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Figure S1: SARS-CoV-2 RNA mutation maps for the (A) Alpha variant, (B) Beta variant, (C) Gamma variant, (D)
Delta variant, and (E) Omicron variant for the 84-nt FSE region and the spike gene region. (F) The mutations in the
FSE region are labeled in the three conformations 3_6, 3_3, and 3_5.

We produce mutation maps for the 84-nt FSE region and the 3822-nt spike gene region of the five major COVID
variants (Alpha, Beta, Gamma, Delta, and Omicron) (Fig. S1). 3575 available Alpha and 898 Beta variant RNA
sequences are downloaded from GISAID ' on February 8, 2021; 1170 Gamma and 1000 Delta sequences are randomly
selected from those downloaded on July 8, 2021; 182 available Omicron sequences are downloaded on November 30,
2021. We then align them with the official SARS-CoV-2 RNA reference sequence of 29891-nt provided by GISAID
(Accession ID: EPI_ISL_402124), following the same protocol used in our prior paper.” The FSE region occupies
residues 1346213545, and the spike gene region occupies 21564-25384.



The FSE region mostly has single-nucleotide mutation in <1% variant sequences (Fig. S1). For the Alpha variant,
only 4 out of 3575 sequences have single mutations (C13506U twice, C13517U once, and A13533G once); for Beta
and Gamma, only 5/898 and 4/1170, and besides the common C13517U mutation, we observe some new mutations
(A13482G, A13512G, and U13527C for Beta, C13501U and C13536 for Gamma); for Delta and Omicron, only

2/1000 and 1/182, and no new mutations.

We label all the FSE mutations in the three conformations 3_6, 3_3, and 3.5 (Fig. S1). These mutations are either in
Stems 1 and 3, or in the loop regions. They are all transition mutations, i.e., pyrimidine-pyrimidine or purine-purine,
and as a result, the 2D structures would not be affected. For example, the A13482G mutation appeared in Beta, Delta,
and Omicron variants locates in the 5’ strand of Stem 1, forming an A-U base pair in the wildtype, so after mutation,

it can still form a G-U wobble base pair.

On the other hand, the spike gene can have dozens of mutations per sequence, and new mutations are added every
time when a new variant appears. All Alpha sequences have 5-11 mutations in the spike gene, and there are 7 high
frequency mutations that occur in >70% of the sequences; for Beta, 4-12 mutations per sequence, and 7 high fre-
quency mutations; for Gamma, 2-25 mutations per sequence, and 12 high frequency mutations. Noticeably, these high
frequency mutations are mostly different for each variant. More mutations emerge since the Delta variant, having 8-24
mutations per sequence, and 18 high frequency mutations. For Omicron, 15-45 mutations are possible per sequence,

and out of 36 high frequency mutations, only 5 have been seen in the previous variants.

Therefore, as the spike gene region keeps adding new mutations that change the translated protein structures, the FSE
region has very few mutations, even for the Delta and Omicron variants. Moreover, the FSE mutations stay in the same
set for all the variants, without introducing new ones, and they seem to maintain the FSE conformation by forming
alternative Wobble base pairs or mutating the loop regions. This high conservation of FSE then makes it a good drug

target.



Table S1: FSE systems studied in this work for three conformations 3_6, 3_3, and 3_5 and their motif-strengthening

mutants (denoted by M) at different lengths, using several 3D prediction programs (R for RNAComposer, S for Sim-
RNA, I for iFoldRNA, V for Vfold3D, and F for Farfar2).

Length WT 3.6 WT 3.3 WT 3.5 M3.6 M33 M35
77nt R,S,LLV R,S, LV R,S, LV R,S, LV R, 1 R,S, LV
87nt R,S, LV R,S, LV N/A N/A N/A N/A
144nt R,LF R,LF N/A R, S, 1 N/A N/A

RNAComposer SimRNA Farfar2

iFoldRNA

Vfold3D

144-nt

Figure S2: Largest cluster center structures of wildtype 3_6 pseudoknot for lengths 77, 87, and 144-nt using different
3D structure prediction programs. Stem 1 is colored blue, Stem 2 red, and Stem 3 green. The ring formed by the 3’
strand of Stem 1, the Stem 2/3 junction, and the Stem 1/3 junction is highlighted. The 5’ strand of Stem 1 and the 5’
end are colored orange, and in some systems, they thread through the ring.
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Figure S3: Radius of gyration of the wildtype 3_6, 3_3, and 3.5 conformations for 77, 87, and 144-nt. The 3.3
pseudoknot is more compact in longer sequences than 3_6.
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Figure S4: RNA potential energy of the wildtype 3_6, 3_3, and 3_5 conformations for 77, 87, and 144-nt. The 3_3
pseudoknot shows lower RNA potential energy than 3_6 in 87 and 144-nt FSE.
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Figure S5: Largest cluster center structures of wildtype 3_3 pseudoknot for lengths 77, 87, and 144-nt using different
3D structure prediction programs. Stem 1 is colored blue, Stem 2 red, and Stem 3 green. The 77-nt RNAComposer,
the 87-nt RNAComposer and Vfold3D, and the 144-nt RNAComposer systems fail to form 3_3 Stem 2, and they are
marked by an “x”.
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Figure S6: Secondary structures of the 3_3 pseudoknot for 87 and 144-nt FSE. Canonical Watson-Crick and wob-
ble base pairs are shown for the largest cluster center structures from microsecond MD simulations. The pink box
represents flanking stem SF formed by upstream and downstream sequence.



RNAComposer SimRNA iFoldRNA Vfold3D
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Figure S7: Largest cluster center structures of wildtype 3_5 junction for 77-nt using different 3D structure prediction
programs. Stem 1 is colored blue, Stem 2 red, and Stem 3 green.

RNAComposer SimRNA iFoldRNA Vfold3D Farfar2

Figure S8: Dominant motions in the wildtype 3_6 pseudoknot systems revealed by principal component analysis. Two
extreme frames are extracted and colored in magenta and cyan. The stems and the 5" and 3’ ends are labeled, and the
motions are highlighted using arrows. In the 144-nt iFoldRNA structure, some of residue distances in the two extreme
frames are higher than usual, and these residues can only be visualized using line drawing method in PyMol.
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Figure S9: Number of H-bonds in the three stems of the wildtype 36, 3_3, and 3_5 conformations for 77, 87, and
144-nt. Stem 2 is weakest in all three conformations. At 77-nt, 3_6 has the strongest Stem 2. At 87-nt, 3_3 has a
slightly stronger Stem 2 than 3_6.
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Figure S10: Interaction energy between the strands in the three stems of the wildtype 3_6 and 3_3 conformations for
77, 87, and 144-nt.
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Figure S11: Dominant motions in the wildtype 3_3 pseudoknot systems revealed by principal component analysis.
Two extreme frames are extracted and colored in magenta and cyan. The stems and the 5" and 3’ ends are labeled, and
the motions are highlighted using arrows. The 77-nt RNAComposer, the 87-nt RNAComposer and Vfold3D, and the
144-nt RNAComposer systems fail to form 3_3 Stem 2, and they are marked by an “x”.
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Figure S12: Dominant motions in the wildtype 3_5 junction systems revealed by principal component analysis. Two
extreme frames are extracted and colored in magenta and cyan. The stems and the 5 and 3’ ends are labeled, and the
motions are highlighted using arrows. In the Vfold3D structure, some of residue distances in the two extreme frames
are higher than usual, and these residues can only be visualized using line drawing method in PyMol.
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Figure S13: Largest cluster center structures of mutant 3_6 pseudoknot for lengths 77 and 144-nt using different 3D
structure prediction programs. Stem 1 is colored blue, Stem 2 red, and Stem 3 green. The ring formed by the 3’ strand
of Stem 1, the Stem 2/3 junction, and the Stem 1/3 junction is highlighted. The 5’ strand of Stem 1 and the 5’ end are
colored orange, and in some systems, they thread through the ring.
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Figure S14: Dominant motions in the mutant 3_6 pseudoknot systems revealed by principal component analysis. Two
extreme frames are extracted and colored in magenta and cyan. The stems and the 5 and 3’ ends are labeled, and the
motions are highlighted using arrows. In the 144-nt SimRNA structure, some of residue distances in the two extreme
frames are higher than usual, and these residues can only be visualized using line drawing method in PyMol.
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Figure S15: Largest cluster center structures of mutant 3_3 pseudoknot for lengths 77-nt using different 3D structure
prediction programs. Stem 1 is colored blue, Stem 2 red, and Stem 3 green. The RNAComposer system fails to form
3_3 Stem 2, and is marked by an “x”.
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Figure S16: Dominant motions in the mutant 3_3 pseudoknot systems revealed by principal component analysis. Two
extreme frames are extracted and colored in magenta and cyan. The stems and the 5 and 3’ ends are labeled, and the
motions are highlighted using arrows. In the RNAComposer structure, some of residue distances in the two extreme
frames are higher than usual, and these residues can only be visualized using line drawing method in PyMol. The

[TERT)

RNAComposer system fails to form 3_3 Stem 2, and is marked by an “x”.

RNAComposer SimRNA

Figure S17: Largest cluster center structures of mutant 3_5 junction for 77-nt using different 3D structure prediction
programs. Stem 1 is colored blue, Stem 2 red, and Stem 3 green.
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Figure S18: Dominant motions in the mutant 3_5 junction systems revealed by principal component analysis. Two
extreme frames are extracted and colored in magenta and cyan. The stems and the 5 and 3’ ends are labeled, and the
motions are highlighted using arrows.
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