
Additional file 3

Detailed description of each compared method.
In this section we provide a concise but more precise description of each method

used in the experiments of this paper, to facilitate easier reproducibility.

The data

In this appendix, we use matrix X = 〈x1,x2, ...,xn〉 of dimension n × d to de-

scribe the n feature vectors representing the n patients. Each feature vector xi is

of dimension d. The outcome vector y is used to denote the n outcome labels (one

or zero), where yi is the value at dimension i of y, corresponding to the observed

(”ground truth”) outcome of xi.

The link function

With the term link function, we refer to the (parameterized) function that maps

the predictor values to predicted outcome probability. For all methods, the link

function used to calculate predicted outcome ŷi from input xi is the logit function:

f(xi,β, β0) =
1

exp{−(βxi + β0)}
, (1)

where β = 〈β1, β2, ..., βd〉 is the vector of coefficients, and β0 the intercept.

The objective function

The objective function defines what are considered optimal coefficients for each

method (in some literature referred to as the training criterion). A method’s ob-

jective function is generally defined to return coefficients β and intercept β0 that

minimize the training error, which is given by a loss function (in some literature

referred to as the cost function). Since all methods in this study have logistic regres-

sion form, the only difference between the compared methods is how coefficients are

obtained from the data, i.e., they differ only in their objective function. The com-

ponent of the objective function that is shared by all methods is the cross-entropy

loss (i.e., the negative log-likelihood):

LML(β, β0) = −
n∑
i=1

yi log f(xi,β, β0) + (1− yi) log(1− f(xi,β, β0)) (2)

For our baseline model, regular logistic regression, the corresponding objective con-

sists purely of finding coefficient values β∗ and intercept value β∗0 that minimize the

cross-entropy (equivalent to maximum likelihood):

β∗, β∗0 = arg min
β,β0

LML(β, β0) (3)

In the sections below, we will specify for each method how the corresponding ob-

jective differs.

Loss minimization and hyperparameter tuning

Unless specified otherwise, each method’s loss function is minimized using Adam

[1], for at most 1000 epochs, using early stopping [2] with a patience of 500 epochs,

and a maximum learning rate of 0.1. For tuning of important hyperparameters

that may come with certain methods, we use nested cross-validation, in a Bayesian

optimization setting [3], using 10 iterations of a Gaussian process with a certain

prior and range. The range and prior of each hyperparameter are given in the

sections below.

Lasso

For Lasso, the only difference with regard to the baseline is an extension of the

LML(β, β0) with a penalty on the size of the coefficient values, the `1-norm of the

coefficients, shown in Equation 4, where λ`1 is a hyperparameter determining the

importance of the `1-penalty.

L`1 = LML(β, β0) + λ`1 |β| (4) β∗, β∗0 = arg min
β,β0

L`1 (5)

The tuning range for λ`1 is [10−2, 103], and we used a log-linear prior. The final

objective is shown in Equation 5.

Ridge

For Ridge, the modification with regard to the baseline is very similar as for Lasso,

except that the penalty on coefficient size is the `2-norm of the β. This results in

loss function, and objective functions 6, and 7 respectively.

L`2 = LML(β, β0) + λ`2 |β|2 (6) β∗, β∗0 = arg min
β,β0

L`2 (7)

For Ridge, the hyperparameter λ`2 is tuned with the same range and prior as λ`1
for Lasso.

Elastic Net

Elastic Net is the application of both a Lasso and a Ridge penalty to the model.

Consequently, the final loss function, and objective function of Elastic Net can be

given by Equations 8, and 9 respectively.

LENet = LML(β, β0) + λ`1 |β|+ λ`2 |β|2

(8) β∗, β∗0 = arg min
β,β0

LENet (9)

The tuning procedure of hyperparameters λ`1 and λ`2 is the same as for Lasso

and Ridge.
2

Principal Component Logistic Regression (PLCR)

In PCLR, the input matrix X is first projected into its principal components, using

principal component analysis (PCA), before applying (logistic) regression. PCA

aims to find a linear projectionW ∗ that mapsX to a (smaller) set of non-correlating

latent variables H := W ∗X (the principal components) that best capture the

variance in X. The loss function, and objective to find projection W ∗ are given by

Equations 10 and 11 respectively [4]. The number of latent variables (or principal

components) is tuned using a linear prior over integer values in [4, d].

Lpca(W) = |X −W>WX|2

(10)
W ∗ = arg min

W
Lpca(W) (11)

subject to W>W = I

After projecting each input vector xi ∈ X to its latent vector hi ∈H, a logistic

regression g(hi,γ, γ0) is fitted to relate the latent variables H to the outcome

Y , using coefficients γ, and intercept γ0, following standard maximum likelihood

optimization (Equation 12).

γ∗, γ∗0 = arg min
γ,γ0

LML(γ, γ0) (12)

In this study, we rewrite PCA projection W ∗, and logistic regression g(·) to an

equivalent link function f(xi,β, β0) as in Equation 1 (this is possible as W ∗ is a

linear projection), by setting β := W>
1≤i≤hγ

∗, and β0 := γ∗0 . This way f(xi,β, β0)

is equivalent to first projecting xi to latent vector hi, and afterwards obtaining

predicted ŷi using g(hi,γ, γ0). By doing this, PCLR becomes directly comparable

in terms of coefficients to the other methods mentioned in this article.

Linear Auto-Encoder Logistic Regression (LAELR)

Linear auto-encoders (LAE) are similar to PCA. The aim of LAE is to find a linear

projection W from the input data X to a set of latent variables H, that explain

the variance in X (in the case of LAE through a linear reconstruction projection

V). In contrast to PCA, for LAE there is no orthogonality constraint on H, and

the dimensions of H are not ordered by explained variance. Nevertheless, LAE find

projections to the same axis as PCA [5].

Llae(W ,V) = |X − VWX|2 (13)

Llaelr(W ,V ,γ, γ0) = LML(γ, γ0) + λlaeLlae(W ,V) (14)

Similar to PCLR,H is related to Y using a logistic regression function g(hi,γ, γ0),

and obtain the final coefficients of f(xi,β, β0) by setting β := W>
1≤i≤hγ, and β0 :=

3

γ0, and the number of latent variables is tuned using a linear prior over integer values

in [4, d]. However, the difference between PCLR and LAELR in this study is that

instead of optimizing W only on the reconstruction loss (Equation 13), we optimize

bothW and g(·) jointly on the combined loss and corresponding objective, shown in

Equations 14 and 15 respectively. This way, projectionW is not purely optimized to

explain the variance in X, but also, for a part, to facilitate explanation of variance

in Y . If λlae is very large the objective becomes similar to PCLR, whereas if λlae
is very small, the overall objective is similar to standard logistic regression. To

empirically balance two loss functions we tune hyperparameter λlae with a log-

linear prior in the same range as the penalty of Lasso and Ridge: [10−2, 103].

W ∗,γ∗, γ∗0 = arg min
W ,γ,γ0

Llaelr(W ,V ,γ, γ0) (15)

Dropout regularization

Dropout training was proposed as a regularization method to prevent co-adaptation

of weights in neural networks [6]. Dropout works in iterative gradient-based train-

ing procedures, like the one used in the current work (described in Appendix).

When using dropout, a sub-model is randomly selected at each training iteration,

effectively “dropping out” a random percentage δ of the model’s coefficients. This

selected sub-model is used to make predictions as part of that training iteration,

and the involved coefficients are updated accordingly. Because at each iteration not

all coefficients are involved in the model update, co-adaptation of the coefficients is

disrupted. When training is completed, the coefficients are scaled down by a factor

1− δ to maintain the same expected output of the model during testing as during

training (correcting for the fact that during training the full model was never used

as a whole). The current work uses the dropout implementation in PyTorch, which

is inverted dropout (used in most software implementations). In inverted dropout

the coefficients are temporarily scaled during training by a factor 1
1−δ instead of af-

ter training is completed. This way, no scaling is required when applying the model.

For logistic regression[1], the loss function of dropout can be given by Equation 16,

in which we abbreviate f(xi,β, β0) as fi for clarity [7]. The corresponding objective

is given by Equation 17.

Ldropout(β, β0) = LML(β, β0) +
1

2

δ

1− δ

n∑
i=1

d∑
j=1

fi(1− fi)x2ijβ2
j (16)

W ∗ = arg min
W

Ldropout(W) (17)

The loss function of dropout for logistic regression models can be summarized in

two parts. First, like Ridge, it includes a quadratic penalty on the size of the coeffi-

cients, shown on the far right of the equation: β2
j . Second, it includes an additional

[1]For other link functions than the logit function, the loss function of dropout is

different. The more general formulation is provided in the original article by [6].
4

penalty discouraging moderate predictions during training (close to 0.5), shown by

fi(1 − fi). The degree of dropout regularization is determined by hyperparameter

δ, which we tune using a linear prior over the interval [0.1, 0.5].

Non-negative logistic regression (LRNN)

Sometimes, the coefficient search space can be constrained based on prior knowledge,

preventing the model’s coefficient estimation procedure from exploring coefficients

that are assumed invalid by the modeler. This can help reduce co-adaptation of co-

efficients, and their inflation, and may improve the model’s predictive performance,

if the assumption is valid.

In this study we explore the use of non-negativity constraints on dosage coefficients

βoar ⊆ β, as we believe increasing dose to OAR should not result in a decrease

in predicted risk of complications. The only difference in this method compared

to standard logistic regression is that the feasible coefficient values for all dosage

parameters are constrained to the non-negative region during loss minimization,

shown in the objective in Eq. 18.

β∗, β∗0 = arg min
β,β0

LML(β, β0), with ∀βi∈βOARβi ≥ 0 (18)

In terms of implementation, we enforce the constraint during our gradient-based

minimization through gradient projection [8]: setting all negative dosage coefficients

to 0 after each coefficient update.

References
1. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.

2. Morgan N, Bourlard H. Generalization and parameter estimation in feedforward nets: Some experiments.

Advances in neural information processing systems. 1989;2:630–637.

3. Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Advances in

Neural Information Processing Systems. 2012;p. 2951–2959.

4. Udell M. Generalized Low Rank Models. Stanford University; 2015.

5. Kunin D, Bloom J, Goeva A, Seed C. Loss Landscapes of Regularized Linear Autoencoders. International

Conference on Machine Learning. 2019;p. 3560–3569.

6. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint arXiv:12070580. 2012;.

7. Wager S, Wang S, Liang PS. Dropout training as adaptive regularization. Advances in neural information

processing systems. 2013;26:351–359.

8. Calamai PH, Moré JJ. Projected gradient methods for linearly constrained problems. Mathematical

Programming. 1987;39(1):93–116.

5

