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Supplementary Materials

Supplementary Methods

SNP Array Analysis

Single nucleotide polymorphism (SNP) arrays were scanned on an iScan (Illumina). Data was
processed using the Genotyping module (v.1.9.4) in GenomeStudio v.2011.1 (Illumina) to
calculate B-allele frequencies (BAF) and logR ratios. GAP (1) was used to call somatic regions
of copy number change after low-quality probes assessed in the matched normal sample with

GenCall (GC) score of <0.7 were removed.

Alignment to human and mouse genome references

Reads were aligned to a combined human/mouse (GRCh37/GRCm38 Nodshiltj background)
reference using BWA-mem (v0.7.15). Only read paired aligned to the human sequences with
a mapping quality score (MAPQ) = 60 were used for downstream analysis (Additional File 2:
Table S8). We confirmed that all reads mapping to human reference with MAPQ60 had lower
secondary alignment scores (XS) to mouse reference compared with primary alignment scores

(AS).

Variant calling

A dual variant-calling strategy was used. Substitutions were detected using an in-house
developed tool qSNP (2) and GATK Haplotype caller (3), and insertions or deletions (indels)
of 1-60 bp in length were called with GATK Haplotype caller. Filters were applied to ensure
only high confidence variants were reported (4). For somatic coding variants in WES samples,
the variant filtering was less stringent to include variants with lower coverage. The less-
stringent filters included: strand bias of alternate allele, less than 5 variant reads, variant also
found in pileup of normal and homopolymer filter. Variants were annotated with Ensembl v75
gene feature information and transcript or protein consequences using SnpEff (v4.2) (5). For
HR gene variant analysis, only pathogenic or likely pathogenic ClinVar variants or presumed

truncating variants (frameshift, nonsense and canonical splice-site variants) were included.



Large structural rearrangements were identified using an in-house developed tool qSV for
WGS (4). Somatic copy number alterations (CNA), tumor ploidy and purity were determined
with ascatNgs for WGS (6) and GAP for SNP arrays (1). Homozygous deletions (CN<1),
deletions (CN<2) gains (CN>ploidy + 1) and amplifications (CN>ploidy +3) were considered
in the analysis. Copy number alterations (CNA) and structural variant (SV) events were
annotated against Ensembl. Percentage of genome with CNA was determined from SNP array
and WGS CNA data for PDX tumor samples, as percentage of genome (autosomal
chromosomes) with copy number # 2. Tumor purity for mismatch-repair deficient (MMRd)
models was determined from distribution mode of somatic variant allele frequencies multiplied
by tumor ploidy of 2, since there was not sufficient copy number changes to accurately estimate
tumor purity from CNA calls. Tumor and ploidy purity for WGS data was estimated by
ascatNgs.

Heterogeneity analysis

Somatic mutation comparison between primary and PDX tumor samples was performed for
four mismatch-repair deficient (MMRd) models with WES data and three carcinosarcoma
models with WGS. A union of all pass-filter missense variants was generated for each model,
and then the genomic positions of these variants were interrogated with qBasePileup to capture
any variants that may have been missed during variant calling, because of low frequency or
other quality filters. The overlaps of pileup variants were visualised using eulerR package. The
generated pileup list of variants with allele-specific copy number information, extracted from
ascatNGS (6) or GAP (1) output (for WGS and SNP arrays, respectively), was then used to
identify mutational clusters using PyClone (v0.13.1) (7) with pyclone beta binomial emission
density, random seed set to 20 and thin parameter set to 10. The top five mutational clusters
with the most variants were selected for determining clonal evolution using ClonEvol package
(8).

Copy number clonality analysis was performed on the WGS data of tumor-normal pairs using

Battenberg (v2.2.5) with default settings.

MSI status
The level of microsatellite instability (MSI) was assessed using MSlIsensor (v0.2) on tumor-

normal pairs of primary and PDX tumor samples using suggested parameters for WES and

WGS data (9). Samples with an MSI score of >3 were classified as MSI-high.



HRD score assessment
Homologous recombination deficiency (HRD) scores were assessed on SNP array and WGS
data using scarHRD (10) package on the allele-specific copy number information determined

by either GAP (1) or ascatNGS (6).

Signature analysis

Mutational signature analysis was performed using two approaches with SigProfiler and
deconstructSigs. De novo signatures were identified on somatic single nucleotide variants from
WES data using non-negative matrix factorization (NMF) with SigProfiler, as previously
described (11). The identified signatures were then compared to the 30 known COSMIC v2
signatures. The optimal number of signatures was chosen based on a number of parameters:
stability, reconstruction error and cosine similarities to COSMIC signatures. The contribution
of each de novo signature to a sample’s mutational profile was assigned using
SignatureEstimation package (12). To determine the potential relative contribution of signature
3 (HRD-associated signature), deconstructSigs package (13) was used to estimate the
contribution of the sample’s mutations to the full catalogue of COSMIC v2 mutational
signatures, using default setting. Minimum mutation signature contribution cut-off was set to
15%.

SV signatures were identified using the same approach as used for de novo mutational signature
analysis. SV events were classified into 32 previously defined categories based on event type,
size and breakpoint clustering (14). SV signature analysis was performed as previously
described (15).

HRdetect probability scores were calculated as previously reported (16) using the reported
weights and adjustment values (based on SNV mutational signatures, SV signatures, HRD sum
scores and proportion of deletions with microhomology). Deletions with microhomology were
identified previously developed scripts (17). HRdetect scores >0.7 were used to categorise

HRD samples.

Targetable Mutations Analysis

Cancer Genome Interpreter analysis was performed in July 2019 to identify potentially
targetable mutations in the PDX models. Short somatic variants, homozygous deletions and
amplifications in coding regions observed in all PDX samples were used as input. Only known
pathogenic variants and predicted drivers (tier 1, 2) were considered as biomarkers. Biomarkers

were matched with drugs using the Cancer Biomarker Database within Cancer Genome



Interpreter. The drug prescription output from Cancer Genome Interpreter was filtered to select
variants that were “complete” alterations (alterations that match the specific amino acid change
in the gene which constitutes an actionable variant for a specific drug). Only drug sensitivity
biomarkers with FDA approved drugs or drugs currently in clinical trials were included.

Chemotherapy and steroid compounds were not included.



Supplementary Tables

Table S1. Clinical and histopathological characteristics of patient-derived xenograft
(PDX) models of uterine cancers that underwent genomic analysis.

Patient Current

PDX # Stage Grade Histology Chii‘;gt)h;sl;apy cancer Mortality
status status
PDXO03 Ic 3 UCS Chemoradiation Recurred DWD
PDX12 Ia 3 HG EEC  Radiation only - NED
PDX21 IIlc 3 HG EEC  Radiation only = Recurred DWD
PDX23 IIIb 3 HG SEC Chemoradiation Recurred DWD
PDX24 Ib 3 HG EEC  Radiation only - NED
PDX49 Ia 3 UCS Chemoradiation - NED
PDX52 Ib 2 LG EEC  Radiation only = Recurred DWD
PDXS53 II 3 HG SEC  Chemoradiation - NED
PDX56 la 3 UCS Chemoradiation Recurred AWD
PDX58 Ib 3 HG EEC No treatment Recurred DWD

PDX59 Ib 3 HG EEC  Radiation only - NED

UCS — Uterine Carcinosarcoma; HG EEC — high-grade endometrioid endometrial cancer,
HG SEC — high-grade serous endometrial cancer; LG EEC — low-grade endometrioid
endometrial cancer; DWD — died with disease; AWD — Alive with disease; NED — alive
with no evidence of disease.

Table S2. Successful PDX engraftment by grade and storage conditions.

Total EC
Tumor tissue condition Gradel Grade 2 Grade 3 PDXs
Fresh 0/8 2/6 (33%) 11/18 (61%)  13/32 (41%)
Overnight at 4°C 1/4 (25%) 2/7 (29%) 3/11 (27%)
Viably Frozen (-80°C) 0/2 0/5 2/4 (50%) 2/11 (18%)




Table S3. Genes with common SNV and short indels or CNA events identified by TCGA

UCEC and TCGA UCS studies.

Type of somatic TCGA
Gene event study
ARHGAP35 SNV and short indels UCS
ARIDIA SNV and short indels UCEC
ARID5B SNV and short indels UCEC
CDH4 SNV and short indels UCS
CTNNBI1 SNV and short indels UCEC
FBXW?7 SNV and short indels UCEC, UCS
KRAS SNV and short indels UCEC, UCS
PIK3CA SNV and short indels UCEC, UCS
PIK3R1 SNV and short indels UCEC, UCS
POLE SNV and short indels UCEC
PPP2RIA SNV and short indels UCEC, UCS
PTEN SNV and short indels UCEC, UCS
RBI SNV and short indels UCS
RPL22 SNV and short indels UCEC
SPOP SNV and short indels UCS
TP53 SNV and short indels UCEC, UCS
U24F SNV and short indels UCS
ZBTB7B SNV and short indels UCS
BCL2L1 CNA UCS
CCNE1 CNA UCEC, UCS
ERBB2 CNA UCEC, UCS
FGFRI1 CNA UCEC
FGFR3 CNA UCEC, UCS
IGFIR CNA UCEC
KAT6A CNA UCS
LRPIB CNA UCEC
MDM?2 CNA uCS
MYC CNA UCEC, UCS
RITI CNA uCS
SOX17 CNA UCEC
TERC CNA UCsS

TCGA — The Cancer Genome Atlas; UCEC — Uterine corpus endometrial carcinoma; UCS
— uterine carcinosarcoma.

Table S4. Somatic coding variants and CNAs detected in PDX tumor samples in genes
relevant to endometrial cancer.

These variants are summarized in Fig 2. PDX03 and PDX49 models were analyzed with
WES and WGS, where WES samples are denoted with *. Attached as separate document
(Additional File 2).



Table S5. HR DNA repair associated genes.

RefSeq HR-related
Gene transcript gene
ATM NM 000051.3 yes
ATR NM 001184.3
BARDI NM _000465.3 yes
BRCAI NM 007294.3 yes
BRCA2 NM_000059.3 yes
BRIP1 NM 032043.2 yes
CDK12 NM 016507.3 yes
CHEK1 NM 001114121.2 yes
CHEK?2 NM 007194.3 yes
FANCA NM 000135.2
FANCB NM 001018113.2
FANCC NM 000136.2
FANCD?2 NM 033084.4
FANCE NM 021922.2
FANCF NM 022725.3
FANCG NM 004629.1
FANCI NM 001113378.1
FANCL NM 001114636.1
FANCM NM_020937.3
MREI1 NM_005591.3 yes
NBN NM 002485.4 yes
PALB?2 NM_024675.3 yes
RADS50 NM 005732.4 yes
RADS51 NM_002875.4 yes
RADSIB NM 133509.3 yes
RADS5IC NM 058216.2 yes
RADS51D NM 002878.3 yes

Table S6. HR DNA repair gene variants detected in EC PDX models.
Attached as separate document (Additional File 2).

Table S7. HR DNA repair gene variants detected in TCGA-UCEC and TCGA-UCS
studies.
Attached as separate document (Additional File 2).

Table S8. Sequencing read alignment statistics for human and mouse genome references
for WES and WGS samples.
Attached as separate document (Additional File 2).
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Fig. S1. Generation of PDX models correlates with disease specific survival (DSS).
Clinical follow-up data was available for 39/54 patients from whom tumors were engrafted.
Disease specific survival is the time from the date of diagnosis until death from disease.
Statistical significance was calculated using a Log Rank (Mantel-Cox) Test.
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Fig. S2. Genomic characteristics of endometrial carcinoma and carcinosarcoma PDX
models. PDX models are grouped by the four molecular subtypes: POLE, CN-low, MMRd and
CN-high/p53mut. Tumor mutation burden is shown by grey bars, as mutations per Mb. Somatic
mutations and CNA events, which were detected in PDX samples in MMR genes and genes
relevant to endometrial carcinomas and carcinosarcomas (Additional File 1: Table S3,
Additional File 2: Table S4), are shown. Only the dominant mutational signature etiology is
shown. PDX samples are labelled by passage number (Pt — patient, FO — 1" transplant, F1 —
2" transplant, F2 — 3™ transplant, etc.)



PDX24
PDX21

20~

15-

MSI Score (%)
)

—_—— ==

PDX12

PDX52

_— ===

MSISensor prediction

PDX53

PDX58
PDX59

—_ ==

oo [@ R a\]
Wiy iy Y [Ty Ty T
SamplelLabel

2] 0]

al o

x x

o a

o o
— A m_N
1 ] 1 1 1 1 1 1
o~~~k
oom oL oo
- Q< e )
LW Lo

Fig. S3. MSI score determined by MSIsensor in primary and PDX
assessed by WES. Tumor samples are grouped by patient ID. PDX samples are labelled by
passage number (FO — 1% transplant, F1 — 2™ transplant, F2 — 3™ transplant, etc.) and lineage
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microsatellite instability; PDX — patient-derived xenograft; WES — whole-exome

sequencing; Pt — patient.
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Fig. S4. Degree of copy number instability observed in primary and PDX tumor samples
assessed by: a Percentage of genome with CNA for autosomal chromosomes only; and b
Number of abnormal CN segments, including CN neutral LOH, of >10Mb. The CNA were
determined from SNP arrays, except for PDX56, where WGS CNA data was used. Tumor
samples are grouped by patient ID PDX03 and PDX49 were analyzed with WES and WGS,
with WES samples denoted with *. PDX samples are labelled by passage number (FO — 1
transplant, F1 — 2" transplant, F2 — 3™ transplant, etc.) and lineage in brackets (A, B). CN —
copy number; CNA — CN alterations; LOH — loss of heterozygosity; WGS — whole-genome
sequencing.
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Fig. S11. Mutational heterogeneity in mismatch repair deficient PDX models visualized
by Euler diagrams. Somatic substitutions called by qBasepileup in a PDX12 and b PDX52
models. PDX — patient-derived xenograft. PDX samples are labelled by passage number (FO
— 1%t transplant, F1 — 2™ transplant, F2 — 3™ transplant, etc.) and lineage in brackets (A, B).

18



a) PDX24 (POLE) b)

F1(A)
. F1(C) Fo (B)
- F2 (A) : 14 — . F2 (B)

F1(C)

PDX21 (CN-low)

167

c) .
PDX53 (MMRd) d) PDX23 (CN-high)
F2 (B)
FO (B) F1(C) .
[ ro M-o
. F1(D) F1(C)
e) f)
PDX21 (CN-low) PDX53 (MMRd)
100% = 100% - 311
a a
+ % 327 ' %
50% = 1 50% =
] 11 —l— 250
0% —_— 0%- —_——
3 11 8
f= =
& 100% —— 8 100%-
©
] & T ® 2
o Gl o Cl
5 50% 37 11 5 0% 250
3 3
= EE— = 327
o] [ o} 311 $
© © o —_——— ——
100% = 100% =
[ 250 2
o, 37 Cl " Cl
50% 11 50% I
—_— 11 3 327 311
0% ! ) — ! 0% ! e )
1 2 3 4 1 2 3 4
cluster cluster
cluster 100 28 s EE 4 cluster 100 2B s EA 4

Fig. S12. Mutational heterogeneity in PDX models without matched primary tumor.
Panels a-d show euler diagrams for somatic substitutions called by qBasepileup in models
PDX24, PDX21, PDX53 and PDX23, respectively. Panels e-d show cellular prevalence of
the top four mutational clusters with >5% of all somatic substitutions detected by PyClone in
models PDX21 and PDX53, respectively, Values shown above boxplots represent the number
of mutations contributing to each cluster. PyClone outputs were not able to be obtained in
PDX24 due to ultra-high mutational load (computational restrictions) and in PDX23 due to
absence of allele-specific copy number estimations from SNP array data (no normal sample).
PDX samples are labelled by passage number (FO — 1% transplant, F1 — 2™ transplant, F2 — 3™
transplant, etc.) and lineage in brackets (A, B).
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Fig. S14. Distinct copy number alternations in CN-high/p53mut model PDX49 assessed
by SNP arrays: a B-Allele Frequencies, b Log R Ratios with red segments indicating copy
number change, and ¢ simplified PDX lineage diagram with analyzed tumor samples and
distinct copy number alternations. Notations for copy number changes: + gain, - loss, s
subclonal. SNP — SNP array, WGS — whole-genome sequencing. PDX samples are labelled by
passage number (FO — 1% transplant, F1 — 2™ transplant, F2 — 3™ transplant, etc.) and lineage
in brackets (A, B).
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Fig. S15. Distinct copy number alternations in CN-high/p53mut model PDX56 assessed
by SNP arrays: a B-Allele Frequencies, b Log R Ratios with red segments indicating copy
number change, and ¢ simplified PDX lineage diagram with analyzed tumor samples and
distinct copy number alternations. Notations for copy number changes: + gain, - loss, s
subclonal. SNP — SNP array, WGS — whole-genome sequencing. PDX samples are labelled by
passage number (FO — 1% transplant, F1 — 2™ transplant, F2 — 3™ transplant, etc.) and lineage
in brackets (A, B).
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Fig. S16. CNA profiles of the primary and matched PDX samples of CN-high/p53mut
carcinosarcoma PDX03 model. Battenberg subclonal CN profiles for a primary tumor, b
Passage 1 — Lineage A sample, ¢ Passage 1 — Lineage B sample and d Passage 3 — Lineage
B sample. Thick lines show the predominant CN state, thin lines show subclonal CN, yellow
color denotes major allele CN, and dark grey denotes minor allele CN. PDX — patient-derived
xenograft; CN — copy number. e Ploidy estimations determined from SNP array or WGS data,
where it was available. PDX samples are labelled by passage number (FO — 1% transplant, F1 —
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Fig. S17. Clonal evolution analysis of mutations in the CN-high/p53mut carcinosarcoma
PDX49 model. a Mutational heterogeneity visualized by euler diagrams of somatic
substitutions called by qBasepileup. b Cellular prevalence of the top five mutational clusters
with >5% of all somatic substitutions detected by PyClone. Values shown above boxplots
represent the number of mutations contributing to each cluster. ¢ Fish plots and d cellular
population depictions of the top five mutational clusters. Percentages shown in the fish plots
are the estimated proportions of cells containing that mutational cluster. e The selected clonal
evolution tree inferred by ClonEvol. f An alternative solution for the clonal evolution tree by
ClonEvol. PDX samples are labelled by passage number (FO — 1%t transplant, F1 — 2"
transplant, F2 — 3™ transplant, etc.) and lineage in brackets (A, B).
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Fig. S18. Clonal evolution analysis of mutations in the CN-high/p53mut carcinosarcoma
PDX56 model. a Mutational heterogeneity visualized by euler diagrams of somatic
substitutions called by gBasepileup. b Cellular prevalence of the top three mutational clusters
with >5% of all somatic substitutions detected by PyClone. Values shown above boxplots
represent the number of mutations contributing to each cluster. ¢ Fish plots and d cellular
population depictions of the top three mutational clusters. Percentages shown in the fish plots
are the estimated proportions of cells containing that mutational cluster. e The clonal evolution
tree inferred by ClonEvol. PDX samples are labelled by passage number (FO — 1% transplant,
F1 — 2" transplant, F2 — 3" transplant, etc.) and lineage in brackets (A, B).
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Fig. S19. Potentially actionable genomic alterations in PDX models identified using
Cancer Genome Interpreter. Genomic alterations are shown in black in the bottom panel.
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Fig. S20. De novo rearrangement signature analysis in the three CN-high/p53mut
carcinosarcoma models assessed by WGS. a Structural variant types detected in the PDX
models that were used for rearrangement signature analysis. b The rearrangement class profile
of the three de novo rearrangement signatures. Rearrangements were classified into 32
categories based on the rearrangement size, type and whether breakpoints are clustered or non-
clustered. ¢ Cosine similarity matrix of the three de novo rearrangement signatures and
previously described rearrangement signatures in breast cancer. d The relative contribution of
de novo signatures to the mutational profile of each tumor sample. Tumor samples are grouped
by patient ID. PDX samples are labelled by passage number (FO — 1% transplant, F1 — 2™
transplant, F2 — 3™ transplant, etc.) and lineage in brackets (A, B). PDX — patient-derived
xenograft; WGS — whole-genome sequencing; Del — deletion, Dup — duplication, Inv —
inversion, T — translocation.
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Fig. S21. De novo mutational signature analysis in TCGA UCEC and UCS cohorts. a
The mutational type probability for each substitution in a trinucleotide context of six de novo
signatures identified by SigProfiler. b Cosine similarity matrix of six de novo signatures and
30 known COSMIC (v2) signatures. ¢ The relative contribution of de novo signatures to the
mutational profile of each tumor sample.

28



References

1. Popova T, Manié E, Stoppa-Lyonnet D, Rigaill G, Barillot E, Stern MH. Genome
Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained
by SNP arrays. Genome biology. 2009;10(11):1-14.

2. Kassahn KS, Holmes O, Nones K, Patch AM, Miller DK, Christ AN, et al. Somatic
point mutation calling in low cellularity tumors. PLoS One. 2013;8(11):e74380.

3. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 2010;20(9):1297-303.

4, Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al.
Whole-genome  characterization  of  chemoresistant  ovarian  cancer.  Nature.
2015;521(7553):489-94.

5. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for
annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the
genome of Drosophila melanogaster strain wl118; iso-2; iso-3. Fly. 2012;6(2):80-92.

6. Raine KM, Van Loo P, Wedge DC, Jones D, Menzies A, Butler AP, et al. ascatNgs:
Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing
Data. Current protocols in bioinformatics. 2016;56(1):15.9. 1-.9. 7.

7. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference
of clonal population structure in cancer. Nature methods. 2014;11(4):396-8.

8. Dang H, White B, Foltz S, Miller C, Luo J, Fields R, et al. ClonEvol: clonal ordering
and visualization in cancer sequencing. Annals of oncology. 2017;28(12):3076-82.

9. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al. MSIsensor: microsatellite
instability detection using paired tumor-normal sequence data. Bioinformatics.
2014;30(7):1015-6.

10. Sztupinszki Z, Diossy M, Krzystanek M, Reiniger L, Csabai I, Favero F, et al.
Migrating the SNP array-based homologous recombination deficiency measures to next
generation sequencing data of breast cancer. NPJ breast cancer. 2018;4(1):1-4.

11. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al.
Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-21.

12.  Huang X, Wojtowicz D, Przytycka TM. Detecting presence of mutational signatures in
cancer with confidence. Bioinformatics. 2018;34(2):330-7.

13. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs:
delineating mutational processes in single tumors distinguishes DNA repair deficiencies and
patterns of carcinoma evolution. Genome biology. 2016;17(1):1-11.

14. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape
of somatic mutations in 560 breast cancer whole-genome sequences. Nature.
2016;534(7605):47.

15. Newell F, Kong Y, Wilmott JS, Johansson PA, Ferguson PM, Cui C, et al. Whole-
genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nature
communications. 2019;10(1):1-15.

16. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is a
predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nature medicine.
2017;23(4):517.

17. Zhao EY, Shen Y, Pleasance E, Kasaian K, Leelakumari S, Jones M, et al. Homologous
recombination deficiency and platinum-based therapy outcomes in advanced breast cancer.
Clinical Cancer Research. 2017;23(24):7521-30.

29



