'>
masked_Nfiltered_accessions.txt
##Run check_seq2taxid_accession.py(script)
python3 check_seq2taxid_accession.py -c masked_Nfiltered_accessions.txt -r
seq2taxid_unmasked_kraken2.txt -o masked_Nfiltered -f kraken2

The "check_seq2taxid_accession.py" script will generate 3 result files: raw+cab file (common
relationships), raw_only file (relationships found only in the raw seqs2taxids file) and cab_only
file (with sequences accessions found only in the cab file). In this case, the raw+cab resulting file
is used as seq2taxid file.

2.3. Non redundant filter
An important characteristic of a database is non-redundancy, which offers advantages such as
reducing the final database size, thus increasing the classification speed and reducing the search
effort. We considered two types of redundancy: (a) When combining different databases, there
may be sequences with identical accessions. (b) In the case of assemblies obtained from NCBI,
there is redundancy between the RefSeq and GenBank databases. It is because the same
assembly can be associated with different sequence accessions. And so, we followed a series of
steps to minimize redundancies between the NT_DB and the MS and MS-fMAG Sets,
respectively.

It is noteworthy that this particular filter could not be applied for the HBC and Nayfach studies,
as they did not have sequence accessions found in GenBank or RefSeq at the time.

2.3.1. Get assemblies summary information
Every NCBI assembly is associated with a series of files that contain relevant information about
it. To reach them, we first need to get the paths to the directories of each assembly. This
information is available in the assemblies summary files associated with the GenBank database.
In the case of Microbiome studies assemblies from NCBI, we downloaded the GenBank
assemblies summary file from the NCBI server (https://ftp.ncbi.nlm.nih.gov/genomes/
ASSEMBLY_REPORTS/assembly_summary_genbank.txt), which was then filtered, retaining
only the accessions of interest.

Launch the following single commands in the bash shell:

ls | grep '.fna' | cut -d'_' -f1,2 >> assembly_accessions_study.txt

Repeat this for each NCBI study's assemblies directory and get a list of the different assembly
accessions. We exploited the fact that NCBI FASTA files names include this information in their
names (which corresponds to the first part of the name).

Run the following bash code to filter the GenBank assemblies summary file
(assembly_summary_genbank.txt):

#!/bin/bash
FILE1='GenBank_assemblies_Almeida.txt'
FILE2='GenBank_assemblies_BIO-ML.txt'
FILE3='GenBank_assemblies_CGR.txt'
FILE4='GenBank_assemblies_FDA_ARGOS.txt'
FILE5='GenBank_assemblies_HMP.txt'
FILE_A='assembly_summary_genbank.txt'
OUTPUT='assembly_summary_genbank_ennrich.txt'
for assem in $(cat $FILE1 $FILE2 $FILE3 $FILE4 $FILE5)
do
 line=$(cat $FILE_A | grep $assem)
 printf "$line\n" >> $OUTPUT
done

2.3.2. Download assembly report files
Every NCBI assembly has an assembly report file that contains the relationships between
GenBank and RefSeq sequence accessions for the assembly.

Run the following bash code to download the various report files:

#!/bin/bash
FILE1='assembly_summary_genbank_ennrich.txt'
for url in $(cat $FILE1 | awk -F $'\t' '{print $20}'| sed
's/$/\/*_assembly_report.txt/')
do
 wget $url
done

https://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/assembly_summary_genbank.txt
https://ftp.ncbi.nlm.nih.gov/genomes/

2.3.3. Get GenBank-RefSeq sequence accessions lists
The obtained files were processed to generate a list of GenBank-RefSeq sequence accessions for
the NCBI assemblies of the dataset of Microbiome Studies Genomes (MSG).

Run the following bash code to generate the accessions list:

#!/bin/bash
DIREC_IN='/path/to/assembly/reports/directory'
OUT_FILE='GenBank-RefSeq_sq_accessions_list.txt'
cd $DIREC_IN
for file in $(ls | grep 'assembly_report.txt')
do
 cat $file | grep -v '^#' | sed '/^ *$/d' | \
 awk -v OFS='\t' '{print $5, $7}'| \
 sed 's/\t/\n/g' >> $OUT_FILE
done

2.3.4. Filter redundancies
In an attempt to minimize redundancies, we used this list to filter the NT_DB database by using
the "filterbyname.sh" script of the BBTools suite. Additionally, the seq2taxid file generated in
the "2.2. Dustmasker and Nfilter" section for the NT_DB is filtered using the
"check_seq2taxid_accession.py" script.

Launch the following single commands in the bash shell:

#Filtering sequences from FASTA file
filterbyname.sh in=nt_masked_Nfiltered.fa out=fNT_DB.fa names=GenBank-
RefSeq_sq_accessions_list.txt include=f
#Filter seqs2taxids relationships
##Get FASTA file sequence accessions
cat fNT_DB.fa | grep '>' | sed 's/>//g' | awk '{print $1}'> fNT_DB_accessions.txt
##Run check_seq2taxid_accession.py(script)
python3 check_seq2taxid_accession.py -c fNT_DB_accessions.txt -r
seq2taxid_nt_masked_Nfiltered_kraken2.txt -o fNT_DB -f kraken2

The "check_seq2taxid_accession.py" script will generate 3 result files: raw+cab file (common
relationships), raw_only file (relationships found only in the raw seqs2taxids file) and cab_only
file (with sequences accessions found only in the cab file). In this case, the raw+cab resulting file
is used as seq2taxid file.

Finally, we combined the resulting fNT_DB (FASTA and seq2taxid files) with the MS Set,
obtaining the NT-MS_DB database used in the comparative. In parallel, the same was done with
the MS-fMAG Set, obtaining the NT-MS-fMAG_DB database.

	1. Download of reference genomes and databases
	1.1. NCBI NT database
	1.2. Microbiome enrichment studies
	1.2.1. NCBI GenBank studies
	Download process
	Generating seq2taxid files
	BIO-ML exception

	1.2.2. HBC study
	Download process
	Generating seq2taxid files

	1.2.3. Nayfach study
	Download process
	Generating seq2taxid files
	Status update

	1.3. Generating the Microbiome Studies Genomes Dataset
	1.4. FASTA Extensions-Explanatory note

	2. Processing and construction of databases
	2.1. MAG filter
	2.1.1. Filtering Almeida study
	2.1.2. Filtering Nayfach
	Status update

	2.1.3. Generate the Microbiome Studies fMAG Genomes dataset

	2.2. Dustmasker and Nfilter
	2.3. Non redundant filter
	2.3.1. Get assemblies summary information
	2.3.2. Download assembly report files
	2.3.3. Get GenBank-RefSeq sequence accessions lists
	2.3.4. Filter redundancies

