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Supplementary Materials 
 
Supplementary Methods 
 
SNP Array Analysis 

Single nucleotide polymorphism (SNP) arrays were scanned on an iScan (Illumina). Data was 

processed using the Genotyping module (v.1.9.4) in GenomeStudio v.2011.1 (Illumina) to 

calculate B-allele frequencies (BAF) and logR ratios. GAP (1) was used to call somatic regions 

of copy number change after low-quality probes assessed in the matched normal sample with 

GenCall (GC) score of <0.7 were removed.   

 

Alignment to human and mouse genome references 

Reads were aligned to a combined human/mouse (GRCh37/GRCm38 Nodshiltj background) 

reference using BWA-mem (v0.7.15). Only read paired aligned to the human sequences with 

a mapping quality score (MAPQ) = 60 were used for downstream analysis (Additional File 2: 

Table S8). We confirmed that all reads mapping to human reference with MAPQ60 had lower 

secondary alignment scores (XS) to mouse reference compared with primary alignment scores 

(AS).   

 

Variant calling 

A dual variant-calling strategy was used. Substitutions were detected using an in-house 

developed tool qSNP (2) and GATK Haplotype  caller (3), and insertions or deletions (indels) 

of 1-60 bp in length were called with GATK Haplotype caller. Filters were applied to ensure 

only high confidence variants were reported (4).  For somatic coding variants in WES samples, 

the variant filtering was less stringent to include variants with lower coverage. The less-

stringent filters included: strand bias of alternate allele, less than 5 variant reads, variant also 

found in pileup of normal and homopolymer filter. Variants were annotated with Ensembl v75 

gene feature information and transcript or protein consequences using SnpEff (v4.2) (5). For 

HR gene variant analysis, only pathogenic or likely pathogenic ClinVar variants or presumed 

truncating variants (frameshift, nonsense and canonical splice-site variants) were included. 
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Large structural rearrangements were identified using an in-house developed tool qSV for 

WGS (4). Somatic copy number alterations (CNA), tumor ploidy and purity were determined 

with ascatNgs for WGS (6) and GAP for SNP arrays (1). Homozygous deletions (CN<1), 

deletions (CN<2) gains (CN≥ploidy + 1) and amplifications (CN≥ploidy +3) were considered 

in the analysis. Copy number alterations (CNA) and structural variant (SV) events were 

annotated against Ensembl.  Percentage of genome with CNA was determined from SNP array 

and WGS CNA data for PDX tumor samples, as percentage of genome (autosomal 

chromosomes) with copy number ≠ 2. Tumor purity for mismatch-repair deficient (MMRd) 

models was determined from distribution mode of somatic variant allele frequencies multiplied 

by tumor ploidy of 2, since there was not sufficient copy number changes to accurately estimate 

tumor purity from CNA calls. Tumor and ploidy purity for WGS data was estimated by 

ascatNgs. 

 

Heterogeneity analysis 

Somatic mutation comparison between primary and PDX tumor samples was performed for 

four mismatch-repair deficient (MMRd) models with WES data and three carcinosarcoma 

models with WGS. A union of all pass-filter missense variants was generated for each model, 

and then the genomic positions of these variants were interrogated with qBasePileup to capture 

any variants that may have been missed during variant calling, because of low frequency or 

other quality filters. The overlaps of pileup variants were visualised using eulerR package. The 

generated pileup list of variants with allele-specific copy number information, extracted from 

ascatNGS (6) or GAP (1) output (for WGS and SNP arrays, respectively), was then used to 

identify mutational clusters using PyClone (v0.13.1) (7) with pyclone_beta_binomial emission 

density, random seed set to 20 and thin parameter set to 10. The top five mutational clusters 

with the most variants were selected for determining clonal evolution using ClonEvol package 

(8).  

Copy number clonality analysis was performed on the WGS data of tumor-normal pairs using 

Battenberg (v2.2.5) with default settings.  

 

MSI status 

The level of microsatellite instability (MSI) was assessed using MSIsensor (v0.2) on tumor-

normal pairs of primary and PDX tumor samples using suggested parameters for WES and 

WGS data (9). Samples with an MSI score of >3 were classified as MSI-high. 
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HRD score assessment 

Homologous recombination deficiency (HRD) scores were assessed on SNP array and WGS 

data using scarHRD (10) package on the allele-specific copy number information determined 

by either GAP (1) or ascatNGS (6). 

 

Signature analysis 

Mutational signature analysis was performed using two approaches with SigProfiler and 

deconstructSigs.  De novo signatures were identified on somatic single nucleotide variants from 

WES data using non-negative matrix factorization (NMF) with SigProfiler, as previously 

described (11).  The identified signatures were then compared to the 30 known COSMIC v2 

signatures.  The optimal number of signatures was chosen based on a number of parameters: 

stability, reconstruction error and cosine similarities to COSMIC signatures.  The contribution 

of each de novo signature to a sample’s mutational profile was assigned using 

SignatureEstimation package (12). To determine the potential relative contribution of signature 

3 (HRD-associated signature), deconstructSigs package (13) was used to estimate the 

contribution of the sample’s mutations to the full catalogue of COSMIC v2 mutational 

signatures, using default setting. Minimum mutation signature contribution cut-off was set to 

15%. 

SV signatures were identified using the same approach as used for de novo mutational signature 

analysis. SV events were classified into 32 previously defined categories based on event type, 

size and breakpoint clustering (14). SV signature analysis was performed as previously 

described (15). 

HRdetect probability scores were calculated as previously reported (16) using the reported 

weights and adjustment values (based on SNV mutational signatures, SV signatures, HRD sum 

scores and proportion of deletions with microhomology). Deletions with microhomology were 

identified previously developed scripts (17). HRdetect scores >0.7 were used to categorise 

HRD samples. 

 

Targetable Mutations Analysis 

Cancer Genome Interpreter analysis was performed in July 2019 to identify potentially 

targetable mutations in the PDX models. Short somatic variants, homozygous deletions and 

amplifications in coding regions observed in all PDX samples were used as input.  Only known 

pathogenic variants and predicted drivers (tier 1, 2) were considered as biomarkers. Biomarkers 

were matched with drugs using the Cancer Biomarker Database within Cancer Genome 
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Interpreter. The drug prescription output from Cancer Genome Interpreter was filtered to select 

variants that were “complete” alterations (alterations that match the specific amino acid change 

in the gene which constitutes an actionable variant for a specific drug). Only drug sensitivity 

biomarkers with FDA approved drugs or drugs currently in clinical trials were included. 

Chemotherapy and steroid compounds were not included. 
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Supplementary Tables 

Table S1. Clinical and histopathological characteristics of patient-derived xenograft 
(PDX) models of uterine cancers that underwent genomic analysis. 
 

PDX # Stage Grade Histology Chemotherapy 
response  

Patient 
cancer 
status 

Current 
Mortality 

status 

PDX03 Ic 3 UCS Chemoradiation Recurred DWD 
PDX12 Ia 3 HG EEC  Radiation only - NED 
PDX21 IIIc 3 HG EEC  Radiation only Recurred DWD 
PDX23 IIIb 3 HG SEC  Chemoradiation Recurred DWD 
PDX24 Ib 3 HG EEC  Radiation only - NED 
PDX49 Ia 3 UCS Chemoradiation - NED 
PDX52 Ib 2 LG EEC  Radiation only Recurred DWD 
PDX53 II 3 HG SEC  Chemoradiation - NED 
PDX56 Ia 3 UCS Chemoradiation Recurred AWD 
PDX58 Ib 3 HG EEC  No treatment Recurred DWD 
PDX59 Ib 3 HG EEC  Radiation only - NED 

UCS — Uterine Carcinosarcoma; HG EEC — high-grade endometrioid endometrial cancer, 
HG SEC — high-grade serous endometrial cancer; LG EEC — low-grade endometrioid 
endometrial cancer; DWD — died with disease; AWD — Alive with disease; NED — alive 
with no evidence of disease. 
 
 
Table S2. Successful PDX engraftment by grade and storage conditions. 
 

Tumor tissue condition  Grade 1 Grade 2 Grade 3 
Total EC 
PDXs 

Fresh 0/8 2/6 (33%) 11/18 (61%) 13/32 (41%) 
Overnight at 4oC 1/4 (25%)  2/7 (29%) 3/11 (27%) 
Viably Frozen (-80oC) 0/2 0/5 2/4 (50%) 2/11 (18%) 
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Table S3. Genes with common SNV and short indels or CNA events identified by TCGA 
UCEC and TCGA UCS studies. 
 

Gene 
Type of somatic 
event 

TCGA 
study 

ARHGAP35 SNV and short indels UCS 
ARID1A SNV and short indels UCEC 
ARID5B SNV and short indels UCEC 
CDH4 SNV and short indels UCS 
CTNNB1 SNV and short indels UCEC 
FBXW7 SNV and short indels UCEC, UCS 
KRAS SNV and short indels UCEC, UCS 
PIK3CA SNV and short indels UCEC, UCS 
PIK3R1 SNV and short indels UCEC, UCS 
POLE SNV and short indels UCEC 
PPP2R1A SNV and short indels UCEC, UCS 
PTEN SNV and short indels UCEC, UCS 
RB1 SNV and short indels UCS 
RPL22 SNV and short indels UCEC 
SPOP SNV and short indels UCS 
TP53  SNV and short indels UCEC, UCS 
U2AF SNV and short indels UCS 
ZBTB7B SNV and short indels UCS 
BCL2L1 CNA UCS 
CCNE1 CNA UCEC, UCS 
ERBB2 CNA UCEC, UCS 
FGFR1 CNA UCEC 
FGFR3 CNA UCEC, UCS 
IGF1R CNA UCEC 
KAT6A CNA UCS 
LRP1B CNA UCEC 
MDM2 CNA UCS 
MYC CNA UCEC, UCS 
RIT1 CNA UCS 
SOX17 CNA UCEC 
TERC CNA UCS 

TCGA — The Cancer Genome Atlas; UCEC — Uterine corpus endometrial carcinoma; UCS 
— uterine carcinosarcoma. 
 
Table S4. Somatic coding variants and CNAs detected in PDX tumor samples in genes 
relevant to endometrial cancer.  
These variants are summarized in Fig 2. PDX03 and PDX49 models were analyzed with 
WES and WGS, where WES samples are denoted with *. Attached as separate document 
(Additional File 2). 
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Table S5. HR DNA repair associated genes. 
 

Gene 
RefSeq 
transcript 

HR-related 
gene 

ATM NM_000051.3 yes 
ATR NM_001184.3  
BARD1 NM_000465.3 yes 
BRCA1 NM_007294.3 yes 
BRCA2 NM_000059.3 yes 
BRIP1 NM_032043.2 yes 
CDK12 NM_016507.3 yes 
CHEK1 NM_001114121.2 yes 
CHEK2 NM_007194.3 yes 
FANCA NM_000135.2  
FANCB NM_001018113.2  
FANCC NM_000136.2  
FANCD2 NM_033084.4  
FANCE NM_021922.2  
FANCF NM_022725.3  
FANCG NM_004629.1  
FANCI NM_001113378.1  
FANCL NM_001114636.1  
FANCM NM_020937.3  
MRE11 NM_005591.3 yes 
NBN NM_002485.4 yes 
PALB2 NM_024675.3 yes 
RAD50 NM_005732.4 yes 
RAD51 NM_002875.4 yes 
RAD51B NM_133509.3 yes 
RAD51C NM_058216.2 yes 
RAD51D NM_002878.3 yes 

 
Table S6. HR DNA repair gene variants detected in EC PDX models. 
Attached as separate document (Additional File 2). 
 
Table S7. HR DNA repair gene variants detected in TCGA-UCEC and TCGA-UCS 
studies. 
Attached as separate document (Additional File 2). 
 
Table S8. Sequencing read alignment statistics for human and mouse genome references 
for WES and WGS samples. 
Attached as separate document (Additional File 2). 
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Fig. S1. Generation of PDX models correlates with disease specific survival (DSS). 
Clinical follow-up data was available for 39/54 patients from whom tumors were engrafted. 
Disease specific survival is the time from the date of diagnosis until death from disease. 
Statistical significance was calculated using a Log Rank (Mantel-Cox) Test. 
  



 

 9 

 
Fig. S2. Genomic characteristics of endometrial carcinoma and carcinosarcoma PDX 
models. PDX models are grouped by the four molecular subtypes: POLE, CN-low, MMRd and 
CN-high/p53mut. Tumor mutation burden is shown by grey bars, as mutations per Mb. Somatic 
mutations and CNA events, which were detected in PDX samples in MMR genes and genes 
relevant to endometrial carcinomas and carcinosarcomas (Additional File 1: Table S3, 
Additional File 2: Table S4), are shown. Only the dominant mutational signature etiology is 
shown. PDX samples are labelled by passage number (Pt — patient, F0 – 1st transplant, F1 – 
2nd transplant, F2 – 3rd transplant, etc.) 
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Fig. S3. MSI score determined by MSIsensor in primary and PDX tumor samples 
assessed by WES. Tumor samples are grouped by patient ID. PDX samples are labelled by 
passage number (F0 – 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage 
in brackets (A, B). PDX03 and PDX49 were analyzed with WES and WGS, with WES samples 
denoted with *. The MSI cut-off of 3 is shown with the horizontal dash line. MSI — 
microsatellite instability; PDX — patient-derived xenograft; WES — whole-exome 
sequencing; Pt — patient.  
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Fig. S4. Degree of copy number instability observed in primary and PDX tumor samples 
assessed by: a Percentage of genome with CNA for autosomal chromosomes only; and b 
Number of abnormal CN segments, including CN neutral LOH, of >10Mb. The CNA were 
determined from SNP arrays, except for PDX56, where WGS CNA data was used. Tumor 
samples are grouped by patient ID PDX03 and PDX49 were analyzed with WES and WGS, 
with WES samples denoted with *. PDX samples are labelled by passage number (F0 – 1st 
transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B). CN — 
copy number; CNA — CN alterations; LOH — loss of heterozygosity; WGS — whole-genome 
sequencing.  
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Fig. S5. Mutational signature analysis in PDX models. a Mutational signature analysis using 
deconstructSigs. Minimum signature contribution cut-off of 15% was used to avoid signature 
overfitting. PDX03 and PDX49 were analyzed with WES and WGS, with WES samples 
denoted with *.  B The mutational type probability for each substitution in a trinucleotide 
context of seven de novo signatures identified by SigProfiler. c Cosine similarity matrix of 
seven de novo signatures and 30 known COSMIC (v2) signatures. d The relative contribution 
of de novo signatures to the mutational profile of each tumor sample analyzed using WES. 
Tumor samples are grouped by patient ID. PDX samples are labelled by passage number (F0 
– 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B). Pt 
— patient.  
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Fig. S6. Circos plots of representative PDX samples show genome-wide characteristics of 
each subtype. The outer ring shows chromosomes 1-22 and X. The next ring shows somatic 
coding variants, where substitutions are colored in black and indels are in red. The next ring 
shows BAFs determined by SNP arrays. The most inner ring shows copy number segments 
identified by GAP from SNP array data, where gains are colored in green and deletions are in 
red. BAF — B-allele frequency. 
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Fig. S7. Somatic genome-wide CNA profiles observed in the primary and matched PDX 
samples of the MMRd EC PDX models: a LOH profiles analyzed by SNP arrays; b genome-
wide summary of CNA and LOH. Tumor purity was estimated from the mode of somatic 
variant allele frequencies (Fig. S10). Tumor samples are grouped by patient ID. PDX samples 
are labelled by passage number (F0 – 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, 
etc.) and lineage in brackets (A, B). 
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Fig. S8. Distinct copy number alternations in MMRd model PDX12 on chromosomes 1,4 
and 8: a B-Allele Frequencies, b Log R Ratios with red segments indicating copy number 
change, and c simplified PDX lineage diagram with analyzed tumor samples and distinct 
copy number alternations. Notations for copy number changes: + gain, - loss. SNP – SNP 
array, WES – whole-exome sequencing. PDX samples are labelled by passage number (F0 – 
1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B).    
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Fig. S9. Distinct copy number alternations in MMRd model PDX58 on chromosomes 6, 
8, 10 and 18: a B-Allele Frequencies, b Log R Ratios with red segments indicating copy 
number change, and c simplified PDX lineage diagram with analyzed tumor samples and 
distinct copy number alternations. Notations for copy number changes: + gain, - loss, LOH 
loss of heterozygosity. SNP – SNP array, WES – whole-exome sequencing. PDX samples are 
labelled by passage number (F0 – 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) 
and lineage in brackets (A, B).   
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Fig. S10. Lower tumor purity observed in primary tumor samples compared to 
matched PDX samples as assessed by somatic variant allele frequency. Variant allele 
frequency of all somatic variants detected by WES is shown. Tumor samples are grouped by 
patient ID. PDX samples are labelled by passage number (F0 – 1st transplant, F1 – 2nd 
transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B). Tumor purity was 
estimated from the mode of somatic variant allele frequencies multiplied by 2 (tumor ploidy). 
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Fig. S11. Mutational heterogeneity in mismatch repair deficient PDX models visualized 
by Euler diagrams. Somatic substitutions called by qBasepileup in a PDX12 and b PDX52 
models.  PDX — patient-derived xenograft. PDX samples are labelled by passage number (F0 
– 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B).  
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Fig. S12. Mutational heterogeneity in PDX models without matched primary tumor. 
Panels a-d show euler diagrams for somatic substitutions called by qBasepileup in models 
PDX24, PDX21, PDX53 and PDX23, respectively. Panels e-d show cellular prevalence of 
the top four mutational clusters with ≥5% of all somatic substitutions detected by PyClone in 
models PDX21 and PDX53, respectively, Values shown above boxplots represent the number 
of mutations contributing to each cluster. PyClone outputs were not able to be obtained in 
PDX24 due to ultra-high mutational load (computational restrictions) and in PDX23 due to 
absence of allele-specific copy number estimations from SNP array data (no normal sample). 
PDX samples are labelled by passage number (F0 – 1st transplant, F1 – 2nd transplant, F2 – 3rd 
transplant, etc.) and lineage in brackets (A, B).    
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Fig. S13. Somatic genome-wide CNA profiles observed in the primary and matched PDX 
samples of the CN-high/p53mut UCS PDX models: a LOH profiles analyzed by SNP arrays; 
b Genome-wide summary of CNA and LOH. Tumor purity was estimated by ascatNgs. Tumor 
samples are grouped by patient ID. PDX samples are labelled by passage number (F0 – 1st 
transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B).    
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Fig. S14. Distinct copy number alternations in CN-high/p53mut model PDX49 assessed 
by SNP arrays: a B-Allele Frequencies, b Log R Ratios with red segments indicating copy 
number change, and c simplified PDX lineage diagram with analyzed tumor samples and 
distinct copy number alternations. Notations for copy number changes: + gain, - loss, s 
subclonal. SNP – SNP array, WGS – whole-genome sequencing. PDX samples are labelled by 
passage number (F0 – 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage 
in brackets (A, B). 
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Fig. S15. Distinct copy number alternations in CN-high/p53mut model PDX56 assessed 
by SNP arrays: a B-Allele Frequencies, b Log R Ratios with red segments indicating copy 
number change, and c simplified PDX lineage diagram with analyzed tumor samples and 
distinct copy number alternations. Notations for copy number changes: + gain, - loss, s 
subclonal. SNP – SNP array, WGS – whole-genome sequencing. PDX samples are labelled by 
passage number (F0 – 1st transplant, F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage 
in brackets (A, B).  
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Fig. S16. CNA profiles of the primary and matched PDX samples of CN-high/p53mut 
carcinosarcoma PDX03 model. Battenberg subclonal CN profiles for a primary tumor, b 
Passage 1 — Lineage A sample, c Passage 1 — Lineage B sample and d Passage 3 — Lineage 
B sample. Thick lines show the predominant CN state, thin lines show subclonal CN, yellow 
color denotes major allele CN, and dark grey denotes minor allele CN. PDX — patient-derived 
xenograft; CN — copy number. e Ploidy estimations determined from SNP array or WGS data, 
where it was available. PDX samples are labelled by passage number (F0 – 1st transplant, F1 – 
2nd transplant, F2 – 3rd transplant, etc.).   
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Fig. S17. Clonal evolution analysis of mutations in the CN-high/p53mut carcinosarcoma 
PDX49 model. a Mutational heterogeneity visualized by euler diagrams of somatic 
substitutions called by qBasepileup. b Cellular prevalence of the top five mutational clusters 
with ≥5% of all somatic substitutions detected by PyClone. Values shown above boxplots 
represent the number of mutations contributing to each cluster. c Fish plots and d cellular 
population depictions of the top five mutational clusters. Percentages shown in the fish plots 
are the estimated proportions of cells containing that mutational cluster. e The selected clonal 
evolution tree inferred by ClonEvol. f An alternative solution for the clonal evolution tree by 
ClonEvol. PDX samples are labelled by passage number (F0 – 1st transplant, F1 – 2nd 
transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B).   
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Fig. S18. Clonal evolution analysis of mutations in the CN-high/p53mut carcinosarcoma 
PDX56 model. a Mutational heterogeneity visualized by euler diagrams of somatic 
substitutions called by qBasepileup. b Cellular prevalence of the top three mutational clusters 
with ≥5% of all somatic substitutions detected by PyClone. Values shown above boxplots 
represent the number of mutations contributing to each cluster. c Fish plots and d cellular 
population depictions of the top three mutational clusters. Percentages shown in the fish plots 
are the estimated proportions of cells containing that mutational cluster. e The clonal evolution 
tree inferred by ClonEvol. PDX samples are labelled by passage number (F0 – 1st transplant, 
F1 – 2nd transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B).   
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Fig. S19. Potentially actionable genomic alterations in PDX models identified using 
Cancer Genome Interpreter. Genomic alterations are shown in black in the bottom panel.  
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Fig. S20. De novo rearrangement signature analysis in the three CN-high/p53mut 
carcinosarcoma models assessed by WGS. a Structural variant types detected in the PDX 
models that were used for  rearrangement signature analysis. b The rearrangement class profile 
of the three de novo rearrangement signatures. Rearrangements were classified into 32 
categories based on the rearrangement size, type and whether breakpoints are clustered or non-
clustered. c Cosine similarity matrix of the three de novo rearrangement signatures and 
previously described rearrangement signatures in breast cancer. d The relative contribution of 
de novo signatures to the mutational profile of each tumor sample. Tumor samples are grouped 
by patient ID. PDX samples are labelled by passage number (F0 – 1st transplant, F1 – 2nd 
transplant, F2 – 3rd transplant, etc.) and lineage in brackets (A, B). PDX — patient-derived 
xenograft; WGS — whole-genome sequencing; Del — deletion, Dup — duplication, Inv — 
inversion, T — translocation.  
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Fig. S21. De novo mutational signature analysis in TCGA UCEC and UCS cohorts. a 
The mutational type probability for each substitution in a trinucleotide context of six de novo 
signatures identified by SigProfiler. b Cosine similarity matrix of six de novo signatures and 
30 known COSMIC (v2) signatures. c The relative contribution of de novo signatures to the 
mutational profile of each tumor sample.   
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